
Vikrant Shende et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3459 – 3462

3459

ISSN 2278-3091

Volume 9, No.3, May - June 2020
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse149932020.pdf
https://doi.org/10.30534/ijatcse/2020/149932020

ABSTRACT

Generally, neural networks have been extremely bad at
cryptographic operations as they have a tough time carrying
out an easy XOR computation. While that holds true, it ends
up that neural networks can protect their private information
from other neural networks by discovering unique structure of
encryption and decryption, without being taught a specific
algorithm. This is a slightly upgraded design used for the
paper "Learning to Protect Communications with Adversarial
Neural Cryptography". The model used in this paper is coded
in python programming language, trained and run on
raspberry-pi which provide dedicated hardware for the
design.

Key words: Adversarial Neural Cryptography, Encryption,
Decryption, Deep Learning, Neural Networks.

1. INTRODUCTION

The model used here is slightly simplified from the one
described in the paper [1], the convolution layer width is
decreased by half. In the original paper, there was a nonlinear
layer after the fully-connected layer, that nonlinear has been
gotten rid of here. These changes improve the effectiveness of
training. The initializer for the convolution layers has
switched to the tf.contrib.layers default of xavier_initializer
instead of an easier truncated_normal. The system is coded in
Python3 programming language using the Tensor-Flow
framework. The raspberry-pi 4 is used as a dedicated
hardware to train and run the model.

As shown in Figure-1. Sender takes a plain-text ‘P’ and key
‘K’ as input to produce a cipher-text ‘C’ at its output using
encryption which is then sent out to Receiver, Receiver’s goal
is to decrypt this cipher-text ‘C’ using key ‘K’ to produce
plain-text. Whereas Intruder’s goal is to attempt to decrypt
the cipher-text ‘C’ without having any other details to produce
plaintext. The neural networks Sender and Receiver must
discover their own encryption techniques to keep their
communication private and protected without the Intruder
neural network understanding anything about it. Sender and

Receiver neural networks periodically enhance themselves by
optimizing their own models to beat the best version of
Intruder neural network.

Here none of the neural networks is given a specific
cryptographic algorithm for encryption and decryption, using
machine learning Sender and Receiver discover and optimize
their own cryptographic algorithms over time to
communicate with each other privately. Python and
open-source library called Tensor-Flow is used to design and
execute the cryptosystem. The cryptosystem training is
carried out in two stages. In stage one Sender and Receiver
neural networks are trained where they learn to encrypt and
decrypt their messages for effective communication. In stage
two Intruder neural network is trained, where it learns to
intercept and decrypt their messages and output the original
plain-text. Knowing that Intruder neural network can
intercept and decrypt their messages, we train Sender and
Receiver once again for them to enhance and optimize their
system so that Intruder system can no longer decrypt their
messages. Training Sender-Receiver and Intruder systems
alternately, we are enhancing Sender and Receiver’s
communication over improving Intruder’s ability to intercept
and decrypt their messages. This forces Sender and Receiver
system to continuously improve and develop new encryption
technique to protect their personal communication.

We continue to train Sender and Receiver in addition to
Intruder neural network which guarantees that Sender and
Receiver keep improving their cryptographic strategies in
order to beat the best variation of Intruder. Thus, supervised
and unsupervised training elements are used in this
cryptosystem to create a neural network architecture that is
self-sufficient to learn mixing functions without
implementing any particular encryption algorithm. Thus, to
communicate securely, architecture of Sender, Receiver and
Intruder which is a general neural network learns and evolves
over time rather than using a specific algorithm [1].

First layer (FC) is a fully-connected layer with equal number
of inputs and outputs. The plain-text and key is provided as
input to this layer and output obtained from this layer is linear
combination of all the input bits, which makes proper
blending between secrete key and plaintext bits. This layer
serves the purpose of permutation. This layer is followed by
sequence of several convolution layers, the last layer produces

Application of Machine Learning in

Cryptography
Vikrant Shende1, Meghana Kulkarni2

1 KLS Gogte Institute of Technology, Belagavi, India, Vikrant_shende@git.edu
2 VTU, Belagavi, India, meghanak@vtu.ac.in

Vikrant Shende et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3459 – 3462

3460

the cipher-text, which is equal in size to that of plain-text. The
convolutions layers use some function on bits outputted by
previous layers.

Figure. 1: Block diagram showing communication between
Sender, Receiver and Intruder.

2. RELATED WORK

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas,
Shimon Whiteson proposed, “deep distributed recurrent
Q-networks” (DDRQN), which enable groups of agents to
learn to fix communication-based coordination tasks. In order
to successfully interact, agents in these jobs must first
automatically develop and agree upon their own
communication procedure. They provided empirical
outcomes on two multi-agent knowing problems based on
widely known riddles, showing that DDRQN can successfully
fix such tasks and find sophisticated communication
protocols. In addition, they provided experiments results that
verify that each of the primary elements of the DDRQN
architecture are important to its success [2].

Alexander Klimov, Anton Mityagin, and Adi Shamir, analyze
the security of a brand-new key exchange suggested in
"Secure exchange of information by synchronization of
neural networks", which is based upon equally learning
neural networks. This is a brand-new potential source for
public key cryptographic designs which are not based upon
number logical functions, as well as have small-time and
memory details. In the initial part of the paper they review the
strategy, describe why both parties get to a same key and why
an opponent using a comparable neural network is not likely
to reach the very same key. Nonetheless, in the 2nd part of the
paper they show that this key exchange procedure can be
barged in 3 different ways, and as a result it is completely
insecure [3].

Neural Networks that can work with encrypted information is
presented. This makes it possible for an data owner to send
their data in an encrypted format to a cloud service that hosts
the network. The encryption sees to it that the information
stays personal since the cloud owner does not have access to
the key needed to decrypt it. Nonetheless, cloud service can
work with the encrypted information to make encrypted
predictions and return these encrypted predictions to the
cloud service user. The user can now decrypt these encrypted

predictions to get back the original results. In the process
cloud service provider cannot see the original information [
4].

TensorFlow enables developers to try out unique
optimizations and training algorithms. TensorFlow supports
a variety of applications, with especially strong assistance for
training and reasoning on deep neural networks. Several
Google services utilize TensorFlow in production. It is
launched as an open-source project and commonly utilized for
artificial intelligence research study. They explain the
TensorFlow dataflow model in contrast to existing systems
and show the compelling efficiency that TensorFlow attains
for several real-world applications [5].

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,Pascal
Germain,Hugo Larochelle,François Laviolette Mario
Marchand, Victor Lempitsky, Presented a brand-new
representation learning method for domain adaption, in
which information at training and test time came from
comparable however different sources. This method is
directly inspired by the theory on domain adaption suggesting
that, for efficient domain transfer to be accomplished,
predictions should be made based upon functions that cannot
discriminate between the training (source) and test (target)
domains [6].

A technique which allows the discriminator network of a
GAN to perform weakly localization of the items of interest.
To attain this, they proposed a Teacher-Student training
model as well as a unique kind of Soft-Class Activation maps.
This scheme permits the discriminator to create weak
annotation of the produced images which can be used for
automatic annotation of produced images [7].

3. TRAINING/ RESULTS

We designed three networks namely Sender, Receiver and
Intruder. These network takes N bit random plain-text and the
key K and produce floating-point cipher-text. For N=16, 32
and 64 both plain-text and key are evenly distributed. Because
of random key and plain-text generation there is a possibility
of reusing. We executed our experiments in TensorFlow. We
ran them on a raspberry pi.

In the beginning, Sender network combines two N-bit
plain-text and key into 2N element vector using -1 and 1 to
represent bits. The 2N X 2N FC layer processes this vector
and passed through four 1D convolution layers. We used
sigmoid function after every layer except last layer. The final
layer reduces output to N elements, because of tanh unit. The
tanh unit output ranges between [-1,1], which can be mapped
to binary values. The Sender and Receiver networks are
identical whereas the Intruder network only takes cipher-text
thus has N X 2N FC layer.

C Sende
r

 Receiver
Receive

 Intruder

P

K

Pi

Pr

Vikrant Shende et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3459 – 3462

3461

We trained all the three neural networks in batch size of 4096
entries. The experimental results for batch size 4096 entries is
presented. Adam optimizer is used with 0.0008 learning rate.
Here learning rate is not minimize over time due to the fact
that we desire Sender, Receiver and Intruder networks to
respond to subtle alterations in other elements, until Sender
and Receiver ideally attain a robust result to small
modifications in Intruder network. Training switches between
Sender/Receiver and Intruder, with Sender/Receiver training
for one mini-batch and Intruder training for 2 mini-batches.
We chose this proportion to give a minor computational
advantage to the Intruder. We train Intruder network with the
objective of reducing the squared error of its quote of ‘C’.

To check learning of system in hiding data appropriately,

we train a separate evaluator, which understands the
distribution of ‘C’. The separate evaluator tries to guess
cipher-text relying just upon basic details, whereas the
genuine Intruder network uses the intermediate output
(D-public) and the cipher-text. If Intruder’s reconstruction
error equals separate evaluator error, we know that Intruder is
not successfully drawing out details from the D-public and the
cipher-text. Figure 2. reveals the results of adversarial
training to discover to hidden ‘C’. The orange "Intruder
Reconstruction Error” line reveals the Intruder’s
reconstruction error. The blue shows “Receiver's
reconstruction error”, which drops over time up until
Receiver is making the best possible forecast of ‘D’ offered the
input. The public error ends up being low, however is a little
higher than Sender's. As time elapses, Intruder's relative
benefit becomes zero. Intruder is unable to reconstruct any
more details about C.

Table 1: Sample values showing reconstruction error of

Receiver and Intruder neural network

Iteration Receiver’s
Reconstruction Error

Intruder’s
Reconstruction

Error

0 7.98 7.99

200 7.91 7.52

400 7.88 7.56

800 5.33 6.11

1000 2.45 6.07

2000 0.83 6.76

4000 0.08 7.26

8000 0.02 7.46

10000 0.01 7.51

15000 0.01 7.58

20000 0.01 7.50

25000 0.01 7.58

26000 0.00 7.54

27000 0.01 7.62

27600 0.00 7.72

Figure 2: Reconstruction errors during training for Sender,

Receiver and Intruder.

The results obtained from the experiments were quite
impressive. As you can see in the Table-1, at 200 steps the
reconstruction error is high for both Receiver and the Intruder,
somewhere around 8000 training steps both Sender and
Receiver start to rebuild the original message. Someplace
around 10,000 training steps the Sender and Receiver
networks seem to figure this out and Intruder’s error rate
climbs up once again. Simply put, Receiver has the ability to
learn from Intruder’s habits and safeguard the
communication to prevent the attacker while still enhancing
its performance.

Table 2: Sample values of Plain-text, Cipher-text and Hamming

distance

Plain Text Cipher Text Hamming
Distance

1111110011011100 1010010111100011 62.5

1010101010010010 1011010101001111 68.75

1100110010110011 1011000101100111 62.5

1000111111110111 1111000000011011 75.0

1000000100001011 1111010111110010 62.5

1111000000111010 1000111111010001 81.25

Vikrant Shende et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3459 – 3462

3462

1110000100110010 1001111111001110 75.0

1011010011110101 1101100100001111 68.75

1111010101101001 1000001010001100 68.75

1001111000011101 1110010111100110 81.25

1101100100111100 1010011111000001 81.25

1111111011110111 1000000000001000 87.5

1110010011011011 1111111100110110 62.5

1111001101000100 1010100010101001 68.75

1010100110111101 1111111011001010 68.75

1111111111110101 1100001000001010 81.25

1110101010111001 1111010011010110 62.5

1110101011001111 1001000110010100 68.75

1000110110011110 1111101001111001 75.0

1101000101000110 1011111010111111 75.0

Table 3: Hamming Distance

AES RSA
Machine
Learning
approach

87.5% 98.25% 65%

After the completion of training session, some random 16-bit
binary numbers are given as input to the Sender neural
network and its corresponding output is observed for
calculating hamming distance. The sample 16-bit input,
cipher-text output and hamming distance is shown in
Table-2. A good encryption system will have more than 50%
hamming distance. In our test results 10% of the inputs
achieved a hamming distance of 70% and above. We achieved
an average 65% hamming distance for our test results.
Table-3 shows the average hamming distance calculated for
AES, RSA and machine learning approach.

4. CONCLUSION

In this paper a neural network which continuously learns and
optimizes its private communication is demonstrated. In the
learning process none of standard cryptographic algorithms
are used, rather it is based on a secrecy specification
represented by the training goals. In this setup, attacker is

modelled by neural network. Neural networks are not only
helpful for cryptographic attacks but also can be used to
protect data efficiently. While it looks unlikely that neural
networks would become best at cryptanalysis, they might be
rather effective in making sense of metadata and in traffic
analysis. Although this is a relatively new research area, this
topic has some appealing future scope. For instance, we might
potentially utilize this innovation to make a few of existing
cryptographic algorithms even stronger by adding a layer of
artificial intelligence. Another possibility is to let neural
networks discover their own encryption/decryption strategies
which later could be evaluated.

REFERENCES

[1] Martı ́ n Abadi, David G. Andersen,”Learning To Protect
Communications With Adversarial Neural
Cryptography” . Google Brain

[2] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas,
Shimon Whiteson, “Learning to Communicate to Solve
Riddles with Deep Distributed Recurrent Q-Networks”.
CoRR, abs/1602.02672, 2016a. URL
http://arxiv.org/abs/1602.02672

[3] Alexander Klimov, Anton Mityagin, and Adi Shamir,
“Analysis of Neural Cryptography”. Y. Zheng (Ed.):
ASIACRYPT 2002, LNCS 2501, pp. 288–298, 2002.
Springer-Verlag Berlin Heidelberg 2002
https://doi.org/10.1007/3-540-36178-2_18

[4] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine,
Kristin Lauter, Michael Naehrig, John Wernsing,
“CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy”. Proceedings
of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP
volume 48.

[5] Martı ́ n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath
Kudlur,Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker,Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng, “TensorFlow: A system for large-scale
machine learning”. CoRR, abs/1605.08695, 2016b. URL
http://arxiv.org/abs/1605.08695.

[6] Yaroslav Ganin, Evgeniya Ustinova, Hana
Ajakan,Pascal Germain,Hugo Larochelle,François
Laviolette Mario Marchand, Victor Lempitsky,
“Domain-Adversarial Training of Neural Networks”.
CoRR, abs/1505.07818, 2015. URL
http://arxiv.org/abs/1505.07818.

[7] Dimitris Kastaniotis, Ioanna Ntinou, Dimitrios
Tsourounis, George Economou and Spiros Fotopoulos,
“Attention-Aware Generative Adversarial Networks
(ATA-GANs)”. 978-1-5386-0951-4/18/$31.00 #2018
IEEE.

