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ABSTRACT 
 
Generally, neural networks have been extremely bad at 
cryptographic operations as they have a tough time carrying 
out an easy XOR computation. While that holds true, it ends 
up that neural networks can protect their private information 
from other neural networks by discovering unique structure of 
encryption and decryption, without being taught a specific 
algorithm. This is a slightly upgraded design used for the 
paper "Learning to Protect Communications with Adversarial 
Neural Cryptography". The model used in this paper is coded 
in python programming language, trained and run on 
raspberry-pi which provide dedicated hardware for the 
design.  
 
Key words: Adversarial Neural Cryptography, Encryption, 
Decryption, Deep Learning, Neural Networks. 
 
 
1. INTRODUCTION 
 
The model used here is slightly simplified from the one 
described in the paper [1], the convolution layer width is 
decreased by half. In the original paper, there was a nonlinear 
layer after the fully-connected layer, that nonlinear has been 
gotten rid of here. These changes improve the effectiveness of 
training. The initializer for the convolution layers has 
switched to the tf.contrib.layers default of xavier_initializer 
instead of an easier truncated_normal. The system is coded in 
Python3 programming language using the Tensor-Flow 
framework. The raspberry-pi 4 is used as a dedicated 
hardware to train and run the model. 

  
As shown in Figure-1. Sender takes a plain-text ‘P’ and key 
‘K’ as input to produce a cipher-text ‘C’ at its output using 
encryption which is then sent out to Receiver, Receiver’s goal 
is to decrypt this cipher-text ‘C’ using key ‘K’ to produce 
plain-text. Whereas Intruder’s goal is to attempt to decrypt 
the cipher-text ‘C’ without having any other details to produce 
plaintext. The neural networks Sender and Receiver must 
discover their own encryption techniques to keep their 
communication private and protected without the Intruder 
neural network understanding anything about it. Sender and 

 
 

Receiver neural networks periodically enhance themselves by 
optimizing their own models to beat the best version of 
Intruder neural network. 

  
Here none of the neural networks is given a specific 
cryptographic algorithm for encryption and decryption, using 
machine learning Sender and Receiver discover and optimize 
their own cryptographic algorithms over time to 
communicate with each other privately. Python and 
open-source library called Tensor-Flow is used to design and 
execute the cryptosystem. The cryptosystem training is 
carried out in two stages. In stage one Sender and Receiver 
neural networks are trained where they learn to encrypt and 
decrypt their messages for effective communication. In stage 
two Intruder neural network is trained, where it learns to 
intercept and decrypt their messages and output the original 
plain-text. Knowing that Intruder neural network can 
intercept and decrypt their messages, we train Sender and 
Receiver once again for them to enhance and optimize their 
system so that Intruder system can no longer decrypt their 
messages. Training Sender-Receiver and Intruder systems 
alternately, we are enhancing Sender and Receiver’s 
communication over improving Intruder’s ability to intercept 
and decrypt their messages. This forces Sender and Receiver 
system to continuously improve and develop new encryption 
technique to protect their personal communication.  

 
We continue to train Sender and Receiver in addition to 
Intruder neural network which guarantees that Sender and 
Receiver keep improving their cryptographic strategies in 
order to beat the best variation of Intruder. Thus, supervised 
and unsupervised training elements are used in this 
cryptosystem to create a neural network architecture that is 
self-sufficient to learn mixing functions without 
implementing any particular encryption algorithm. Thus, to 
communicate securely, architecture of Sender, Receiver and 
Intruder which is a general neural network learns and evolves 
over time rather than using a specific algorithm [1]. 
 
First layer (FC) is a fully-connected layer with equal number 
of inputs and outputs. The plain-text and key is provided as 
input to this layer and output obtained from this layer is linear 
combination of all the input bits, which makes proper 
blending between secrete key and plaintext bits. This layer 
serves the purpose of permutation. This layer is followed by 
sequence of several convolution layers, the last layer produces 
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the cipher-text, which is equal in size to that of plain-text. The 
convolutions layers use some function on bits outputted by 
previous layers. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1: Block diagram showing communication between 
Sender, Receiver and Intruder. 

 
2. RELATED WORK 

 
Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, 
Shimon Whiteson proposed, “deep distributed recurrent 
Q-networks” ( DDRQN), which enable groups of agents to 
learn to fix communication-based coordination tasks. In order 
to successfully interact, agents in these jobs must first 
automatically develop and agree upon their own 
communication procedure. They provided empirical 
outcomes on two multi-agent knowing problems based on 
widely known riddles, showing that DDRQN can successfully 
fix such tasks and find sophisticated communication 
protocols. In addition, they provided experiments results that 
verify that each of the primary elements of the DDRQN 
architecture are important to its success [2]. 
 
Alexander Klimov, Anton Mityagin, and Adi Shamir, analyze 
the security of a brand-new key exchange suggested in 
"Secure exchange of information by synchronization of 
neural networks", which is based upon equally learning 
neural networks. This is a brand-new potential source for 
public key cryptographic designs which are not based upon 
number logical functions, as well as have small-time and 
memory details. In the initial part of the paper they review the 
strategy, describe why both parties get to a same key and why 
an opponent using a comparable neural network is not likely 
to reach the very same key. Nonetheless, in the 2nd part of the 
paper they show that this key exchange procedure can be 
barged in 3 different ways, and as a result it is completely 
insecure [3]. 
 
Neural Networks that can work with encrypted information is 
presented. This makes it possible for an data owner to send 
their data in an encrypted format to a cloud service that hosts 
the network. The encryption sees to it that the information 
stays personal since the cloud owner does not have access to 
the key needed to decrypt it. Nonetheless, cloud service can 
work with the encrypted information to make encrypted 
predictions and return these encrypted predictions to the 
cloud service user. The user can now decrypt these encrypted 

predictions to get back the original results. In the process 
cloud service provider cannot see the original information [ 
4]. 
 
TensorFlow enables developers to try out unique 
optimizations and training algorithms. TensorFlow supports 
a variety of applications, with especially strong assistance for 
training and reasoning on deep neural networks. Several 
Google services utilize TensorFlow in production. It is 
launched as an open-source project and commonly utilized for 
artificial intelligence research study. They explain the 
TensorFlow dataflow model in contrast to existing systems 
and show the compelling efficiency that TensorFlow attains 
for several real-world applications [5]. 
 
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,Pascal 
Germain,Hugo Larochelle,François Laviolette Mario 
Marchand, Victor Lempitsky, Presented a brand-new 
representation learning method for domain adaption, in 
which information at training and test time came from 
comparable however different sources. This method is 
directly inspired by the theory on domain adaption suggesting 
that, for efficient domain transfer to be accomplished, 
predictions should be made based upon functions that cannot 
discriminate between the training (source) and test (target) 
domains [6]. 
 
A technique which allows the discriminator network of a 
GAN to perform weakly localization of the items of interest. 
To attain this, they proposed a Teacher-Student training 
model as well as a unique kind of Soft-Class Activation maps. 
This scheme permits the discriminator to create weak 
annotation of the produced images which can be used for 
automatic annotation of produced images [7]. 
 
3. TRAINING/ RESULTS 
 
We designed three networks namely Sender, Receiver and 
Intruder. These network takes N bit random plain-text and the 
key K and produce floating-point cipher-text. For N=16, 32 
and 64 both plain-text and key are evenly distributed. Because 
of random key and plain-text generation there is a possibility 
of reusing.  We executed our experiments in TensorFlow. We 
ran them on a raspberry pi. 
 
In the beginning, Sender network combines two N-bit 
plain-text and key into 2N element vector using -1 and 1 to 
represent bits. The 2N X 2N FC layer processes this vector 
and passed through four 1D convolution layers. We used 
sigmoid function after every layer except last layer. The final 
layer reduces output to N elements, because of tanh unit. The 
tanh unit output ranges between [-1,1], which can be mapped 
to binary values. The Sender and Receiver networks are 
identical whereas the Intruder network only takes cipher-text 
thus has N X 2N FC layer. 
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We trained all the three neural networks in batch size of 4096 
entries. The experimental results for batch size 4096 entries is 
presented. Adam optimizer is used with 0.0008 learning rate. 
Here learning rate is not minimize over time due to the fact 
that we desire Sender, Receiver and Intruder networks to 
respond to subtle alterations in other elements, until Sender 
and Receiver ideally attain a robust result to small 
modifications in Intruder network. Training switches between 
Sender/Receiver and Intruder, with Sender/Receiver training 
for one mini-batch and Intruder training for 2 mini-batches. 
We chose this proportion to give a minor computational 
advantage to the Intruder. We train Intruder network with the 
objective of reducing the squared error of its quote of ‘C’. 

  
To check learning of system in hiding data appropriately, 

we train a separate evaluator, which understands the 
distribution of ‘C’. The separate evaluator tries to guess 
cipher-text relying just upon basic details, whereas the 
genuine Intruder network uses the intermediate output 
(D-public) and the cipher-text. If Intruder’s reconstruction 
error equals separate evaluator error, we know that Intruder is 
not successfully drawing out details from the D-public and the 
cipher-text. Figure 2. reveals the results of adversarial 
training to discover to hidden ‘C’. The orange "Intruder 
Reconstruction Error” line reveals the Intruder’s 
reconstruction error. The blue shows “Receiver's 
reconstruction error”, which drops over time up until 
Receiver is making the best possible forecast of ‘D’ offered the 
input. The public error ends up being low, however is a little 
higher than Sender's. As time elapses, Intruder's relative 
benefit becomes zero. Intruder is unable to reconstruct any 
more details about C. 

 
Table  1: Sample values showing reconstruction error of 

Receiver and Intruder neural network 
 

Iteration      Receiver’s 
Reconstruction Error 

Intruder’s 
Reconstruction 

Error 

0 7.98 7.99 

200 7.91 7.52 

400 7.88 7.56 

800 5.33 6.11 

1000 2.45 6.07 

2000 0.83 6.76 

4000 0.08 7.26 

8000 0.02 7.46 

10000 0.01 7.51 

15000 0.01 7.58 

20000 0.01 7.50 

25000 0.01 7.58 

26000 0.00 7.54 

27000 0.01 7.62 

27600 0.00 7.72 

 
Figure 2: Reconstruction errors during training for Sender, 

Receiver and Intruder. 
 
 

The results obtained from the experiments were quite 
impressive. As you can see in the Table-1, at 200 steps the 
reconstruction error is high for both Receiver and the Intruder, 
somewhere around 8000 training steps both Sender and 
Receiver start to rebuild the original message. Someplace 
around 10,000 training steps the Sender and Receiver 
networks seem to figure this out and Intruder’s error rate 
climbs up once again. Simply put, Receiver has the ability to 
learn from Intruder’s habits and safeguard the 
communication to prevent the attacker while still enhancing 
its performance. 

 
Table 2: Sample values of Plain-text, Cipher-text and Hamming 

distance 
 

Plain Text Cipher Text Hamming 
Distance 

1111110011011100 1010010111100011 62.5 

1010101010010010 1011010101001111 68.75 

1100110010110011 1011000101100111 62.5 

1000111111110111 1111000000011011 75.0 

1000000100001011 1111010111110010 62.5 

1111000000111010 1000111111010001 81.25 
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1110000100110010 1001111111001110 75.0 

1011010011110101 1101100100001111 68.75 

1111010101101001 1000001010001100 68.75 

1001111000011101 1110010111100110 81.25 

1101100100111100 1010011111000001 81.25 

1111111011110111 1000000000001000 87.5 

1110010011011011 1111111100110110 62.5 

1111001101000100 1010100010101001 68.75 

1010100110111101 1111111011001010 68.75 

1111111111110101 1100001000001010 81.25 

1110101010111001 1111010011010110 62.5 

1110101011001111 1001000110010100 68.75 

1000110110011110 1111101001111001 75.0 

1101000101000110 1011111010111111 75.0 

 
Table 3: Hamming Distance  

AES  RSA  
Machine 
Learning 
approach 

87.5%  98.25%  65% 

 
After the completion of training session, some random 16-bit 
binary numbers are given as input to the Sender neural 
network and its corresponding output is observed for 
calculating hamming distance. The sample 16-bit input, 
cipher-text output and hamming distance is shown in 
Table-2. A good encryption system will have more than 50% 
hamming distance. In our test results 10% of the inputs 
achieved a hamming distance of 70% and above. We achieved 
an average 65% hamming distance for our test results. 
Table-3 shows the average hamming distance calculated for 
AES, RSA and machine learning approach. 

 
4. CONCLUSION 
 
In this paper a neural network which continuously learns and 
optimizes its private communication is demonstrated. In the 
learning process none of standard cryptographic algorithms 
are used, rather it is based on a secrecy specification 
represented by the training goals. In this setup, attacker is 

modelled by neural network. Neural networks are not only 
helpful for cryptographic attacks but also can be used to 
protect data efficiently. While it looks unlikely that neural 
networks would become best at cryptanalysis, they might be 
rather effective in making sense of metadata and in traffic 
analysis. Although this is a relatively new research area, this 
topic has some appealing future scope. For instance, we might 
potentially utilize this innovation to make a few of existing 
cryptographic algorithms even stronger by adding a layer of 
artificial intelligence. Another possibility is to let neural 
networks discover their own encryption/decryption strategies 
which later could be evaluated. 
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