
V. Joseph Raymond et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4257 – 4261

4257



ABSTRACT

Android applications are available in the google cloud apps
market. Starting from the normal functionalities like calling,
messaging, and camera to advanced functionalities like
online banking, online shopping, there is no limit to how we
can make use of mobile phones. Just like there is no limit to
functionalities of the mobile phone, there is no limit to the
amount of information available on mobile phones. When you
say information, it is confidential information including
personal information, username, and password and card
details. There are already many cases reported about
information leakage by compromising a mobile phone. The
important point to be noticed here is that the medium through
which mobile phones are providing these functionalities, and
that medium is called an application. There are millions of
applications in the Play Store and App Store which come with
different functionalities. The only way to stop this problem is
by stopping the user from downloading malicious
applications from the Play Store. But the main challenge in
this solution leads to a question, which is "how the user will
distinguish between a malicious application and benign
application". There are millions of applications in play Store
and considering play Store is a trusted media, it is very
unlikely to raise any suspicion over an application to a normal
user. We propose a novel approach to perform static and
dynamic analysis of malicious payload and compare it with
the genuine application.

Key words: Google Cloud App, Malicious Payload, Android
apk files, Classifiers

1. INTRODUCTION

One side, the defenders, who will always try to stop the
attackers by using updated technologies to secure their system
and thereby securing the valuable information in their system
from cloud apps. It is time we move from this existing
solution as it can no longer prevent the attackers from getting
hands-on our information. Without programming the
machine can learn

about the system by repeated operations better-trained data

can be obtained, the outcome can be developed for android
applications [1].In all ways, it will be more efficient and right
than all the existing solutions. There are three kinds of
machine learning algorithms:

1.1. Supervised Learning
This is labeled supervision where the data is aligned with the
appropriate answer. After this, we collect new trained data
from the algorithm and then match the outcome from the
data.

1.2 Unsupervised Learning
This is not a labeled approach, where the algorithm will work
without any help. The machine will find unsorted data from
the pattern without having any data.

1.3 Reinforcement Learning
This approach gains maximum points based upon some
situations [6-8] Henceforth this approach similar to the
evaluation process with the answer key where predication is
based on experience from various levels. The agent will get
rewards from many obstacles between him succeeding in his
levels as shown in Figure 1.

Figure 1: Understanding the training phase

2. APP ANALYSIS

2.1 App Compatibility
This is known as the "app compatibility". Android
applications are capable of running on various devices such as

V. Joseph Raymond 1, R.Jeberson Retna Raj 2

1 Sathyabama Institute of Science and Technology, India, josephrv@srmist.edu.in
2 Sathyabama Institute of Science and Technology, India, jebersonretnaraj.it@sathyabama.ac.in

A Machine Learning approach for analyzing and detecting
Android malicious applications

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse14942020.pdf

https://doi.org/10.30534/ijatcse/2020/14942020

V. Joseph Raymond et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4257 – 4261

4258

mobile phones, tablets, television and so on. As of now, the
scope of this application only allows it to run mobile phones.

2.2 Static Analysis of Apps
Malware analysis involves both static and dynamic analysis.
Static analysis is one of the malware analyzing technique
which will look over one of the important files in the .apk file
containing all the permissions required by a particular
application for its successful run from the manifest file. This
Use either SI (MKS) or CGS as primary units. (SI units are
strongly encouraged.) English units may be used as secondary
is what we have used for static analysis. [2][22]Static analysis
will check all the permissions of the manifest file to detect
malicious actions. These permissions are the input to the
machine learning algorithm. The process is divided into three
main steps as given below. We can extract useful information
from the device such as serial number, device name, access
specifier and encryption status [9-11]. This process checks
whether the device is rooted or not henceforth gaining some
privileges. Stock recovery mode can be used as an alternative.
Searching evidence from web browsers that have established
a connection with the device. Computation of hash using the
md5deep tool and find its digital signature. We will connect
the device with the platform as shown in Figure 2. The
installation of a malicious App can be done through Adb
install command as shown in Figure 3. Adb Logcat is used to
track and monitor the presence of malicious activity as shown
in Figure 4. The Adb Pull operation will take the file
permissions and copy the apk file in the destination as shown
in Figure 5.

Figure 2: ADB Connect

Figure 3: ADB Install

Figure 4: ADB Logcat

Figure 5: ADB Pull

2.3 Root of Trust
This approach is an understanding of manifest file where we
find important details about commands, system files, and
folders where the user finds full information about the system.
This provides information to machine learning algorithms
that provide the need to act on android devices [12-14].In
turn, achieving the effective gaining of system credential data
that can even break the integrity of the system. These contain
a set of functions that computing models will consider. This is
always suited for embedded applications. The functionalities
behind these are encryption, unauthorized access, rootkit
detection, improper read and write operations and issues with
digital rights. It is a harder approach to review such
mechanisms. The overall proposed system architecture: In
static analysis, the downloaded app can be analyzed and
examine the application behavior using dynamic analysis.

2.4 Apps: Dynamic analysis
Another way of doing malware analysis is known as dynamic
analysis. This approach is the behavioral analysis where the
approach is purely based on run time. [4]The main focus on
features of the event, networking behaviors, battery issues,
log-based analysis, gaining privileges from root devices.

V. Joseph Raymond et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4257 – 4261

4259

2.5 Combining Static and Dynamic Analysis
Our proposed system implements both static and dynamic
approaches where only one approach doesn't yield those
effective results. [5]Out detection mechanism will work based
on doing static analysis before installing the payload and then
dynamic analysis execution in a safe environment. The
malicious apk files are installed in a sandboxing place where
it's an effective approach. The combination result always
provides effective output.

2.6 Code Obfuscation& Utility SDK
This technique makes it very difficult for victims to
understand the nature of the impact. This includes cheating of
manifest file, linking the payload during execution by the
processor. The difference between the benign app and the
malicious app is not that easy to classify, we take unknown
samples and apply machine learning techniques and suggest a
decision support system. [4][21]The extraction of the system
call is a very important feature under this approach. Android
Monkey is a utility SDK tool that simulates the nature of
human thinking comparing with applications. A log-based
vulnerability assessment is performed. We have to mainly
focus on removing the noise and achieving optimal featured
vector that can be used to validate the robustness of various
adversarial attacks. With this approach, we achieve the
ranked system call resulting in identifying malicious
applications.

Figure 6: Proposed Architecture

3.UNDERSTANDING OF PROBLEM STATEMENT

There are so many vulnerable zero-day exploits that don't
have signatures available in modern antivirus scanners. The
expertise malware creators can easily bypass signature by
code obfuscation as discussed earlier. [15-17]The success rate
of finding such entities' in the real world is still a changeling
scenario. Although there is enough security checking while
uploading the files to the google play store but can't give a
complete solution.

Figure 7: Stages of Implementation

In our proposal, we suggest a machine learning approach that
can filter applications that can create a harmful impact on the
system where it is installed as shown in Figure 6. Instead of
taking the signature, we create trained data set from samples
that give a better solution. The success rate obtained through
this classifier approach gives better outcomes, thus
contributes to the current industrial revolution. We take some
training data from online resources like kudos train models on
that data and predict with the new data. The model makes a
prediction and helps correct code with errors in prediction.
The detection happens in two stages. The PE header file from
the malicious payload taken as input. [18-19]Light features
are extracted from static, apply pre detect region and then
region-specific classifier in the detection phase. This
approach gives an effective approach for classifying
malicious apps from genuine app as shown in Figure7.

4.RESULTS

The dataset used here is the Android Malware Dataset taken
from gut hub account. It consists of several malicious
predictor variables and one target variable. The various
medical variables are call records, gps tracking and SMS etc.
It contains 768 rows and 9 columns. The dataset file is in a
.csv (Comma Separated Values) format. Using the help of
Python’s inbuilt library Pandas, which is a data frame library,
we import the file into our Python environment [21]. The
other libraries that are imported into the environment are:

4.1 Numpy
A library that is used to mainly operate with large
dimensional arrays and matrices, providing high-level
mathematical functionalities to work on data.

4.2 Matplotlib
The library that provides Python with the functionality of
plotting graphs and plots. It works in tandem with NumPy.
Pandas have a function named read_csv(), which essentially
reads a file of the format (.csv).

V. Joseph Raymond et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4257 – 4261

4260

Once the dataset is loaded into the environment, we can check
the dimensions of the dataset by the function .shape () which
returns the number of rows and columns. The basic lookup of
the data is done, by using the inbuilt commands .head () and
.tail () which print the number of rows from start to finish of
the dataset. After acquiring the dataset, we check whether we
can roll out any improvements to the dataset. The data bear
some of the operations like initializing the variables, refining
the data, creating possible labels. In this case, the dataset
consists of a parameter SMS sending, this section has a weak
connection to the commitment of an individual being affected
by the malware. Hence, the column can be deleted for the
analysis. In this step, the calculation of numerical aspects of
data, such as number of cases, average based on columns. The
dataset consists of values for the persons who affected by
malicious Apk's. After the calculation and count for each
case, the result as shown below:

Apk's with Call Log's:268
Apk's with SMS Attack and GPS: 500

Based on data, over 35% of the person have been analyzed
with the presence of malicious payload. One of the difficult
steps in analysis are splitting the dataset for training and
testing. This procedure is basically accomplish to check
whether the test data and training data are different, because
the model to be tested based on the training process.

Using Bayes' standard:

 (1)

And revise the posterior as:

 (2)

Figure 8: Result Comparison

By using above Bayes' standard, the variable X with a class
level Cj that complete the most astonishing posterior
probability. The indicator (autonomous) simplifies the
ordering task automatically, because it allows the class
restrictive densities p (xk | Cj) that can be determined for
every factor respectively, i.e., it decrease a multidimensional
activity to various one-dimensional ones. Essentially, Naive
Bayes eliminates a high-dimensional density estimation
undertaken by the one-dimensional part density estimation.
Once we import the model into a variable, giving input to the
training data, fitting the Gaussian Naïve Bayes model using
.fit() function, then the performance of classification of array
in each raining and testing variables can be done. This
classification is the key operation for prediction of the input
data according to the Naïve Bayes model. The accuracy of the
model is then predicted by the comparison of predicted model
with the original model. This can be done with the help of the
metrics library present in sklearn. The simple test model
graph shows the comparison active adversaries effect
avoiding detection and the new version of malicious files as
shown in Figure 8.

5.CONCLUSION AND FUTURE WORK

The malware writers can change signatures dynamic at run
time, henceforth comparison done by the antivirus scanner's
comparing the updated database pattern along the obtained
signature will not have a match and bypass the regular check
routine.[20] It takes time for identifying behavior or the
nature of the payload. The machine learning algorithm
henceforth provides an effective measure to counterattack
these issues. This approach can be further extended with a
deep learning approach using CNN or RNN based approach
providing some detailed subset of training data. They provide
complete protection satisfying the basic needs of the victims
from spoofing and online attacks. An app shared via google
play may not be modified or replaced other than the creator.
Likewise, an app cannot download any executable files like
dex or jar file This restrict does not practice to code that runs
in a virtual system and get entry to Android APIs (together
with JavaScript in a web view or browser). In this study, the
survey of static and dynamic analysis of malware detection for
Android application using machine learning.

REFERENCES
1. Martín, Ignacio, José Alberto Hernández, and Sergio

de los Santos. "Machine-learning based analysis
and classification of android malware
signatures." Future Generation Computer Systems
97 (2019): 295-305.
https://doi.org/10.1016/j.future.2019.03.006

2. Kabakus, Abdullah Talha, and Ibrahim Alper
Dogru. "An in-depth analysis of Android malware
using hybrid techniques." Digital Investigation 24
(2018): 25-33.
https://doi.org/10.1016/j.diin.2018.01.001

V. Joseph Raymond et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4257 – 4261

4261

3. Nguyen-Vu, Long, Jinung Ahn, and Souhwan Jung.
"Android fragmentation in malware detection."
Computers & Security 87 (2019): 101573.

4. Zhang, Li, Vrizlynn LL Thing, and Yao Cheng. "A

scalable and extensible framework for android
malware detection and family attribution."
Computers & Security 80 (2019): 120-133.

5. Amin, Muhammad, et al. "Static malware
detection and attribution in android byte-code
through an end-to-end deep system." Future
Generation Computer Systems 102 (2020): 112-126.
https://doi.org/10.1016/j.future.2019.07.070

6. Yen, Yao-Saint, and Hung-Min Sun. "An android
mutation malware detection based on deep
learning using visualization of importance from
codes." Microelectronics Reliability 93 (2019):
109-114.

7. Rehman, Zahoor-Ur, et al. "Machine
learning-assisted signature and heuristic-based
detection of malwares in Android devices."
Computers & Electrical Engineering 69 (2018):
828-841.

8. Palumbo, Paolo, et al. "A pragmatic android
malware detection procedure." Computers &
Security 70 (2017): 689-701.
https://doi.org/10.1016/j.cose.2017.07.013

9. Calleja, Alejandro, et al. "Picking on the family:
Disrupting android malware triage by forcing
misclassification." Expert Systems with
Applications 95 (2018): 113-126.

10. Hu, Xinwen, Yi Zhuang, and Fuyuan Zhang. "A
security modeling and verification method of
embedded software based on Z and MARTE."
Computers & Security 88 (2020): 101615.

11. Wang, Shanshan, et al. "A mobile malware
detection method using behavior features in
network traffic." Journal of Network and Computer
Applications 133 (2019): 15-25.

12. Zimmermann, Verena, and Nina Gerber. "The
password is dead, long live the password–A
laboratory study on user perceptions of
authentication schemes." International Journal of
Human-Computer Studies 133 (2020): 26-44.
https://doi.org/10.1016/j.ijhcs.2019.08.006

13. Garg, Shivi, and Niyati Baliyan. "A novel parallel
classifier scheme for vulnerability detection in
android." Computers & Electrical Engineering 77
(2019): 12-26.

14. Vinod, P., Akka Zemmari, and Mauro Conti. "A
machine learning based approach to detect
malicious android apps using discriminant
system calls." Future Generation Computer Systems
94 (2019): 333-350.

15. Garg, Shivi, and Niyati Baliyan. "Data on
vulnerability detection in android." Data in brief
22 (2019): 1081-1087.

16. Han, Weijie, et al. "MalInsight: A systematic
profiling based malware detection framework."
Journal of Network and Computer Applications 125
(2019): 236-250.

17. Kumar, Rakesh, and Rinkaj Goyal. "On cloud
security requirements, threats, vulnerabilities
and countermeasures: A survey." Computer
Science Review 33 (2019): 1-48.
https://doi.org/10.1016/j.cosrev.2019.05.002

18. Singh, Ashish, and Kakali Chatterjee. "Cloud
security issues and challenges: A survey." Journal
of Network and Computer Applications 79 (2017):
88-115.

19. Alzaylaee, Mohammed K., Suleiman Y. Yerima,
and Sakir Sezer. "DL-Droid: Deep learning based
android malware detection using real devices."
Computers & Security 89 (2020): 101663.

20. G. Geetha, Dr.K.Mohana Prasad,”Prediction of
Diabetics using Machine Learning”, International
Journal of Recent Technology and Engineering,
(IJRTE) ISSN: 2277-3878, Volume-8 Issue-5,
January 2020
https://doi.org/10.35940/ijrte.E6290.018520

21. Alqurashi, Reem K., et al. "Cyber Attacks and
Impacts: A Case Study in Saudi Arabia."
International Journal of Advanced Trends in
Computer Science and Engineering 9.1 (2020).
https://doi.org/10.30534/ijatcse/2020/33912020

22. Gadade, H. D., and D. K. and Kirange. "Machine
Learning Approach towards Tomato Leaf
Disease Classification." International Journal of
Advanced Trends in Computer Science and
Engineering 9.1 (2020): 490-495.
https://doi.org/10.30534/ijatcse/2020/67912020

