
Mayuri H.Molawade et. al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6),November - December 2019, 2768 - 2772

2768


ABSTRACT

Unwavering quality is one of significant quality traits of the
product in which programming end client is more intrigued
instead of the product engineer. In past some of good studies
are carried out. But still some limitations are there as : Models
have many shortcomings related to their unrealistic
assumptions, environment-dependent applicability, and
questionable predictability. In customary framework
Predicting software abnormalities (like software maturing)
brought about by asset depletion isn't a simple errand.. It is
difficult to know from the earlier the parameters Involved
with the software maturing. In this manner the abilities of
Machine Learning (ML) calculations and the statistical
methods can be analyzed to foresee the framework crash
because of software maturing brought about by asset fatigue.A
software system failure is unsurprising and expansive
consideration is given to software system failure prediction
not on progress. In this paper we are going to understand
limitation of given techniques from various papers and
identify that scope of improvement.

Key words: Machine Learning, parametric, non-parametric,
reliability prediction

1. INTRODUCTION

Society is getting perpetually dependent on software and
software controlled frameworks. A portion of this product is
security basic, e.g., the product used to control vehicles,
planes and other fast transport. Deformities in security basic
software can prompt genuine damage or passing. An a lot
bigger volume of software is business-basic, e.g., software
that runs in cell phones, powers web servers and oversees
server farms. Imperfections in this kind of software can
prompt noteworthy money related misfortunes. Supporting
these territories is frameworks software: the low-level
working frameworks, compilers, gadget drivers and systems
administration software on which complex frameworks are
fabricated. This basic job implies that the dependability of
frameworks software is of essential significance.
 Software reliability quality models portray the failure lead
of the product. The models are used to survey the product
quantitatively. They assess the constancy of the product by
predicting imperfections or frustrations for a product.

Reliability quality is one of noteworthy quality properties of
the product in which Software end customer is more
captivated rather than the product fashioner.
 Thus, the execution of a software can be improved by joining
significant quality characteristics like reliability,
maintainability and availability of the software alongside
execution properties like reaction time and throughput. The
solid relationship that exists between quality traits and
execution characteristics. With certain representations
featuring the need of inside and out comprehension of the
connection that exists among reliability quality and execution
of the product. The determined information helps in
improving the exhibition of the product economically over
some undefined time frame and deal with the product all the
more viably

 Rigorous manual testing, code reviews and adherence to
standards are essential to the success of large software
projects, but they all suffer from two common problems:

1. They depend fundamentally on human reasoning and
judgment. Humans are clever, but software can be devilishly
complex. It is easy for subtle defects to creep into a project
despite adherence to coding standards, and to evade manual
testing and code review.

2. They do not provide guarantees. A test suite can
demonstrate that certain executions of a software system do
not exhibit defects, but provides no further guarantee. For
safety- (and often business-) critical systems this may not be
enough: it is highly desirable to have a guarantee of defect
freedom; ideally an absolute guarantee, but at least a
guarantee that system executions have been systematically
checked up to some well-defined bound.

to accomplishing solid software systems, and they can
likewise be viewed as four shortcoming lifecycle procedures:
1. Fault prevention: to maintain a strategic distance from, by
development, flaw event
2. Fault removal: to recognize, by confirmation and approval,
the presence of shortcomings and dispense with them. Fault
tolerance: to provide, by redundancy, service complying with
the specification in spite of faults having occurred or
occurring.
3. Fault/failure forecasting: to estimate, by evaluation, the
presence of faults and the occurrences and consequences of
failures. This has been the main focus of software reliability
modeling.

Software reliability prediction using Knowledge Engineering approach

Mayuri H.Molawade1, Dr. Shashank D. Joshi2
1Research Scholar, India, mhmolawade@bvducoep.edu.in

2Professor, India, sdj@live.in

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse14862019.pdf

https://doi.org/10.30534/ijatcse/2019/14862019

Mayuri H.Molawade et. al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6),November - December 2019, 2768 - 2772

2769

There are three main reliability modeling approaches:
 1. The error seeding and tagging approach
 2. The data domain approach
 3. The time domain approach
1.2 Machine Learning Techniques and Big data
Techniques for computer performance analysis of machine l
earning (ML) on big data. Use of ML techniques to forecast
the desire for software reliability and survey them based on t
he execution criteria selected. The most popular techniques
of ML, including neuro fuzzy inference system (ANFIS), feed
forward back propagation neural network, linear regression

2. A SURVEY OF WORK DONE IN THE RESEARCH
(LITERATURE SURVEY) AREA AND THE NEED
FOR MORE RESEARCH.

This section introduces the problems faced in software
reliability. Different methodologies can be utilized to improve
the dependability of software, be that as it may, it is difficult to
adjust advancement time and spending plan with software
reliability. Some of techniques as follow:

1. AnkurChoudhary et al. Dependable virtual products are
the need of current advanced period. Disappointment
nonlinearity makes software unwavering quality a
confounded errand. Over past decades, numerous analysts
have contributed numerous parametric/non parametric
software dependability development models and talked about
their suppositions, appropriateness and consistency. It
reasoned that customary parametric software reliability
models have numerous inadequacies identified with their
unrealistic assumptions, condition subordinate pertinence,
and flawed predictability. In difference to parametric software
unwavering quality development models, the non-parametric
software reliability development models which use AI
procedures or time arrangement demonstrating have been
proposed by analysts. This paper assesses and thinks about the
precision of 2parametric and 2 non parametric software
unwavering quality development models on 3 genuine
informational collections for software disappointments.

2. Sultan H. Aljahdali et al. Software dependability models
are important to evaluate the probability of the item flop along
the time. A couple of particular models have been proposed to
foresee the item software unwavering quality development
(SRGM); regardless, none of them has exhibited to perform
well contemplating different endeavor traits. The ability to
anticipate the amount of inadequacies in the item in the midst
of progression and testing structures. In this paper, we
examine Genetic Algorithms (GA) as an elective method to
manage derive these models. GA is a noteworthy AI
framework and progression systems to assess the parameters
of definitely saw reliably improvement models. What's more,
AI calculations,, proposed the plan rout the vulnerabilities in
the showing by combining various models using different
objective ability to achieve the best theory execution where.

The destinations are clashing and no structure exists which
can be viewed as best as for all goals.
Tests have been organized in this paper to validate these hyp
otheses. It was then overcome by determining the judicious a
bility of the design outfit advanced using multi-target GA. E
ventually, the tests and regular versions are distinguished.
3. ArunimaJaiswal et al Software Reliability is a key part of
the reliability of the software and is one of the most necessary
viewpoints for assessing the complexity of a software product.
In rising substantially trustworthy software, the software
industry bears various problems. Use AI (ML) methodologies
for unfolding software quality desire has been shown and
impressive results have been achieved. In this paper, they
suggest the use of ML techniques to unfalter software quality
conjecture and test them based on the execution parameters
they have selected. They have associated ML methodology
including versatile neuro-fluffy surmising framework
(ANFIS), feed-back spread neural system, general neural
recurrence system, bolstering vector machines, multi-layer
observation, bagging, falling back neural proliferation
system, case-based learning, straight recurrence, M5P,
decreased blunder pruning tree, M5Rules to predict the
determined quality of the item. Taking into account the tests
conductedIt was seen that ANFIS yields better results in all
cases and can therefore be used to anticipate unwavering
quality software as it predicts reliability even more clearly and
precisely when it is diverged from all other frameworks
recently referenced. They also made a comparative evaluation
of full frustration in this study.

4. RamakantaMohanty et al. In this paper, the creators
utilized AI procedures, explicitly, propagation trained neural
network (BPNN), Group method of data handling (GMDH),
Counter propagation neural network (CPNN), Dynamic
evolving neuro–fuzzy inference system (DENFIS), Genetic
Software (GP), Tree Net, statistical multiple linear regression
(MLR), and multivariate adaptive regression splines
(MARS),, to precisely estimate software unwavering quality.
Their viability is shown on three datasets taken from writing,
where execution is looked at as far normalized root mean
square error (NRMSE) acquired in the test set. From
thorough analyses directed, it was seen that GP outflanked all
strategies in all datasets, with GMDH coming a nearby
second.

5. G.Krishna Mohan et al. Software unwavering quality
models get to the dependability by shortcoming forecast.
Unwavering quality is a certifiable marvel with many related
ongoing issues and to get answers for issues rapidly, precisely
and acceptably a huge no. of delicate processing systems has
been created. They endeavor to address the product
disappointment issues by demonstrating software
disappointment information utilizing the AI methods, for
example, bolster vector machine (SVM) relapse and summed
up added substance models. The investigation of software
dependability can be ordered into three sections: displaying,
estimation, improvement. Software enduring quality

Mayuri H.Molawade et. al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6),November - December 2019, 2768 - 2772

2770

exhibiting has created to a point that significant results can be
obtained by applying proper models to the issue; there is no
single model comprehensive to all of the conditions. They
propose distinctive AI strategies for the assessment of
software steadfast quality, for instance, fake neural systems,
bolster vector machine count drew nearer. They by then
separate the results from machine getting the hang of
illustrating, and balance them with that of some summarized
direct showing systems that are corresponding to software
trustworthiness models.
6. D. HemaLatha et al. Software dependability expectation
is exceptionally testing in support stage just as in the
beginning periods of software advancement. In the previous
scarcely any years numerous product dependability models
have been proposed for surveying unwavering quality of
software yet creating precise dependability forecast models is
troublesome because of the intermittent or successive changes
in information in the space of software designing.
Subsequently, the product unwavering quality forecast
models based on one dataset show a noteworthy diminishing
in their precision when they are utilized with new
information. The target of this paper is to present another
methodology that advances the precision of software
unwavering quality prescient models when utilized with
crude information. Subterranean insect Colony Optimization
Technique (ACOT) is proposed to anticipate software
dependability dependent on information gathered from
writing. An insect state framework by joining Traveling Sales
Problem (TSP) calculation has been utilized, which has been
changed by actualizing various calculations and additional
usefulness, trying to accomplish better software unwavering
quality outcomes with new information for change situated
frameworks. The scholarly conduct of the subterranean insect
settlement system by methods for a state of coordinating
counterfeit ants are bringing about promising outcomes. The
strategy is approved with genuine dataset utilizing Mean
Time to Failure (MTTF) and Mean Time Between Failure
(MTBF).
1. Simulation Results
Reliability is calculated as:
Reliability = MTBF / (1+MTBF)
MTBF : Mean Time Between
Failure

MTTF : Mean Time to Failure
To calculate MTTF in MS-Excel the following formula is
used:
MTTF = f(x+dx)-f(x)/dx
Or
If the reliability is checked on hourly basis the following
formula can be used:
MTTF = 1/ failure rate
Mean Time to Failure
Measures time between observable system failures
For example, assume you tested 3 identical systems starting
from time 0 until all of them failed. The first system failed at
10 hours, the second failed at 12 hours and the third failed at

13 hours. The MTTF is the average of the three failure times,
which is 11.667 hours. If these three failures are random
samples from a population and the failure times of this
population follow a distribution with a probability density
function (pdf) of , then the population MTTF can be
mathematically calculated by:
Mean Time between Failures
The points on the plot are the observed cumulative MTBFs.
These values are calculated by the following equation:

where:
� t is the cumulative operating time.
� N(t) is the observed number of failures by time t.
Or
MTBF = 1/MTTF

7. V. Sangeetha et al Software unwavering quality is a
likelihood of software framework to work under working
conditions over timeframe. Software unwavering quality
focuses on forecast of leftover issues, estimation of
disappointment force, dependability and cost. Software issues
causes because of the product disappointments created
through the formative procedure of software. Software
framework disappointments have huge downsides on
schedule and assets for recuperation. A product framework
disappointment is unsurprising and enormous consideration
is given to software framework disappointment expectation.
Be that as it may, the likelihood of disappointment estimation
stayed unsolved. The exploration work is done to play out the
quick expectation of software disappointments through
Genetic-based Bayesian model for improving the genuine
positive rate.
8. Yoshinobu Tamura et al. Previously, numerous product
dependability models have been proposed by a few analysts.
Likewise, a few model choice criteria, for example, Akaike's
data foundation, mean square mistakes, anticipated relative
blunder, etc, have been utilized for the choice of ideal
software unwavering quality models. These appraisal criteria
can be helpful for the product supervisors to evaluate the past
pattern of shortcoming information. Be that as it may, it is
critical to survey the expectation precision of model after the
finish of issue information perception in the real software
task. In this paper, they propose a strategy for ideal software
dependability model determination dependent on the
profound learning. Besides, they show a few numerical
instances of software unwavering quality appraisal in the
genuine software ventures. Specifically, they discuss the ideal
discharge time and absolute expected software cost as far as
the model choice dependent on the profound learning.

9. ManjubalaBisi et al. This paper proposes an unwavering
quality model based neural system software to anticipate the
total number of disappointments dependent on Feed Forward
design. Contingent on the tally information of accessible
software disappointment, the execution time is encoded using
Exponential and Logarithmic capacity to give the encoded an

Mayuri H.Molawade et. al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6),November - December 2019, 2768 - 2772

2771

incentive as a contribution to neural system. The effect of
encoding and the impact on expectation accuracy of different
encoding parameters are considered. The effect of the neural
system design to the degree of concealed hubs was also
investigated. Eighteen software disappointment information
indexes were tried to present the proposed methodology.
Numerical results show that through various software
ventures, the proposed methodology provides worthy results
cross-sectionally. The approach demonstration was
contrasted with some observable models and empirical
models taking into account three datasets of change point.
The results of the comparison indicate that the model
proposed has a good predictive potential.

10. Fu Yangzhen et al. With the advancement of software
dependability research and AI, many AI models have been
utilized in software unwavering quality expectation. A long
transient memory arrange (LSTM) displaying approach for
software dependability forecast is proposed. Benefit from its
specific information stream control structure, the model beats
the disappearing and detonating affectability of basic
recursive neural system for software dependability forecast.
Proposed approach additionally joins with layer
standardization and truncate back proliferation. Somewhat,
these two strategies advance the impact of the proposed
model. Contrasted and the straightforward recursive neural
system, numerical outcomes show that our proposed
methodology has a superior presentation and power as for
software unwavering quality expectation.

3. LIMITATION AND SCOPE IS IDENTIFIED
There are several problems and limitations in the literature a
nalysis as discussed below are described in the prediction of
computer reliability.
It is well known in the traditional system that software agein
g happens due to software error rather than hardware faults.
Several studies [1], [2], [3] have reported that one of the
causes of unplanned software outages is the software aging
phenomenon. From this idea, [2] produce a model for
software changes based on historical databases. Recently, this
type of predictors, which is known as just-in-time model, has
also appeared in several studies [2], [4].
In traditional system It concluded that traditional parametric
software reliability.
Models have many short comings related to their unrealistic
assumptions, environment-dependent applicability, and
questionable predictability.
Limitation of this paper is Software reliability prediction is
very challenging in maintenance phase as well as in the
starting phases of software development.

In the previous scarcely any years numerous product
dependability models have been proposed for surveying
unwavering quality of software yet creating exact unwavering
quality expectation models is troublesome because of the
intermittent or successive changes in information in the space
of software engineering[13]

3.1 Scope

Reliability of technology is an important part of the
performance of software. Software reliability prediction is the
prospect of a computer program's failure-free operation in a
specified environment for a specified time period. So for
software development and testing industry, software
reliability research is considered useful.

4. CONCLUSION
Software Reliability is a significant piece of software quality.
Software unwavering quality forecast is the possibility of the
disappointment free activity of a PC program for a
predetermined timeframe in a predefined domain . Along
these lines, software unwavering quality research is viewed as
helpful for software advancement and testing industry.

REFERENCES
[1] Hossein A khavan “Power systems big data analytics:
An assessment of paradigm shift barriers and prospects”
Energy Reports 4 (2018) 91–100 30 November 2017
https://doi.org/10.1016/j.egyr.2017.11.002
[2] Javier Alonso “Predicting Software Anomalies using
Machine Learning Techniques”
[3] Ankur Choudhary “Software Reliability Prediction
Modeling: A Comparison of Parametric and
Non-Parametric Modeling”
[4] Ashima Gupta “Prediction Of Software Anomalies
Using Time Series Analysis – A Recent Study”
International Journal of Advances In Computer Science and
Cloud Computing, ISSN: 2321-4058 Volume- 1, Issue- 1,
May-2013
[5] Sultan H. Aljahdali “Software Reliability Prediction
Using Multi-Objective Genetic Algorithm”
[6] Soumya Joseph “Software Defect Prediction Using
Enhanced Machine Learning Technique” International
Journal of Innovative Research in Computer and
Communication Engineering (An ISO 3297: 2007 Certified
Organization)Vol. 4, Issue 6, June 2016
[7] Philip Gross “Predicting Electricity Distribution
Feeder Failures Using Machine Learning Susceptibility
Analysis”
[8] ArunimaJaiswal “Software reliability prediction using
machine learning techniques” Int J SystAssurEngManag
(February 2018) 9(1):230–244
https://doi.org/10.1007/s13198-016-0543y
[9] RamakantaMohanty “Application of Machine learning
techniques to Predict software reliability” 70 International
Journal of Applied Evolutionary Computation, 1(3), 70-86,
July-September 2010
https://doi.org/10.4018/jaec.2010070104
[10] Rita G. Al gargoor “Software Reliability Prediction
Using Artificial Techniques” IJCSI International Journal of
Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013

Mayuri H.Molawade et. al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6),November - December 2019, 2768 - 2772

2772

ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org.
[11]G.Krishna Mohan “Assessment and Analysis of Software
Reliability Using Machine Learning Techniques”
International Journal of Engineering & Technology, 7 (2.32)
(2018) 201-205 International Journal of Engineering &
Technology Website:
www.sciencepubco.com/index.php/IJET
https://doi.org/10.14419/ijet.v7i2.32.15567
[12] G. Martínez-Arellano “In-process Tool Wear Prediction
System Based on Machine Learning Techniques and Force
Analysis” Peer-review under responsibility of the
International Scientific Committee of the 8th CIRP
Conference on High Performance Cutting (HPC 2018)..
[13] D. HemaLatha“A Development Model for Predicting
Software Reliability Using Ant Colony Optimization
Technique for Change Oriented Software Process” IOSR
Journal of Computer Engineering (IOSR-JCE) e-ISSN:
2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 2, Ver. I
(Mar.-Apr. 2017), PP 57-64 www.iosrjournals.org
https://doi.org/10.9790/0661-1902015764
[14]VipulVashisht “A Framework for Software Defect
Prediction Using Neural Networks” Journal of Software
Engineering and Applications, 2015, 8, 384-394Published
Online August 2015 in SciRes.
http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.88038
[15] V. Sangeetha“A Survival Study on Software Failure
Prediction Using Adaptive Dimensional Gene Model”
International Journal of Computational Intelligence and
Informatics, Vol. 6: No. 4, March 2017
[16]Guru Prasad PANDIAN “A critique of reliability
prediction techniques for avionics applications” Chinese
Journal of Aeronautics Received Date: 20 February 2017
https://doi.org/10.1016/j.cja.2017.11.004
[17]Awni Hammouri“Software Bug Prediction using
Machine Learning Approach” (IJACSA) International
Journal of Advanced Computer Science and Applications,
Vol. 9, No. 2, 2018
https://doi.org/10.14569/IJACSA.2018.090212
[18]TeeratPitakrata “Hora: Architecture-aware Online
Failure Prediction” The Journal of Systems & Software 24
February 2017
[19] Ajay Chandramouly “Reducing Client Incidents through
Big Data Predictive Analytics”IT@Intel White Paper Intel IT
IT Best Practices Big Data Predictive Analytics December
2013
[20]Yoshinobu Tamura “Software Reliability Model
Selection Based on Deep Learning with Application to the
Optimal Release Problem”Journal of Industrial Engineering
and Management Science, Vol. 1, 43–58.doi:
10.13052/jiems2446-1822.2016.003_c 2016 River
Publishers. All rights reserved.
https://doi.org/10.1109/ICIMSA.2016.7504034
[21]LanGuo “Robust Prediction of Fault-Proneness by
Random Forests”

[22]Manjubala Bisi “Software Reliability Prediction using
Neural Network with Encoded Input”International Journal of
Computer Applications (0975 – 8887) Volume 47– No.22,
June 2012
https://doi.org/10.5120/7492-0586
[23] Christian Ruiz “Improving Data Validation Using
Machine Learning” United Nations Economic Commission
For Europe Conference Of European Statisticians18-20
September 2018)
[24]Jyoti Devi “A Review of Improving Software Quality
using Machine Learning Algorithms” International Journal
of Computer Science and Mobile Computing A Monthly
Journal of Computer Science and Information Technology
ISSN 2320–088X
IMPACT FACTOR: 6.017 IJCSMC, Vol. 6, Issue. 3, March
2017, pg.148 – 153
[25]Jinyong Wang “Software Reliability Prediction Using a
Deep Learning Model based on the RNN
Encoder–Decoder”Reliability Engineering and System Safety
21 October 2017
https://doi.org/10.1016/j.ress.2017.10.019
[26] Fu Yangzhen “A Software Reliability Prediction Model
Using Improved Long Short Term Memory Network” 2017
IEEE International Conference on Software Quality,
Reliability and Security (Companion Volume) 2017.
https://doi.org/10.1109/QRS-C.2017.115
[27] Rohini B. Jadhav , Shashank D. Joshi , Umesh G. Thorat
Aditi S. Joshi “A Software Defect Learning and Analysis,
Utilizing Regression Method for Quality Software
Development” ,Volume 8, No.4, July – August 2019.
https://doi.org/10.30534/ijatcse/2019/38842019
[28] Marcel Bonar Kristanda , Seng Hansun “MOODLE
LMS Resources Prediction: Exponential Moving Average
Approach”, Volume 8, No.4, July – August 2019.
https://doi.org/10.30534/ijatcse/2019/43842019

