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ABSTRACT 
 
The process of ranking alternatives in Multi-Criteria 
Decision Making (MCDM) problems with rough intervals is 
a situation really tough to handle. Despite, there are dozens 
of proposals to handle MCDM problems under different 
types of uncertainty but still there is limited number of 
articles to explore Rough MCDM specially, the rough 
interval ones with no weights for criteria.  Mainly, this 
research is to propose a new approach combining two novel 
methods to treat such MCDM problems. First, Rough 
Interval Best-Worst Method (RIBWM), where RIBWM is 
applied for assigning weights to criteria based on the criteria 
preference given by the Decision Makers (DMs). This is 
done in a new manner to handle rough interval preference 
given. Second, a new Rough Interval Weighted Aggregated 
Sum-Product Assessment method (RIWASPAS) is presented 
to rank the alternatives. A merit of this new approach that it 
sustains rough interval representation of the problem till the 
end as well as it deals with it efficiently. Finally, an 
illustrative example is provided for validation. 
 
Key words: Best Worst Method, Multi-criteria Decision 
Making (MCDM), Rough Interval, WASPAS.  
 
1.  INTRODUCTION 
 
On daily basis most of people face situations involving 
criteria of judgment are not compatible. This type of 
decisions is so-called MCDM and it refers to undertaking 
decisions under the existence of conflicting criteria. For 
illustration if one criterion is fulfilled or satisfied by an 
option, there is other criterion is not satisfied or fulfilled 
with the same option. Both words multiple or multi which 
are coined to criteria refer to the conflict between not the 
meaning of many criteria. This philosophy makes this 
branch is widely applied [7]. A typical MCDM problem 
contains a number of competing alternatives measured via 
number of criteria [6]. Performance measurements should be  

 
done and calculated for all alternatives under all criteria 
considered [10]. Some of the most widely used MCDM 
methods are SAW, MAUT, AHP, PROMETHEE, COPRAS, 
and ELECTRE methods [4].  
 
In MCDM, the weights reflect the comparative importance 
and play the biggest role in determining the best alternatives 
to be selected. Two main categories exist for allocating 
weights, Subjective and Objective weights' allocation 
methods. Subjective weights' allocation methods are 
translating the preference of Decision Maker(s) into 
quantified values while the Objective weights' allocation 
methods are extracting weights from the alternatives' 
performance measurements [5].   
 
One of the critical criticisms of the AHP refers to its 
inconsistency of decision makers' judgments in pairwise 
comparisons [20]. Recently, the Best-Worst Method (BWM) 
was introduced to tackle such drawbacks [16]. BWM has 
been applied broadly like in [2], and [18]. 
 
In many real-life problems, different types of uncertainty are 
found. Guo and Zhang tackled the supplier selection 
problem [9]; Aydogan tried to rank aviation firms [1]. 
Radovic et. al. introduced a rough ARAS approach [14]. 
Many other applications are done like in [3] [8], [12], [15], 
and [19]. 
 
The WASPAS method adds in some manner the Weighted 
Sum Model (WSM) to the Weighted Product Model (WPM) 
with certain ratio derived from a coefficient to reach the 
highest accuracy of multiple attribute estimation [15]. This 
article is to propose a new approach for solving rough 
interval MCDM problems using the merits of a novel 
incorporation between a new Weighted Aggregated Sum-
Product Assessment Method with Rough Interval 
(RIWASPAS) and a novel Rough Interval Best-Worst 
Method (RIBWM). The rest of this paper is organized as 
following; section 2 is made for Rough Set Theory and it 
contains an illustration of Rough Interval operations. Section 
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3 is made for the proposed approach; it shows the rough 
interval Best-Worst Method (RIBWM) weights allocation 
proposed scheme as well as the steps of the proposed 
approach (RIWASPAS). Section 4 is devoted to a numerical 
example for illustration; and finally section 5 is for 
conclusion.  
 
2. ROUGH SET THEORY 
 
The main idea behind rough set theory initially proposed by 
Pawlak is an approximation of a conventional set in terms of 
two sets the upper and lower approximations of the original 
set [13]. Generally, a rough interval contains two parts: an 
upper approximation interval (UAI) and a lower 
approximation interval (LAI) [12] 
 
Basic Operations of Rough Interval  
Let ∗	∈ {+,	−,	×,	÷} be a binary operation on rough 
intervals. For rough intervals 	x  and y   when 	x 	≥ 0   
and y ≥ 0, we have [11]: 
 
	푥 +	푦 =[[푥( ) + 푦( )]:[푥( ) + 푦( )]]            (1) 

	x −	y = [[x( ) − y( )]:[x( ) − y( )]]                (2) 

	x × 	y = [[x( ) × y( )] :[x( ) × y( )]]            (3) 

	x ÷ 	y = [[x( ) ÷ y( )]:[x( ) ÷ y( )]]                  (4) 

As 푥( ),푥( ),푦( )		푎푛푑	푦( ) are conventional 
intervals, 푥 	= [푥( )	,푥( )] , 	푥 	= 
[푥( )	, 푥( )],		푦 	= [푦( )	,푦( )], and 	푦 	= 
[푦( )	, 푦( )], where 푥( )	,푥( ) 
푦( ) 	,푦( ),푦( ), 푎푛푑		푦( )	are deterministic 
numbers denoting bounds of intervals. 

3. PROPOSED APPROACH 
 
In this section, the new Approach is introduced to solve 
(MCDM) problems under rough interval environment via 
tow novel methods. First subsection will illustrates the novel 
proposed weights' allocation method (RIBWM) which works 
under rough interval environment to produce rough weights 
and second subsection will shows the new proposed 
(RIWASPAS) which deals with rough intervals' alternatives 
and criteria.    
 
3.1 Rough Interval Best-Worst Method (RIBWM) 
 
The original BWM found in [17] relies on two steps, first 
identifying the best criterion and the worst criterion by the 
DM. After, The DM expresses how better the best and how 
worse is the worst relative to other criteria using the scale 
(e.g. 1 to 9). As shown it eliminates a lot of pairwise 
comparisons made by other subjective methods. This 

subsection extends the classical BWM method to the rough 
interval environment.  The steps of the new Rough Interval 
Best-Worst Method (RIBWM) method to determine the 
rough interval weight of each criterion can be as shown 
below: 
 
Step 1: Define the set of decision factors 
DM introduces n decision factors, namely {푐 	,푐 	, … , 푐 	,} to 
make a decision. 

Step 2: Specify the Best decision factor (B) and the Worst 
decision factor (W) 

Step 3: Identify the preference of the rough interval best 
decision factor over the other decision factors 
 
The rough interval best-to-others (BO) vector is: 

	A =  (	a  , a  , …, 	a  )                      (5)  

	a  = [1,1]:[1,1] 

a 	represents the preference of the rough interval best factor 
B over selection factor j. 

Step 4: Identify the preference the rough interval of all 
decision factors over worst decision factor 
  
The rough interval others-to-worst (OW) vector is: 

	A  = (	a 	, a 	, … , 	a 	)                                    (6) 

(	a ) = [1,1]:[1,1] 

a  represents the preference of selection factor j over the 
rough interval worst decision factor W. 

Step 5: Compute the best possible rough interval weights 
 
The rough weights' vector	(w ,	w , …, w ) is calculated 
by the Model as shown in Eq. [7]: 
 
Min		휀 (7) 

S.t  
	[w 	, 	w ]: 	[w 	, 	w ]
	[w 	, 	w ]: 	[w 	, 	w ]

− [a 	, 	a ]: 	[a 	, 	a ] ≤ 휀	 

  for all j  

	[w 	, 	w ]: 	[w 	, 	w ]
	[w 	, 	w ]: 	[w 	, 	w ]

− [a 	, 	a ]: 	[a 	, 	a ]	 ≤ 휀 

  for all j  

	∑ 	[[w 	, 	w ]: 	[w 	, 	w ]] = 1  

	[w 	, 	w ]: 	[w 	, 	w ] ≥		0    
  for all j  
 
where	[w 	, 	w ]: [w 	, 	w ]		are	the rough interval 
weights' values. [w 	, 	w ]: [w 	, 	w ]	represents 
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the rough interval weights of the best criterion and 

	[w 	, 	w ]: 	[w 	, 	w ] the rough interval weights 
of the worst criterion. While 	[a 	, 	a ]: [a 	, 	a ]	and 

	[a 	, 	a ]: [a 	, 	a ], respectively represent the 

values of the rough interval best-to-others (BO) and the 
rough interval others-to-worst (OW). By solving model (7) 
we obtain the values of the rough interval weights for the 
evaluation criteria. 
 
3.2 Rough Interval Weighted Aggregated Sum-Product 
Assessment method (RIWASPAS) 
 
Some modifications should be done to WASPAS method in 
order to explore the rough interval environment [21]. In this 
subsection these modifications are illustrated to extend 
WASPAS method to deal with problems when the data 
given are rough intervals. The proposed RIWASPAS 
method consists of the following steps: 

Step 1: Construct the decision matrix with RI 		푋 	 
 

푋 	=  

⎣
⎢
⎢
⎢
⎡ 푥 ⋯푥 ⋯ 푥
⋮	 ⋱ ⋮
푥 ⋯푥 ⋯ 푥
⋮ ⋱ ⋮

푥 ⋯푥 ⋯ 푥 ⎦
⎥
⎥
⎥
⎤

 

 i =	1,2, … ,푚;   j =	1,2, … ,푛 

(8) 

where 푥 = 푥 	,푥 , 푥 = 푥 	,푥 ,	푥  = lower 
lower interval and 푥  = lower upper interval.		x =
x 	, x 	, x  = upper lower interval and 	x  = 

upper upper interval, m = number of alternatives, n = number 
of criteria, i =1,2,…,m ; and  j = 1,2,…,n . 

Step 2: Normalize the RI decision-making matrix 
 
For rough interval beneficial criteria 
 

푥̅ =
	, :	 	,	

풎풂풙 	,				
 (9) 

For rough interval non-beneficial criteria 
 

푥̅ =
풎풊풏 	,			

	, :	 	,	
  (10) 

Where 푥̅  is the normalized value of 	푥 . 

Step 3: Calculate the weighted normalized RI decision 
matrix 푋  

a. The weighted normalized RI decision matrix		푋   for 
WSM: 
푥 = 푥̅ 	, 푥̅ :	 푥̅ 	, 푥̅ × W  

 i =	1,2, … ,푚; j =	0,1,2, … ,푛      

(11) 

where	W 	is the RI weight(importance) ofthej criterion and 
푥  is the rough interval normalized rating of the j criterion. 
b. The weighted normalized RI decision matrix  푋   for 

WPM: 

푥̅   = 푥̅ 	, 푥̅ :	 푥̅ 	, 푥̅
	

 

  i =	1,2, … ,푚; j =	0,1,2, … ,푛      
(12) 

Step 4: Calculate values of the optimality function 

a. according to the RI WSM for each alternative: 
푥   = 푥̅ 	, 푥̅ :	 푥̅ 	, 푥̅  

푄  =	∑ 푥	  , i =1,2,…,m 
 

 (13) 

b. according to the RI WPM for each alternative: 

푥̅ = 푥̅ 	, 푥̅ :	 푥̅ 	, 푥̅
	

 

푃 =∏ 푥̅ ,   i =1,2,…,m 

(14) 

 
Step 5: Calculate the integrated utility function value of the 
RIWASPAS  

For an alternative (i) the integrated utility function could be 
determined as follows: 

퐾   = 퐾 	,퐾 ,퐾 	,퐾  

퐾  = λ∑ 푄   + (1-λ) ∏ 푃  

 

 (15) 

Coefficient (λ) can be crisp values in the range of [0,1] but it 
is recommended to apply Eq.(16) for its calculation 

 λ =	
∑

∑ 	 ∑  (16) 

Step 6: Transform the RI values of 퐾  into crisp values by 
the centroid method 
 
	퐾 = [퐾 + 퐾 + 퐾 +퐾 ]     (17) 

Step 7: Rank the alternatives, the best of them with 
maximum 퐾  value 
 
4.  NUMERICAL EXAMPLE 
 
As shown below the numerical example is composed from 
five competing alternatives (A ,A , A , A , A )	and four 
criteria. C 	,C 		and	C 	are the beneficial while C 		is cost or 
non-beneficial type. The RI decision matrix presented in 
Table 1 is defined as in Eq. (8). Results and illustration are 
shown later in the rest of the section. 
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Table 1: Rough interval decision making matrix 

  Criteria   

Optimization Min Max Max Max 

Alternatives 
퐂ퟏ	 		퐂ퟐ 																			퐂ퟑ 퐂ퟒ	 

UAI          LAI UAI          LAI UAI           LAI UAI          LAI 
										푨ퟏ [[200,250] :[220,240]] [[585,620] : [600 ,610]] [[690, 720] : [710 , 715]] [[790,810] : [795 ,800]] 
										푨ퟐ [[300,360]:[330,340]] [[625 ,640] : [630,635]] [[730,  760] : [740,  750]] [[820, 850] : [830 ,840]] 
										푨ퟑ [[400,450] :[430,445]] [[300,  500] :[450,480]] [[770, 785] : [775, 780]] [[790 ,860] : [835 ,845]] 
										푨ퟒ [[500 ,540]:[520,530]] [[650 ,680 : [655, 670]] [[600  ,700] : [650  ,680]] [[865 ,885] : [870 ,880]] 
										푨ퟓ [[550 ,580]:[560,570]] [[500 ,690] : [590,680]] [[775  ,790] : [780 , 785]] [[785,895] : [850 ,890]] 

 
Results and Discussion 

First, RIBWM method is applied to determine the weights 
of criteria. In this problem, C2 and C4 are selected as the best 
and the worst criteria, respectively.  The rough interval 
Preferences of the best criterion over the less important  
 
 

 
Criteria and other criteria over the worst criterion should be 
determined by integers as found in Tables 2 and 3, 
respectively.  Weights are assigned to criteria by solving the 
Mathematical Model found in Eq. (7). Then, the final overall 
weights will be as shown in Table 4.  

 

Table 2: Rough interval best-to-others (BO) vector 
Criteria 		퐂ퟏ 		퐂ퟐ 		퐂ퟑ 		퐂ퟒ 

 UAI  : LAI UAI  : LAI UAI  : LAI UAI  : LAI 
Best Criterion:		퐂ퟐ [3,8]:[5,5] [1,1]:[1,1] [5,7]:[3,6] [6,5]:[9,8] 

 
   

Table 3: Rough interval others-to-worst (OW) vector 
Criteria 		퐂ퟏ 		퐂ퟐ 		퐂ퟑ 		퐂ퟒ 

 UAI  : LAI UAI  : LAI UAI  : LAI UAI  : LAI 
Worst criterion:		퐂ퟒ [2,6]:[5,6] [6,5]:[9,8] [4,4]:[5,7] [1,1]:[1,1] 

 

Table 4: Weights allocated using RIBWM method 
Criteria 		푾풋

푹푰 

		퐂ퟏ [0.121926,0.232558]:[ 0.139024, 0.170984] 
		퐂ퟐ [0.55814, 0.667009]:[ 0.578049, 0.634715] 
			퐂ퟑ [0.139344,0.231707]:]:[0.139535,0.142487] 
		퐂ퟒ [0.05122, 0.071721]:[ 0.051813, 0.069767] 

 

 
Second, by applying the procedure of RIWASPAS method, 
we obtain the solution results for rough interval WSM and 
rough interval WPM for each alternative as in table 5 by 
applying Eqs. (9-14). Table 6 shows the Integrated utility 
function values of the RIWASPAS method by using Eqs. 
(15-16). After which, the Final rank of alternatives based on 
Eq. (17) as shown in Table 7. 

Table 5: Solution results for rough interval WSM and rough interval WPM 
Alternatives 푸풊

푹푰 푷풊푹푰 
							퐀ퟏ [0.737663,1.107986]:[0.809968,0.932855] [0.865372,0.914207]:[0.900948,0.904831] 
							퐀ퟐ [0.748987, 1.064737]:[ 0.805359, 0.908684] [0.854585,0.890012]:[0.867293,0.883982] 
							퐀ퟑ [0.477886, 0.898776]:[ 0.637632, 0.743334] [0.563427, 0.711633]:[ 0.683614,0.71058] 
							퐀ퟒ [0.726275, 1.026596]:[ 0.780693, 0.890132] [0.777509,0.842485]:[0.823233,0.837166] 
							퐀ퟓ [0.628116, 1.055004]:[ 0.743332, 0.914142] [0.726896,0.852355]:[0.790368,0.804373] 
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Table 6: Integrated utility function values of the RIWASPAS method 

Alt. 

훌 =  [0.404514,0.592495]:[0.476603, 0.528016] 
훌	× 푸풊

푹푰 (ퟏ − 훌) 	× 푷풊푹푰 푲풊
푹푰 

		퐀ퟏ [0.298395,0.656476]:[0.386033,0.492562] [0.352644,0.544397]:[0.425233,0.473587] [0.651039,1.200873]:[0.811266,0.966148] 

		퐀ퟐ [0.302976,0.630851]:[0.383836,0.479799] [0.348248,0.529989]:[0.409349,0.462674] [0.651224,1.16084]:[0.793185,0.942473] 

		퐀ퟑ [0.193312,0.53252]:[0.303897,0.392492] [0.229599,0.423767]:[0.322655,0.371916] [0.422911,0.956288]:[0.626552,0.764408] 

		퐀ퟒ [0.293789,0.608253]:[0.37208,0.470004] [0.316839,0.501688]:[0.388553,0.438171] [0.610628,1.109941]:[0.760633,0.908175] 

		퐀ퟓ [0.254082,0.625085]:[0.354274,0.482681] [0.296214,0.507565]:[0.373041,0.421007] [0.550296,1.13265]:[0.727315,0.903688] 

Table 7: Final rank of alternatives 
 		푲풊 Rank 

				퐀ퟏ 0.907332 1 
				퐀ퟐ 0.88693 2 
				퐀ퟑ 0.69254 5 
				퐀ퟒ 0.847344 3 
				퐀ퟓ 0.828487 4 

 
Then, the final rank of alternatives by applying the new 
RIWASPAS method is as follows: 퐴 ≻퐴 ≻퐴 ≻퐴 ≻퐴 . The 
highest value represents the best alternative, which in this 
case is alternative 퐴 , while the worst one is alternative 퐴 . 

5. CONCLUSION 
 
This paper proposed a novel combination rough interval 
MCDM approach for selecting a suitable alternative under 
rough interval. RIBWM and RIWASPAS are two novel 
methods employed together in the proposed method; the 
RIBWM was used to determine the weights of the attributes, 
while RIWASPAS was employed to rank the alternative. 
The proposed method is practical and efficient in rough 
interval domain. An illustrative example is given to show the 
results for testing the proposed approach.  
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