
Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2524

BBVPL: A Block-Based Visual Programming Language
Built on Google’s Blockly

Ashfaq Ahmad1, Muhammad Idrees2, Muhammad Arif Butt2, Hafiz Muhammad Danish3

1Department of Computer Science, College of CS & IT, Jazan University, Saudi Arabia
2Department of Data Science, University of the Punjab, Lahore, Pakistan

3Department of Computer Science, University of Lahore, Pakistan

ABSTRACT

The paper presents a Block-based Visual Programming
Language (BBVPL) built on an open-source Google’s Blockly
Framework. BBVPL inherits Blockly’s alive features as well
as provides new functionalities. Although, the existing Visual
Programming Languages (VPLs) such as Flowgorithm,
Raptor, Flint, Larp, Snap, Scratch, Kodu, Blockly, and many
more, provide a graphical computer programming interface for
learning and educational purposes. Some of them are used for
kid’s games and robotic applications development and others
for general- purpose programming. But they lack fundamental
programming capabilities mostly being used to teach basic
programming concepts. Therefore, the feature enhancement
approach has used, and new iconic vocabulary and grammar
created by Blockly’s Block-factory module to develop a new
language (BBVPL). In this paper, BBVPLs programming
features have introduced to teach computer programming skills,
especially for beginners in computer science. The BBVPL
provides an intuitive visual drag-drop program development
interface and a user-friendly console for input-output (I/O). It
offers essential programming features, including Object
Orientation, Modular Support, Conditions (If-Else), Loops
(For, While), Exceptions (Throw, catch, Finally), and File
Handling. However, the BBVPL can translate Visual Program
into Textual Program that will execute, and results will be
shown on the console screen. To accomplish this, some
experimental visual programs and their translated textual codes
are also part of our paper, indicating the smooth working of our
tool. The integration of user’s roles and rights management that
will provide proper user access to save their programs on the
server, debugging, and multithreading features will be the parts
of BBVPL in the future.

Keywords: Textual Programming Languages (TPLs), Visual
Programming Languages (VPLs), Open Source, Web-based,
Interactive input-output (I/O), Exceptions, Debugging,
Multithreading, Block-based Programming, Visual
Programming and user interface

1 INTRODUCTION

The computer programs can be developed either using
Textual Programming Languages (TPLs) or Visual
Programming Languages (VPLs). In TPLs, a computer
program is a sequence of textual directives that might be
operation fields, operand fields, name fields, and comment

fields. Java, Php, Python, etc. are a few examples of TPLs [1].
On the other side, VPLs provide a visual interface that
facilitates the users by manipulating program elements
graphically [2]. VPLs use visual syntax that represents
terminals in the form of pictures [3]. Software developers
solely need to drag-drop visual elements [4] on a canvas to
create, modify, and design pictorial program structure. A lot of
VPLs are accessible to educational and professional
programming purposes. Flowgorithm, Raptor, Visual Logic,
Scratch, Blockly, Kodu, Microsoft VPL, EToys,
TouchDevelop, GameSalad, Open Roberta and Lego
Mindstorms are a few examples of Visual Programming
Languages [5]. A programming language, either a VPL or a
TPL should provide competence to create arrays, custom
modules, the user’s defined data types and file handling [6]. It
should provide an interactive input-output (I/O) interface,
exception handling, multithreading, and debugging
capabilities. The surviving VPLs lack fundamental
programming features discussed earlier [7]. So, the time is to
propose an all-in-one VPL that can provide an interactive user
I/O with proper file handling. A VPL that can manage object
orientation, lists of data, customized modules, exceptions and
debugging capability to grip bugs and errors.

Google’s Blockly [8], [9], an open-source framework, is
provided with visual block-based icons and a drag-drop
programming environment. A computer programmer selects
desired visual blocks and connects them at the pro- vided
platform according to the Blockly’s syntax and program’s
logic. Blockly also permits the transformation of visual
programs into corresponding textual codes, e.g., JavaScript,
Php, Python, Dart, and Lua [10]. It executes visual programs
and empowers to design a new Visual Programming Language
(VPLs). Existing Blockly pro- vides various features including
arrays creation, conditions, loops, custom modules, and input-
output (I/O). Still, some critical programming concepts are
missing, just as users defined data types, exception handling,
file handling competency [11], debugging, and multithreading
support.

In this paper, the work has been done on a Block-based
Visual Programming Language (BBVPL), a VPL to teach
fundamental computer programming skills, that is stemming
from Google’s Blockly framework. The Blockly’s block
factory [12] module assists in developing BBVPL’s iconic
vocabulary and grammar. BBVPL provides Blockly’s
contemporary features as well as newly created functionalities.
It includes object orientation and exception handling power

 ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1431032021.pdf

https://doi.org/10.30534/ijatcse/2021/1441032021

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2525

with proper availability of try-catch blocks. It has all-inclusive
functionalities related to files, including open file, close file,
read line, read char, write line, seekp, seekg, tellp, and tellg
along with others. Although input-output (I/O) feature is
available in Blockly, shown in Figure 1, it is a discomfort to
watch a lot of pop-ups and alerts on screen for I/O. BBVPL
also enables an interactive console-based I/O facility as well.

Figure 1: Blockly’s sample program

2 RELATED WORK

Ivan Sutherland’s groundbreaking Sketchpad system
designed in 1963 at MIT, was the first application to create 2D
graphics and led to the invention of VPLs [13]. A pioneered
human-computer interactive software awarded with Turing
Award in 1988, provided the medium of line, mechanical
shapes, electric circuits drawing and the like. The domain of
man-machine communication was built, where a developer
used a light pen and push buttons to draw, move and more of
the same. Sketchpad eliminated typed written statement
method used in the past, to converse computer. In 1965, Ivan
Sutherland’s Brother William contributed by creating a Visual
Dataflow Language (VDL) [14]. He used Sketchpad on the
TX-2 computer at MIT, the first graphics application, to
develop VDL that provided the services of creation,
debugging, and execution of data flow diagrams. David
Canfield Smith’s published his Ph.D. work in 1975.
“Pygmalion: A Creative Programming Environment” is an
application that provided us icon-based programming
interface. A programmer could use visual icons and
connections to create and link small visual objects [15].

Flowchart Interpreter System (FLINT) was developed to
avoid syntax problems and helped to enhance the solving skills
of student’s issues as an introductory programming course [16].
It provides students, a top-down environment to design
algorithms as flowcharts and iconic interface in which buttons
enable to add and remove child nodes in flowchart structure
instead of drag-drop visual elements. A student begins by
developing a structure chart and then creates many significant
steps in it that can be implemented separately. It facilitates
with input, output, if-conditions, loops, variables, and
modules. Step by step program execution (debugging) by
highlighting the current statement is the key feature that makes
variables and programs logic observable [17].

In 2004, the first release of Raptor published, in which
Martin Carlisle designed a flowchart-based application for
students to visualize algorithm graphically. It was not only
used for writing and execution of a computer program but also

used to teach programming concepts and provided sequential,
selection, and repetitive structures for computer programming.
Hooshyar and et. al., in their paper [18], emphasize that Raptor
and similar visual programming tools enhance the
understanding of novice programmers. Raptor as a CS0 [19]
course, provides arrays, object orientation, modular support,
file input/output, and debugging services but lack of exception
handling features and threads creation. The primary purpose
of Raptor was to enhance solving skills of student’s problems.
Its stable release of 2015 is freely available [20].

Larp, a software which was officially released in 2004,
to teach structured programming and algorithms, is using
pseudo-code and flowcharts [21]. Rapid prototyping of
algorithms is the principal purpose of Larp programming
language [22]. It has the potential to transform textual
algorithms (pseudo code) into flowcharts to make them more
understandable [23]. Object orientation, arrays creation
variables, if-conditions, structures, modular support,
debugging, and data storage features, with a simple user-
friendly working environment, makes it more practical
especially for teaching purposes. Latest stable version of the
application released in 2008, is freely available.

Scratch, a free scholastic programming language
developed by Lifelong Kindergarten Group at Massachusetts
Institute of Technology (MIT) in 2005, is based on the idea of
blocks. In that, the user has to drag and drop programming
blocks from a block palate and connect them like a jigsaw
puzzle [24]. Scratch is also using as an Integrated Development
Environment (IDE) for children of aged between 9 to 11. Its
block programming technique makes it easy to write program
code and to learn problem-solving skills for schoolchildren
[25]. It has different tools to create interactive stories, kid’s
games, simulations, animations arts and many more using
block-based programming [26]. Built-in paint and sound
editor are the parts of it, but unable to provide object
orientation, file I/O, and exception handling amenities. Its
stable version was released in 2013 [27].

Microsoft VPL [28], a robotic application development
tool was initially released in 2006, in which a program is a
sequence of activities and each of them is connected to
perform a single task. A Microsoft VPL data flow is
represented as adjacent activity blocks of inputs and outputs
that can be connected with other activity blocks. It has the
competency of creating arrays, lists, if-else conditions,
variables, customized activities, debugging, and multitasking
support, but lack of object orientation, file I/O, and exceptions.
Students, enthusiasts, web developers, and professional
programmers are the audience of Microsoft VPL [29].

Michael Agustin, Dan Treiman and Tan Tran in 2007
founded GameSalad, a visual drag and drop development tool
based on games. The software enables professional
programmers as well as non-programmers to create two-
dimensional (2D) games for social networks like Facebook,
Android, and IOS devices (iPhone/iPad) [30]. It allows
consumers to design and develop their distinctive games and
offers the ability to collaborate with other users. GameSalad
used innovative technology and provided a professional-level
of artificial intelligence using complex algorithms. It is an
open-source platform, and freely available to download [31].

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2526

Stencyl was published in 2011 for kid’s game
development [32]. It can manage to create 2D games for the
web and mobile devices. Aside from icon palate contains
resources and logic to create an actor and sets its behavior. A
user may define backgrounds, tiles, and sounds, to plan more
attractive games [33]. It provides intuitive tool-set and best
drag-drop interface to accelerate workflow. Stencyl supports
comprehensive deployment platforms including IOS
(iPhone/iPad), Android, Windows, Mac, and Linux. Still,
there are some deficiencies in the above-defined
characteristics, essential for the completeness of a VPL [34].

In 2012, Google developed Blockly, an open-source
VPL similar to scratch. A user may create a program using
Blockly provided web-interface and he is capable of executing
as well as translating it into JavaScript, Php, Dart, XML, and
Python [10]. A drag-drop environment with a connection point
attached to each block enables to chain together on screen.
Blockly is neither a full application nor a language that is ready
to use for end-users. It is a platform where users can work with
an already built-in set of vocabulary (visual icons or blocks)
as well as can create their visual blocks and can associate code
with each of them accordingly. Blockly provides arrays, loops,
modular support, conditions, and others. Still, it surpluses to
enable interactive user I/O interface. It shows Java Script’s
alert pop-ups to represent output of the program instead of a
proper black screen console. Moreover, exception handling,
multithreading, debugging, structures, object orientation, and
file I/O services are missing segments, that are necessary for
the completeness of a language [11].

Lego produced a hardware-software platform Lego
Mindstorms EV3 in 2013, for the development of a robotic
application for Lego building blocks. Robot development is
the primary step using Lego bricks, motors, wheels, sensors,
etc. Then a user has to download EV3 [35] application for
PC/MAC or Tablet to write a program. The software facilitates
with a toolbar, full of functional blocks and drag-drop
capability that enables a developer to join different activates.
A programmer can bring life into a robot by controlling motors
and sensors programmatically [36].

Visual Logic, another intuitive graphical flowchart-
based VPL, developed to teach students diagrammatically. A
graphical interface that provides essential programming
concepts including variables, arrays, pre-and-post test loops,
if-else conditions, procedures, debugging, and enhanced I/O
facilities from console and text files as well. It uses minimal
syntax and clarifies the program logic and concepts rather than
focusing on program syntax. But its major drawback is
operating system dependency, it is functional only for
windows OS [37]. It has the proficiency in executing
flowcharts but object orientation, exception handling, and
multitasking features are not developed in it. The latest version
was launched in 2014 [38].

Flowgorithm, designed by Devin Cook was a free
application, first appeared in 2014. It is a graphical tool that
allows developers to write and execute a program with the help
of flowcharts [39]. Classical flowchart symbols appear in a
toolbox; a user solely needs to drag and drop them instead of
writing the bulk of instructions. It provides an easy way to
write a computer program that can execute directly as well as
can translate into other source languages like C #, C++, Python,

Perl, Java, etc. The existing features of the Flowgorithm are
array creation, modular support, graphical variable window
watch, multilingual support, loop, flexible expressions,
recursion, and understandable interactive output [40].

3 BLOCKLY’S EXISTING FEATURES

Google’s Blockly Library based on JavaScript is an open-
source framework that activates the development of new
Visual Programming Languages (VPLs). Blockly also
provides a drag-drop platform to develop a visual computer
program by using its built-in visual icons. It can generate
textual code in different languages including JavaScript, Php,
Python, Lua, and Dart. It can be used to create custom
generators of other TPLs as well [11]. It provides a toolbar,
including the “Logic” group, which holds conditional blocks,
e.g., If-do, If-Else, Else-If, etc. Blockly implemented transitive
connections [41], in which block makes connections according
to the designed language grammar or syntax and a sound
produces that indicates the creation of a correct block couple.
The “C” shaped block in Blockly enables loops, e.g., “For
Loop”, “While Loop”, and “For Each Loop”. It allows putting
repetition statement blocks inside the “C” shaped block.

“Math” group contains mathematical visual blocks to
calculate random numbers, square root and to perform
addition, subtraction, division, and similar operations.
Trigonometric functions, e.g., sine, cosine, and tangent are also
part of this collection. It has the proficiency to create variables,
arrays, and lists. Blockly provides the user’s input-output (I/O)
capability using windows alerts and prompts. In Blockly’s
toolbar, the “Text” group contains a “print” block connects
with a “variable” or a “string” block to display values, while
the “prompt” block prompts a message and stores inputted
value of a variable shown in Figure 1.

Blockly’s “Functions” group provides modular
functionality. Again the “C” shaped visual “do something”
block allows us to create functions and return values. It does
also permit the user to put related visual statements in- side.
Blockly provides a drag-drop platform as well as a textual
language generator framework that translates the visual code
to TPL’s, e.g., JavaScript, Lua, Dart, Php, Python, and XML.
It can also execute translated JavaScript code [42] by clicking
the rightmost “Run” button as well. Blockly also provides pop-
up-based input-output (I/O) facilities. Its imperative visual
icons are shown in Appendix A.

4 METHODOLOGY

It’s all starts with an open-source Google’s Blockly
framework that is not only a visual programming platform but
also a library that allows developers to create their visual
languages [8]. Block-based Visual Programming Language
(BBVPL) is implemented by using the Blockly framework, so
it presents interface similar to Blockly but with more
programming features including structures, exceptions, files,
and interactive console integration. Blockly’s block factory
module [12] was used that enabled us to create an iconic
vocabulary and language syntax for BBVPL. Then the newly
created connectable visual icons became part of BBVPL. The
three-step program execution life cycle shown in Figure 2, in
which the first step is to connect visual blocks to create a visual

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2527

program. Secondly, the visual program translates into
JavaScript textual code, and in the third step, translated code
executes, which is further communicating with the console
application for input-output (I/O) purpose.

BBVPL comes up with a console gadget for interactive
user input-output (I/O). It is an open-source console template
that is modified according to BBVPL’s requirement. The
visual block program, translated into JavaScript executes and
communicates with black console screen to print outputs and
to deal with inputs. Figure 2 is screening the complete
BBVPL’s program execution life cycle. Then the software-
testing phase started, in which complex program scenarios
tried to execute and corrected reported bugs. Finally, the
complete web application BBVPL deployed on a server to
provide user access.

Figure 2: BBVPL’s program execution life cycle

5 BLOCK-BASED VISUAL
PROGRAMMING LANGUAGE
(BBVPL) FEATURES

BBVPL provides the same Blockly’s programming
atmosphere with its existing programming proficiency’s such
as arrays creation, conditions, loops, modular support, etc. as
well as presents newly created features that are necessary to
teach fundamental programming skills. BBVPL provides
console application to communicate with users. It comes up
with users defined data types, exception handling facilities to
catch and throw exceptions. It offers file handling simulation
to deal with permanent data storage. BBVPL’s freshly
developed features are discussed below in detail.

5.1 Console Application

A console application [43] is a text-only computer
interface that provides a more straightforward way to
communicate with users either to display outputs or to take
inputs, similar to the modern Textual Programming Languages
(TPLs) such as C#, Java, Python, etc. Block-based Visual
Programming Language (BBVPL) implemented an integrated
console application. Although Blockly enables the user’s
input-output (I/O) using alerts and pop-ups as shown in Figure
1, but continuous alerts and prompts on the screen present an
irritating atmosphere for Blockly. So BBVPL offers an
interactive console, a black color screen to view the computer

program’s output and to deal with the desired input. The
console application is the HTML web page based on
JavaScript. Figure 3 is presenting a sample BBVPL’s program
that requests the user to input two numbers, takes the sum of
them, and prints a message on the console if the sum is greater
than 10. Figure 4, presents the console’s output and preferred
input as per the program’s logic.

Figure 3: Input Output (I/O) console’s related BBVPL
sample program

Figure 4: BBVPL’s integrated console sample output

5.2 Structures

A structure is a composite data type that can contain a list
of variables in an association using a continuous block of
memory [44]. It is a technology that can aid software
engineering and can provide object models better fit with
actual problems [45]. Using structures, a developer can create
a composite type as a collection of data items, e.g., an object
of a student with the variable name, age, contact, and blood
group. From this perspective, many programming languages
facilitate object-orientation support that is necessary to learn
basic programming concepts. So, the structure or user-defined
data type construction capability belongs to the BBVPL, invites
software developers to define their desired objects. Figure 5
presents selected “Structures” choice, which is further
screening drag-able visual blocks. Table 1 is describing
structures related to visual blocks, their names, and symbol
images. A visual block named as “Create structure”, creates a
new user-defined data type, and provides an input field to write
structures name and a clickable button to include the

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2528

structure’s elements. When a developer clicks on a blue
button, a new pop-up opens to a drag-drop “var” block that
connects with the “struct” block to comprise new structure
fields, shown in Figure 5.

Figure 5: Selected “Structures” group

The “Create structure variable” block creates an object;
a program developer needs to put an object name and structure
type. “Set variable value” and “Get variable value” blocks
work the same as setter and getter, select an object name, and
looked-for filed name to set or get object values. A “Student”
data type is created with required fields, e.g., student name,
roll number, and degree information. Then a “Student” type
object “student1” created and assigned values of its attributes
using set blocks. After that, print the object’s values using get
blocks according to the sample program’s logic in Figure 6.
The BBVPL’s sample program translated into textual code
shown in Figure 7.

Table 1: List of “Structures” related blocks

Sr. Block name Image

1 Create structure

2

Create structure variable

3

Set variable value

4 Get variable value

Figure 6: Structures related BBVPL’s sample program

Figure 7: Structures related visual program’s textual code

5.3 Exceptions

A program module must be reliable and fault-tolerant
that can manage different failures in a wide verity of
circumstances instead of crashing the application, and it is only
possible using the exception-handling capability of a
programming language [46]. The exception-handling was
developed in Lisp in the 1960s and 1970s. It included both
resumption semantics and termination semantics, which
provides a mechanism that not only supports error detection
but also redirects towards error handling service routines [47].
The anomalous situations require special processing, and
developers need to handle it. For this purpose, the block-based
Visual Programming Language (BBVPL) accelerates the
exception-handling aptitude that plays a vital role dealing with
irregular processing and to execute the program in a flow.

BBVPL has introduced a new option in its toolbar,
named as “Exceptions”. It provides a “Try” block and a
“Throw” block. The blue color button on the “Try” block
enables us to include the “Catch” and the “Finally” blocks as
much as a programmer need using the drag-drop environment,
shown in Figure 8. The “Try” block holds the actual block
instructions chosen to execute, while the “Catch” block
catches exceptions and accomplishes further alternative
instructions. Table 2 is showing exceptions related to visual
blocks. “Try” and “Catch” block discussed earlier, while the
“Throw” block throws exceptions of various types. “Try
Catch”, “Try Finally” and “Try Catch Finally” blocks are also
available for software developers.

Figure 8: Selected “Exceptions” group

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2529

Table 2: List of “Exceptions” related blocks

Sr. Block name Image

1 Try

2 Throw

3 Try Catch

4 Try Finally

5

Try Catch Finally

Figure 9: Exceptions related BBVPL’s sample program

A BBVPL’s sample program has presented in Figure 9, in
which “try” block executes two iterations of “for loop” and
asks a number. If an inputted number is greater than 10, then
it prints, otherwise throws an exception message. “Catch”
block catches exceptions and prints it. In the end, “finally”
block prints “Finally Completed” message. Figure 10 is
showing the translated textual code.

Figure 10: Exceptions related visual program’s textual code

5.4 Files

A file is a collection of bytes, that keeps data stored
permanently on the secondary storage disk. Text files contain
alphabet and symbols, while binary files consist of 0’s and 1’s
[48]. The four basic operations related to files are opening,
closing, reading and writing a file. The programming
languages provide different built-in functions in this regard,
e.g., fopen(), fclose(), fgets(), fprint() etc. File handling is the
distinctive facility of Block-based Visual Programming
Language (BBVPL) that empowers a software developer to
read and write contents on file. A simulation-based file system
has implemented due to the limitation of JavaScript
(unavailability of client-side file handling). Once a developer
finishes his work, the complete data collected from the file
object, stores on a server location permanently.

Figure 11: Selected “Files” group

BBVPL allows clicking “Files” option of drag-drop

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2530

\

related visual blocks shown in Figure 11. Table 3 presents all
file’s related visual blocks, and the first one in the serial is an
“Open File” block made of two inputs and one drop-down
field. The placeholder “1” is representing the file descriptor,
and its value should be unique, while the placeholder “File
Name” represents the file name. The right drop-down field
represents file mode, which is already filled with different file
creation modes like r, r +, w, w+, a, a+, etc.

Table 3: List of “Files” related blocks

Sr. Block name Image

1 Open File

2 Close File

3 Write Line

4 Read Char

5 Read Line

6 Seek Put Pointer

7 Seek Get Pointer

8 Tell Put Pointer

9 Tell Get Pointer

10 Back Space

11 New Line

12 Tab

13 End of File

Figure 12: File’s related BBVPL’s sample program

The second block in Table 3 is “Close File” closes related
file by putting file descriptor number in the provided
placeholder. “Write Line” block to write characters, variables
and string values to the desired file. For file reading purposes,
BBVPL provides a single character reader and line by line
file’s content reading ability using its “Read Char” and “Read
Line” blocks accordingly. “Seek Put Pointer” and “Seek Get
Pointer” blocks to demand an integer value to set the pointing

index consequently. On the other side, “Tell Put Pointer” and
“Tell Get Pointer” blocks return “Get “and “Put” pointer
indexes. BBVPL also competence to deal with special
characters, for instance, backspaces, new line, tab, and end of
the line. Table 3 is screening “Files” related blocks discussed
earlier.

Figure 13: File’s related visual program’s textual code

Figure 12 is viewing a sample visual program in which
the “File Open” block opens a file named as “file1” in “w+”
mode. The “Seek Put Pointer” is setting the “Put” pointer to 0th
index and a loop iterates three times, takes an input string and
writes inputted contents into “file1”. The next block
instructions print “Put” and “Get” pointing indexes. “Read-
Line” block is reading the file’s character until the end of the
line (\n) character. The textual executable JavaScript code is
representing in Figure 13. Finally, the file closed using the
“Close File” icon.

6 CONCLUSION AND FUTURE WORK

A lot of Visual Programming Languages (VPLs) have
been developed for learning and educational purposes and the
rest for games and robotic applications development. The
existing VPLs lack many fundamental programming
capabilities. Teaching programming fundamentals, requires to
use a language either a VPL or TPL that can manage arrays or
lists creation, modular support, exceptions, file handling,
conditions, loops, multithreading, object-orientation, and
debugging support. In this paper, a Block-based Visual
Programming Language (BBVPL) has been proposed and
implemented, based on Google’s Blockly Library that
provides a visual drag-drop programming environment to
teach basic programming concepts. BBVPL helps to learn
vital programming skills, which were discussed earlier. In the
future, it will also provide single-step program execution
(debugging) and multithreading facilities as well. The user’s
roles and rights management will be part of BBVPL in the
future.

APPENDIX

Appendix A tabulates the Visual Icons/Features already
available in Blockly.

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2531

A. Blockly’s Existing Visual Icons

Table 4: List of “Blockly’s” related blocks

Sr. Block name Image

1 If do

2 If Else if Else

3 Counter Loop

4 For each Loop

5 While Loop

6 Is Empty

7 String Length

8 Change Case

9 Prompt For

10 Print

11 Function

12 Variable

13 Set Variable Value

14 Change Variable

15 Trigonometric Functions

16 Square Root

17 Return Remainder

18 Random Integer

19 Sort

20 Search in List

REFERENCES

1. M. Erwig and B. Meyer, “Heterogeneous visual
languages - integrating visual and textual
programming,” IEEE Symposium on Visual
Languages, Proceedings, pp. 318–325, 1995, doi:
10.1109/VL.1995.520825.

2. wikipedia.org, “Visual Programming Language.”
Accessed: Jul. 28, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Visual_programming_lan
guage

3. R. Ahmad, “Visual Languages: A New Way of
Programming,” Malaysian Journal of Computer
Science, vol. 12, no. 1, pp. 76–81, Jun. 1999, Accessed:
Jul. 28, 2021. [Online]. Available:
https://ejournal.um.edu.my/index.php/MJCS/article/vie
w/5775

4. K. N. Whitley, “Visual programming languages and
the empirical evidence for and against,” J. Vis. Lang.
Comput., vol. 8, no. 1, pp. 109–142, 1997.

5. M. K. Kourouma, “Capabilities and Features of
Raptor, Visual Logic, and Flowgorithm for Program
Logic and Design,” 2016.

6. P. B. Hansen, “Distributed processes: A concurrent
programming concept,” Communications of the ACM,
vol. 21, no. 11, pp. 934–941, 1978.

7. T. R. G. Green, M. Petre, and others, “Usability
Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework,” Journal of
visual languages and computing, vol. 7, no. 2, pp. 131–
174, 1996.

8. E. Tilley and J. Gray, “Dronely: A Visual Block
Programming Language for the Control of Drones,”
in Proceedings of the SouthEast Conference, 2017, pp.
208–211.

9. N. Fraser and others, “Blockly: A visual programming
editor,” URL: https://code.google.com/p/blockly, 2013.

10. “Google’s Blockly visual programming
environment.” Accessed: Jul. 28, 2021. [Online].
Available: https://www.csee.umbc.edu/
2012/06/googles-blockly-visual-programming-
environment

11. E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for
creating a block language with blockly,” in Blocks and
Beyond Workshop (B&B), 2017 IEEE, 2017, pp. 21–24.

12. “Custom Blocks Blockly Google Developer.”
Accessed: Aug. 05, 2018. [Online]. Available:
https://developers.google.com/blockly/guides/create-
custom-blocks/overview

13. I. E. Sutherland, “Sketch pad a man-machine
graphical communication system,” in Proceedings of
the SHARE design automation workshop, 1964, pp. 6–
329.

14. C. BurdeaGrigore and P. Coiffet, Virtual reality
technology. London: Wiley-Interscience, 1994.

15. M. Boshernitsan and M. S. Downes, Visual
programming languages: A survey. Citeseer, 2004.

16. T. Crews and U. Ziegler, “The flowchart interpreter
for introductory programming courses,” in Frontiers
in Education Conference, 1998. FIE’98. 28th Annual,
1998, vol. 1, pp. 307–312.

17. G. Atanasova and P. Hristova, “Flowchart interpreter:
An environment for software animation
representation,” in Proceedings of the 4th International
Conference on Computer Systems and Technologies,
2003, pp. 453–458.

18. D. Hooshyar et al., “A Flowchart-based Multi-Agent
System for Assisting Novice Programmers with
Problem Solving Activities,” Malaysian Journal of
Computer Science, vol. 28, no. 2, pp. 132–151, Jun.
2015, Accessed: Jul. 28, 2021. [Online]. Available:
https://ejournal.um.edu.my/index.php/MJCS/article/vie
w/6859

19. Hooshyar D., Ahmad R.B., Yousefi M., Yusop F.D., and
Horng S.-J., “A flowchart-based intelligent tutoring
system for improving problem-solving skills of novice
programmers,” Journal of Computer Assisted
Learning, vol. 31, no. 4, pp. 345–361, Aug. 2015, doi:
10.1111/JCAL.12099.

20. M. Thompson, “Evaluating the Use of Flowchart-
based RAPTOR Programming in CS0,” 2012.

Ashfaq Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2524 – 2532

2532

21. E. Perrin, S. Linck, and F. Danesi, “Algopath: A new
way of learning algorithmic,” 2012.

22. W. Q. Burke, Coding & composition: Youth storytelling
with Scratch programming. University of Pennsylvania,
2012.

23. “Microsoft Word - LarpEnV3x.doc”, Accessed: Aug.
06, 2018. [Online]. Available:
http://www.marcolavoie.ca/larp/en/default.html

24. J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E.
Eastmond, “The scratch programming language and
environment,” ACM Transactions on Computing
Education (TOCE), vol. 10, no. 4, p. 16, 2010.

25. N. Zamin, H. Ab Rahim, K. S. Savita, E. Bhattacharyya,
M. Zaffar, and S. N. KatijahMohd Jamil, “Learning
Block Programming using Scratch among School
Children in Malaysia and Australia: An Exploratory
Study,” 2018 4th International Conference on
Computer and Information Sciences: Revolutionising
Digital Landscape for Sustainable Smart Society,
ICCOINS 2018 - Proceedings, Oct. 2018, doi:
10.1109/ICCOINS.2018.8510586.

26. A. Repenning, “Agentsheets: a tool for building
domain-oriented visual programming
environments,” in Proceedings of the INTERACT’93
and CHI’93 conference on Human factors in computing
systems, 1993, pp. 142–143.

27. Scratch Wiki, “Scratch.” https://en.scratch-
wiki.info/wiki/Scratch (accessed Sep. 06, 2018).

28. Y. Chen, Z. Du, and M. Garc\’\ia-Acosta, “Robot as a
service in cloud computing,” in Service Oriented
System Engineering (SOSE), 2010 Fifth IEEE
International Symposium on, 2010, pp. 151–158.

29. “VPL Introduction Microsoft Docs.” Accessed: Sep.
22, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/previousversions/
microsoft-robotics/bb483088(v=msdn.10)

30. S. Dekhane and X. Xu, “Engaging students in
computing using GameSalad: a pilot study,” Journal
of Computing Sciences in Colleges, vol. 28, no. 2, pp.
117–123, 2012.

31. “Gamesalad gears up for iphone publishing system.”
Accessed: Aug. 22, 2018. [Online]. Available:
http://www.austinstartup.com/2009/09/gamesalad-
gears-up-for-iphone-publishing-system/

32. J. Liu et al., “Making games a snap with Stencyl: a
summer computing workshop for K-12 teachers,” in
Proceedings of the 45th ACM technical symposium on
Computer science education, 2014, pp. 169–174.

33. wikipedia.org, “Stencyl.” Accessed: Jul. 28, 2021.
[Online]. Available:
https://en.wikipedia.org/wiki/Stencyl

34. “Stencyl: Make iPhone, iPad, Andoid, Windows,
Mac, Flash and Html5 games without code.”
Accessed: Jul. 15, 2018. [Online]. Available:
http://www.stencyl.com/features/

35. “About EV3- Mindstsrms LEGO.com.” Accessed:
Jul. 15, 2018. [Online]. Available:
https://www.lego.com/en-us/mindstorms

36. J. G. P. Francisco, A. M. Rees, J. Hughes, J. Vermeersch,
I. Jormanainen, and T. Toivonen, “A survey of
resources for introducing coding into schools,” ACM
International Conference Proceeding Series, vol. 02-04-
November-2016, pp. 19–26, Nov. 2016, doi:
10.1145/3012430.3012491.

37. G. Cooper, “Using Visual Logic with Pseudocode to
Teach an Introductory Programming Course,”
proceedings of WorldComp 2014, 2014.

38. “Visual Logic.” Accessed: Jul. 28, 2021. [Online].
Available: https://www.visuallogic.org/

39. G. Shobaki, “Computer Science Colloquium Series
since 1997 Topics, Speakers, and Abstracts during
2010-2015,” 2015.

40. “Flowgorithm Flowchart Programming Language.”
http://www.flowgorithm.org/ (accessed Jul. 28, 2021).

41. N. Fraser, “Ten things we’ve learned from Blockly,”
in Blocks and Beyond Workshop (Blocks and Beyond),
2015 IEEE, 2015, pp. 49–50.

42. “Introduction to Blockly.”
https://developers.google.com/blockly/guides/overview
(accessed Jul. 28, 2021).

43. wikipedia.org, “Console Apllication.” Accessed: Jul.
28, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Console_application

44. Wikipedia.org, “Struct (C programming language).”
Accessed: Jul. 27, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Struct_(C_programming_
language)

45. G. Kiczaleset al., “Aspect-oriented programming,” in
European conference on object-oriented programming,
1997, pp. 220–242.

46. B. H. Liskov and A. Snyder, “Exception handling in
CLU,” IEEE transactions on software engineering, no.
6, pp. 546–558, 1979.

47. Wikipedia.org, “Exception handling.” Accessed: Jul.
27, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Exception_handling

48. “File Handling in C language with inbuilt functions.”
https://fresh2refresh.com/cprogramming/ c-file-
handling/ (accessed Jul. 27, 2021).

