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ABSTRACT 
 
As the current advanced society, there is a precipitous 
increase in the application of computational modeling in 
almost every industry. Given the depletion of fossil fuels and 
the negative effects its burning has on the environment, one 
area of research gaining significant traction is bio-fuels. 
Computational modeling has the potential to be a 
cost-effective tool that enhances both productivity and 
economics for biofuel processes. Advances in artificial 
intelligence and its subclasses are making it possible to 
predict several items including process yields, substrate 
medium components and optimal process conditions among 
others. It has been employed in many bioprocesses such as 
pretreatment of lignocellulosic biomass and various biofuel 
production processes. Further implementation of this 
computer-based tool may potentially mitigate the need for 
preliminary experiments and in some cases, lab-scale 
experiments. This review highlights the application of 
computational modeling in biofuel production and also 
discusses future trends. 
 
Key words: Computational modeling, biofuel, machine 
learning, artificial intelligence.  
 
1. INTRODUCTION 
 

With the global population expected to increase 
exponentially over the coming years, global energy demand is 
escalating simultaneously. Conventional fossil fuel sources 
such as coal, oil and gas, are rapidly depleting with some 
studies estimating their complete depletion within the next 
century (Moodley and Gueguim Kana, 2017). Coupled to this, 
is the harsh negative impacts of fossil fuel burning such as 
greenhouse gas emissions contributing towards climate 
change. All of these factors have prompted the search for 
alternative fuels that encourage a bio-economy within global 
economies (Sewsynker-Sukai et al., 2018). With this in mind, 

 
 

several bio-fuels have been proposed and investigated 
including bio-ethanol, bio-hydrogen, bio-methane and 
biodiesel (Kumar et al., 2020). In addition to this, several 
process factors have been taken into account, some of which 
include feedstock type and inoculum type. Each of the factors 
and processes have their own developmental challenges 
which requires further research. 

In order to fully realize the potential of biofuel production, 
these processes must undergo a thorough modeling and 
optimization in order to enhance process economics and 
scalability. For instance, when examining the pretreatment of 
lignocellulosic biomass feed stocks, several parameters are 
considered. The pretreatment type will dictate the parameters 
to be considered. For example, chemical pretreatment using 
conventional heating will potentially include parameters such 
as chemical concentration, temperature, heating time and 
solid loading (Moodley et al., 2020). Microwave heating will 
include microwave power and heating time (Moodley and 
Gueguim Kana, 2017). Subsequent stages in the process such 
as enzymatic hydrolysis can include factors such as enzyme 
loading, solid loading, hydrolysis temperature and rotations 
per minute. When moving to biofuel production, there are 
more parameters to be considered, including temperature, pH, 
agitation, substrate concentration, inoculums concentration, 
oxygen levels etc. (Moodley and Gueguim Kana, 2015). All of 
the parameters play a crucial role in the manner in which the 
process proceeds and are also determinants in final output 
yield. For this reason, it is imperative that all these parameters 
are modeled and optimized in their respective stages to ensure 
maximum productivity.  
Various computational modeling tools have been employed to 
assist in this regard, ranging from machine learning to 
genetic algorithms. Each of the methods has different 
fundamental operating principles and therefore offers 
different approaches. With this in mind, this review aims to 
detail the different modeling and optimization tools that are 
available for this purpose with the latter part of the review 
looking at how these tools have been applied in research. 
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2. COMPUTATIONAL MODELS AND DESIGNS 

2.1 Response Surface Methodology (RSM) 
 
RSM, a mathematical methodology allows one to extrapolate 
relationships between sets of data, containing independent 
variables correlating to one or more outputs, referred to as 
responses. This process allows the operational variables or 
parameters to be evaluated based on whether they have a 
significant or non-significant effect on the desired output 
(Myers, 1976). 
 

2.1.1 Central Composite Design (CCD) 

CCD is employed in scenarios to generate a second order 
polynomial model based on a set of data. In its core, CCD, a 
cluster of points at the center and axial points are distanced 
equally to the midpoint. Use either SI (MKS) or CGS as 
primary units. (SI units are strongly encouraged.) English 
units may be used as secondary  
 

This factorial based design element is category 2k factorial. 
In this element, the k represents the number of parameters. 
Every parameter is observed at two different levels. This 
essentially means that every parameter has a minimum and 
maximum value. This model works by employing coded 
values, where a coded value of -1 and +1 is attached to signify 
the parameter at their minimum and maximum values 
respectively. A factorial is geometrically represented by a 
cube where each angle further represents factor or parameter 
interactions. From this point of view, a total of 8 interactions 
can be examined when 3 input parameters are chosen to 
compute the effects on the desired output.  
 
The axial element of central composite design makes 
reference the values that are distanced equally from the center 
point of the cube that is generated during the factorial design. 
Consequently, there is a confident and an adverse axial value, 
referred to as +α and -α respectively. These axial points add 
two more values to the data set, emanating from more 
differing values in each parameter. The value of α is 
computed using the following equation, α = (ni)1/4. In this 
equation, nide notes the number of interactions achieved from 
the design. With this in mind, for a total of 8 interactions, α = 
1.682 (Myers, 1976). The midpoint element in the CC design 
is the median of maximum and minimum values computed in 
the factorial design. To this end, the center point can be 
described as the optimal conditions where they potentially 
meet. The inclusion of the midpoint in the design enhances 
the level’s design. Similarly, if the design has three variables, 
by default the design would be based on three levels. This type 
of model would lead to the estimation of 10 coefficients, 
inferring some degrees of freedom are left further indicating 
the generation of a reliable model particular when some 
experiments are prone to experimental error (Rakic et al., 
2014). 

2.1.2 Doehlert Design 
 

The Doehlert design defines a sphere-like testing area and 
emphasizes the consistency of space. Even though this design 
is not orthogonal, it does not differ drastically from the value 
necessary for effective use (Massart et al., 2003). In the case of 
two parameters, the Doehlert configuration comprises one 
mid-point and six regular points, establishing a hexagon, and 
thus forms a sphere.It can be represented in three dimensions 
in various manners, reliant on the chosen structure with 
geometric characteristics. In a Doehlert design, the amount of 
rates differs among all the inputs (Garcıa-Campaña et al., 
1997). For instance, in a two parameter design, one parameter 
is examined at five values, whereas the remaining variable is 
examined with three values. This characteristic allows select 
from factors which is to be allocated to a big or small number 
of rates freely. To determine the variables, different 
parameters may be used. As a rule of thumb, it is better to 
select a parameter with a significant effect as a factor with five 
rates with a view to extract a large amount of knowledge from 
the system. Every design is defined by taking into account the 
number of parameters or input factors and their respective 
coded values (Ci) of the experimental matrix. This 
association is described by the equation (1) below: 

                   
                       (1) 

 
 

In the equation above, Ci represents the coded value for the 
factor level I, Xi is its actual value from the experiment, X0i is 
the real value at the midpoint of the navigation space, ΔXi is 
the real value variance phase and α is the coded value 
threshold for every parameter in the design. 
Replicates are performed at the midpoints of the variables to 
authenticate the model through an experimental variance 
estimate. The evaluation between the aforementioned 
second-order models has shown that Doehlert designs and 
Box – Behnken designs are effective compared to composite 
central designs, given that the effectiveness of one 
experimental design is described as the amount of coefficients 
of the estimated model distributed by the amount of 
experiments conducted. An example of a Doehlert design for 
a three factor design is illustrated below in Table 1.  

Table 1: Doehlert Matrix for a three level design 
Runs Experimental factors 

 A B C 
1 0 0 0 
2 1 0 0 
3 0.5 0.866 0 
4 0.5 0.289 0.817 
5 -1 0 0 
6 -0.5 -0.866 0 
7 -0.5 -0.289 -0.817 
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8 0.5 -0.866 0 
9 0.5 -0.289 -0.817 
10 -0.5 0.866 0 
11 0 0.577 -0.817 
12 -0.5 0.289 0.817 
13 0 -0.577 0.817 

 
2.1.3 Box-Behnken Design 

 
 The Box Behnken design is another modeling and 
optimization method that has been extensively employed in 
various studies. The amount of experiments (N) needed for 
BBD processes is defined as N=2k(k−1)+C0 (where   the 
count of parameters and C0 is the count of midpoints). By 
contrast, the amount of experiments for the former design is 
N=2k +2k +C0. A comparison among the Box-Behnken 
Design and additional response surface methods has shown 
that the Box-Behnken Design and Doehlert design are 
marginally more effective than the central composite design. 
Table 2 illustrates that three-level complete factorial designs 
are expensive when the number of factors is greater than two. 
In this table, A and -A correspond to 1 and -1 respectively. 
The number of experimental runs increases with increasing 
factors and thus has a ripple effect with the consumables and 
equipment needed thereby further requiring more time to 
conduct experiments. This can significantly reduce 
productivity of the process. A further benefit of the Box- 
Behnken Design is it does not include runs where all variables 
are at their maximum or minimum levels simultaneously. 
Consequently, these methods are valuable when avoiding 
experiments conducted with extreme conditions where in 
adequate results can be obtained. In comparison, these are not 
suggested for cases where the objective is to learn the extreme 
answers, that is, at the cube's vertices. 

 
Table 2: Coded factors for a three-level Box-Behnken design 

Run Variable 1 Variable 2 Variable 3 
1 -A -A 0 
2 A -A 0 
3 -A A 0 
4 A A 0 
5 -A 0 -A 
6 A 0 -A 
7 -A 0 A 
8 A 0 A 
9 0 -A -A 

10 0 A -A 
11 0 -A A 
12 0 A A 
C 0 0 0 
C 0 0 0 
C 0 0 0 
C 0 0 0 

 
2.1.4 Comparison of Response Surface Methods 

 
By comparison, the Doehlert design is the most effective of 
the three for all values of k. Doehlert designs possess 
additional effectiveness in surveying space: adjacent 
hexagons may completely and efficiently load a space, since 
the hexagons occupy space without overlapping (Massart et 
al., 2003; Bosque-Sendra et al., 1995). Another advantage is 
its sequential ability, where experiments can be recycled 
where at first, the limits were chosen without motivation 
(Massart et al., 2003). 
 
2.2 Genetic Algorithm 
 
Traditional optimization approaches use a weighed approach 
with numerous targets and turn the problem into a single 
objective optimization. Weighed objective variables are 
decided earlier on, in terms of priorities and factors. Each 
collection of weighed parameters would give a singular 
solution to the problem of optimization, and a new solution 
will result in variation of the factors. The batch of solutions 
obtained provides a Pareto solution for the problem of 
multi-objective optimization. Deb (2001) reported that typical 
actions can be classified as multi-objective optimization 
constructed on choice, that involves supplementary data to 
turn the problem into one objective optimization. So the 
desired resolution can be obtained by answering the 
optimization of the singular goal. By contrast, a second group, 
termed ideal multi-objective optimization, disregards 
higher-level data to generate ideal solutions; nevertheless, 
high-level data may be applied at some point in the future to 
choose the best desirable resolution from the Pareto optimal 
solutions set. Furthermore, preferential solutions are time 
consuming since specific weighing factors need to be 
implemented for each ride. Preference strategies often need 
additional details and limitations for the user to solve the 
multi-objective optimization problem by increasing the 
number of goals. A method for delivering power effectively by 
using GA is explained (Abdul et al., 2018) 
 
Evolutionary optimization algorithms for multi-objective 
optimization have now been applied because of their 
methodology to employing a population-based technique to 
create new population of solutions from one solution in a 
duplication in each iteration. In recent years, the key 
rationales for employing evolutionary methods are their 
suitability for broad array of functions, ease of use in various 
functions, and versatility for specific case studies (Deb, 
2001;Abraham et al., 2005). In recent times, genetic 
optimization algorithms are becoming commonly employed 
for multi-objective problems as a collection of optimal Pareto 
solutions are needed for such problems and can be given in 
one run by these approaches (Deb 2001, Ebrahim et al., 2005, 
Konak et al., 2006, Siinivas and Deb, 1995; Bandyopadhyay, 
2012).  
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A. The Non-Dominated Sorting Genetic Algorithm II 
(NSGA II) has received the most consideration among 
various evolutionary genetic optimization algorithms (Deb, 
2011). The key benefits of NSGA II compared to other genetic 
algorithms are the addition of the crowded comparison 
operator across the primary space for globally optimal 
solutions, a decrease in computational difficulty and a growth 
in population variety (Yijie and Gongzhang, 2008). Overall, 
the key features of the NSGA II are: (i) introducing elitism 
that can accumulate all non-dominated solutions and further 
boost convergence traits; (ii)variety ensuring and range of 
solutions; and (iii) considering a non-dominated method to 
class individuals with respect to the degree of non-dominance 
(Konak et al., 2006; Yijie and Gongzhang, 2008; Deb et al., 
2002). A survey is done on the software testing by applying 
genetic Algorithm (Chandraprakash et al., 2017) 

When running the algorithm, in essence, every structural 
network signified by the gene population is evaluated and 
assessed based on their results. The genes are then replicated 
with a greater chance if their output is better. That is, the 
genes which generate a poorly performing network are 
unlikely to be copied; whereas those with desired results are 
likely to be replicated. Therefore, the replicating procedure 
creates a population with a lot of higher performing genes. If 
the replication procedure is complete, the genes are then 
"bred" by ‘mating’ at random points with some of the data in 
the network. To add a certain variety, a slight random shift is 
made, called a "mutation." Then repeat the whole cycle. In a 
given problem space, each gene codes a potential 
solution-called the search domain. This domain encompasses 
all potential solutions to the present problem. Alphabets are 
mostly employed but in recent years this has been expanded to 
comprise character-based encoding and real-evaluated 
encoding. 

Defining a baseline GA involves the following steps: 

1. Build a population of arbitrary individuals such that each 
individual represents a potential solution to the problem being 
faced. 

2. Calculate increasing human fitness, that is, its capacity to 
solve a specific problem. This requires searching for the 
so-called fitness function. 

3. Select individual members of the community to become 
parents. The fitness-proportionate selection is the basic 
selection method, where persons are chosen with a potential 
proportional to their relative fitness. This ensures that the 
estimated amount of times a person is selected in 
correspondence to their relative population results. Therefore, 
individuals with high fitness have a greater chance of 
"reproducing," whereas those with poor fitness are likely to 
vanish. 

4. Produce offspring and introduce them to the population by 
recombining novel material through crossover and mutation. 

5. Evaluate fitness for the kids. 

6. Repeat steps (3) to (5), until a fitness criterion solution is 
obtained. 

Selection by itself cannot bring new people into the 
population. The quest space uses genetically based operators 
such as crossover and mutation to locate novel factors. The 
Crossover Operator is the most significant genetic operator. 
The crossover process, in biological environments, results in 
the recombination of alleles through the swapping of sections 
between sets of genotypes. GA are iterative stochastic 
systems, which are not expected to congregate. The end 
instruction may be stated as a set, a maximum number of 
generations, or a predefined appropriate standard of fitness. It 
emerges from the fact that in a population of mediocre others, 
there might be some exceptional genotypes at the top. These 
genotypes take over a large part of the population in the first 
couple of generations, before the crossover operator can create 
a more diverse collection of healthy genotypes. 

2.3 Fuzzy Logic 

An academic at UC Berkeley first proposed Fuzzy theory in 
1965, suggesting a set theory that functions over the range [0, 
1]. The seminal work called "Fuzzy Sets" presented the 
essence of this theory. Whilst the results of Boolean logic are 
limited to 0 and 1, fuzzy logic findings vary from 0 to 1. In 
essence, Fuzzy logic determines certain transitional values 
including absolute truth and absolute false between sharp 
evaluations. This is an indication that Fuzzy sets can manage 
ideas that is usually encountered daily, such as very small, 
small, big and very big. Fuzzy logic is akin to human 
reasoning, since it is based on notches of real information and 
uses factors of language. Fuzzy logic works with fuzzy sets 
which have membership degrees/notches in their 
components. Essentially, a member element from a multiple 
set associated with different membership values may be an 
object. For example, weekdays are usually assigned from 
Monday to Friday; whereas weekends include Saturday and 
Sunday. Alternatively, it could be assumed that on Friday, 
individuals begin to feel the optimistic impact of the 
approaching weekend. Therefore, it may be thought that 
while Friday is classed as the "weekdays" set with a 
membership value of 0.95, it belongs to the "weekend" set 
with a value of 0.05 (Kayacan and Khanesar. 2016).A method 
to decrease the cloud environment latency by applying fuzzy 
logic is proposed (Jena et al., 2017).  

Even though the definition of fuzzy logic and probability 
sound similar, they are very different. Even though 
probability allows assumptions about a specific fact, fuzzy 
logic stays away from claims about likelihood but 
characterizes membership in loosely described sets. For 
example, if 0.5 is known as a likelihood value for an old 
person, it can be assumed that the possibility is they may be 
old. It is unclear whether they are young or old. In fuzzy logic, 
though, if 0.5 is described as the degree of membership in the 
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set of young and old people, some information about the 
person is given and therefore is put in the midst of young and 
old (Kayacan and Khanesar. 2016). A method is discussed to 
improve clustering rate accuracy using Fuzzy C Means 
(Ramesh et al., 2018). Fuzzy Inference Vector ACO is used 
for detection of island and analysed the stability of power 
system integration (Reddy et al., 2018). Fuzzy C-Means is 
applied for image segmentation and extraction of island using 
the intensity of pixel (Rehman et al., 2018).  

In nature, fuzzy logic is seen as being closer to human 
reasoning and innate language. With MFs, human thinking 
methods are achieved which determines how each factor in 
the input domain is surveyed to a space of membership values. 
Values for membership in fuzzy sets are inside [0;1]. If an 
adage is absolute valid, the Fuzzy sets membership value is set 
to be 1. Similarly, if it is totally incorrect, the Fuzzy Sets 
membership value is 0. An MF production is known as an 
antecedent (μ). While an MF's input values are smooth, these 
MFs transform them into fuzzy variables (Kayacan and 
Khanesar. 2016). 

2.4 Artificial Neural Network 
 
There has been a lot of study over the past few decades aimed 
at forecasting the future and aiding in good choices. These 
studies have contributed to many evolutions in the 
methodology of predictions. Many of those developments in 
methods were focused on mathematical techniques. These 
methodologies-artificial neural networks (ANNs)-actually 
face a new challenger. ANN has been widely praised as 
addressing many problems in forecasting and modeling 
decisions. For instance, it has been proposed that they can 
easily model any kind of operation, and change the input data 
automatically and optimally. These kinds of statements have 
created a lot of interest in ANN. Chatfield (1993), have had 
competing thoughts and has questioned if ANN has been 
over-sold or is just a phase. 
ANN are mathematical models which are based on the 
biological association and functioning of neurons. There are 
several artificial variants of the neural network that are 
related to the design of the role. In addition, there are several 
differences in the way neurons are represented. Some 
concepts have these models meticulously correlate to 
biological neurons and concepts have the models differing 
greatly from biological operation. The literature indicates a 
variety of possible benefits that ANN has over the statistical 
methods. Non-linear trends may also be modeled with ANN, 
since it can be general operation estimators. Also, they can 
estimate approximations of functions piece-wise. ANN can 
mathematically be shown to be approximations of general 
operation. This means they can mechanically estimate what 
functional type the information is best described by. Although 
this characteristic is not important if the useful structure is 
basic (e.g. linear), it helps ANN to derive more information 
from the operational structures underlying it. ANN has also 
been shown to automatically partly change input information. 

Even ANN are fundamentally nonlinear. That means they can 
not only approximate non-linear functions efficiently, but 
they can also remove any undesirable elements from the data 
after removing linear terms. Since ANN uses many hidden 
layers, the networks will automatically divide the sample 
domain and construct various operations into various 
segments of the domain. This infers that ANN has a diffident 
ability to construct nonlinear models on a piece-wise basis. 
One clear example of such a model is the artificial neural 
network model for the exclusive OR role. A method is 
proposed for the improvement of torque, increase the speed 
and also the flux response with the application of ANN and 
Adaptive Neuro-Fuzzy Inference (ANFIS) (Venkateswara 
Rao et al., 2018). With the artificial intelligence techniques 
has automated IoT hub (Yasaswini et al., 2018). The 
classification of images of flower by using segmentation and 
ANN is discussed (Inthiyaz et al., 2028). An analysis on eye 
vessel damage, micro aneurysms and exudates using ANN is 
done (Reddy et al., 2018) 
ANN, too, has some issues. First, the methods and modeling 
techniques of artificial neural networks are rapidly evolving 
while certain techniques of statistical modeling are 
established. Secondly, although programs for statistical 
techniques are easily accessible, viable artificial neural 
network tools of high quality, though. Often it lags behind 
in-field innovations. Third, artificial neural network models 
are more difficult to understand than many predictive models, 
and to give physical significance. Fourth, ANN includes more 
estimate parameters than other statistical forecasting models 
do; this can lead to over-fitting problems. Lastly, ANN 
requires more computing resources than the mathematical 
models. 

3. CURRENT APPLICATIONS IN BIOPROCESSES 

Various computational designs and models have been applied 
to the bioprocess sector, as outlined in Table 4. More 
commonly, these techniques have been employed in the 
modeling and optimization of lignocellulosic pretreatment 
methods. For instance, Mariano et al. (2020) employed the 
central composite design to model and optimize the release of 
sugar from coconut pulp through acid hydrolysis. Similarly, 
Iram et al. (2019) also used the central composite design to 
model and optimize the acid pretreatment of dried distiller’s 
grains to produce a soluble feedstock. The Box-Behnken 
design was employed by Liu et al. (2018) to optimize the 
pretreatment of corn straw using ionic liquids. Artificial 
Neural Network has been employed to generate a model with 
the ability to predict sugar yield, based on the training using 
data from multiple studies involving inorganic salt 
pretreatment (Moodley et al., 2019). This model can provide 
substantial preliminary information prior to conducting lab 
studies thereby saving time and potentially enhancing 
productivity. Looking at biofuel production processes, the 
genetic algorithm method was employed by Abadila et al. 
(2020) to optimize a photovoltaic-hydrogen system. In 
another study by Ghaderi et al. (2018), the production of 
bio-ethanol from switch grass was optimized and 
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programmed using the fuzzy logic method. This is an 
illustration of the widespread use of computational models in 
the bioprocess and biofuel sector, owing to the many 
advantages these systems possess. 

Table 4. Different computational models and designs 
employed in bioprocess design studies. 

Process Model 
employed Reference 

Lignocellulosic 
pretreatment 

Central 
composite 

Li et al., 
2019 

Microalgae 
pretreatment 

Central 
composite 

Ellison et 
al., 2019 

Bioethanol 
production 

Central 
composite 

Manmai et 
al., 2020 

Lignocellulosic 
pretreatment 

Central 
composite 

Mariano et 
al., 2020 

Lignocellulosic 
pretreatment 

Central 
composite 

Tsegaye et 
al., 2020 

Lignocellulosic 
pretreatment 

Central 
composite 

Iram et al., 
2019 

Lignocellulosic 
pretreatment 

Box-Behn
ken 

Rai et al., 
2019 

Biofuel 
production 

Box-Behn
ken 

Senol et al., 
2020 

Lignocellulosic 
pretreatment 

Box-Behn
ken 

Shahabazud
din et al., 2018 

Biohydrogen 
production 

Box-Behn
ken 

Jung et al., 
2011 

Lignocellulosic 
pretreatment 

Box-Behn
ken 

Martin et 
al., 2019 

Lignocellulosic 
pretreatment 

Box-Behn
ken 

Liu et al., 
2018 

Enzyme 
production 

Genetic 
algorithm 

Sirohi et al., 
2018 

Biofuel 
production 

Genetic 
algorithm 

Abadlia et 
al., 2020 

Biofuel 
production 

Genetic 
algorithm 

Oloko-Oba 
et al., 2018 

Bioethanol 
production 

Fuzzy 
logic 

Garofalo et 
al., 2020 

Bioethanol 
production 

Fuzzy 
logic 

Konti and 
Damigos, 2018 

Bioethanol 
production 

Fuzzy 
logic 

Ghaderi et 
al., 2018 

Lignocellulosic 
pretreatment 

Artificial 
neural 

network 

Rego et al., 
2018 

Lignocellulosic 
pretreatment 

Artificial 
neural 

network 

Lee et al., 
2020 

Lignocellulosic 
pretreatment 

Artificial 
neural 

network 

Moodley et 
al., 2019 

Biodiesel 
production 

Artificial 
neural 

network 

Rajendra et 
al., 2009 

Bioethanol 
production 

Artificial 
neural 

network 

Chouaibi et 
al., 2020 

Bioethanol 
production 

Artificial 
neural 

network 

Sorrosal et 
al., 2017 

 

3.1 Lignocellulosic pretreatment  

Optimizing pretreatment processes is important for the 
positive economic outlook of bioprocess and biofuel 
technologies (Tu and Hallett, 2019) and many different 
pre-treatments have to be evaluated on a vast range of 
procedural conditions. Efficient bioconversion techniques 
must specifically break down the building blocks and 
produces fractional or complete disconnection of cellulose, 
hemicellulose and lignin, thus reducing by-product formation 
as well. Integrated processes incorporating multiple 
pretreatment methods are effective in reducing the amount of 
required stages and eliminating possible inhibitors as opposed 
to the traditional single process (Kumar and Sharma, 2017). 
Biological pretreatments that use microbes (bacteria and 
fungi) can possess possible benefits but involve the choice of 
microbial inoculum to effectively pretreat unique biomass 
sources (Kanta et al., 2017). Lignocellulosic waste serves as a 
substrate for the production of bio-fuels and the pretreatment 
techniques rely on the constituents of agricultural sources to 
establish their utilization for the production of hydrogen, 
methane, ethanol, methanol, but anol and diesel (Zhu et al., 
2020). Bio-fuels in liquid form are especially important 
sustainable commodities owing to existing infrastructure that 
are in place for their use in transport. Additionally, they have 
encouraged the development of new pretreatment techniques 
for new fuel components acquired from lignocellulosic-based 
carbohydrates. Bio-refinery principles dictate the range of 
techniques of pretreatment used for the bio-conversion of 
lignocelluloseto bio-fuels, owing to the residues that must be 
considered (Faustino et al., 2019). The valorization of lignin 
is an integral feature of the effective biorefinery of 
lignocellulose. Bioprocesses that result in the removal of 
lignin from the carbohydrate component can be differentiated 
from those resulting in the subsequent isolation of lignin into 
fuels and chemical (Rinaldi et al., 2016), but the pretreatment 
mechanisms of chemicals routes have not been adequately 
explored to develop techniques or to optimize the 
pretreatment until recently (Baruah et al., 2018). These 
applications should be improved by recent advances 
integrating de-polymerization and conversion (Wendisch et 
al., 2018). Depolymerized lignin is often a multifaceted 
combination of different molecules, so refining the native 
component may minimize its density through both chemical 
and biological techniques (Schutyser et al., 2018). The use of 
cascades, where lignocellulose is initially pretreated based to 
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its structure and features may be a choice. However, it should 
be taken into account that "owing to the complex structure of 
biomass, the single pretreatment approach has restricted 
enhancement of the fractionation efficiency" (Liu et al., 
2019). Deep eutectic solvents, made from biomass effluent, 
are used for enzymatic saccharification and lignin removal 
pretreatments (Shen et al., 2019). This chemical is 
generatedfrom available materials and demonstrates lignin 
selectivity compared to cellulose, but these are still in their 
infancy.  

Computational methods have become important for the 
identification of methodologies to evaluate chemical 
processes easily, accurately and automatically. Luckily, their 
uses for modeling bioprocesses have seen remarkable 
progress in recent times (Goulart et al., 2019) and their future 
applications for processes of pretreatment has shown 
immense promise (Butler et al., 2018). For example, from 
over 100 million molecules a groundbreaking approach to 
machine learning discovered highly effective novel 
antibiotics. The properties of molecules are learned by a 
neural network, a method that varies from those currently in 
use. Instead of searching for particular compounds, the 
network is equipped to search for compounds with a 
particular activity (Marchant, 2020). Interactions concerning 
fragile intermolecular forces can be explored using a machine 
learning model that can predict the total density of electrons. 
It has been trained using a dataset of minute molecular 
fragments and forecasts polypeptide density, and describes 
electrostatic connections between fragments which play a role 
in protein stability. 

3.2 Bioprocess Modeling  

Computational Intelligence (CI) is the research field that 
focuses on researching and utilizing strategies that are 
considered intelligent. These strategies can be implemented 
through software programs. Usually these program scan be 
applied to general optimization algorithms. This can further 
include genetic algorithm, swarming, artificial neural 
networks and fuzzy logic to name a few. Even though they are 
called computational intelligence methods, many 
statistical-based approaches are meticulously linked to 
computational intelligence methods. Commonly, hybrid 
systems which incorporate a strategically balanced mixture of 
various computational intelligence methods to counteract one 
another’s disadvantages, and the design and implementation 
can also be seen as one of computational intelligence 
objectives. Modeling, optimization, monitoring and 
regulation of bioprocesses can be categorized as a division of 
Chemical Engineering, and recently terms bio-processing. 
These processes, of course, comprise upstream processes such 
as feedstock preparation, and downstream processes such as 
bio-product separation and purification, along with the center 
of the method: singular and multiple bio-reactors. This could 
be enzyme-based fermenters or micro-organism or cell 
culture reactors. In industry, bioreactors are typically called 
fermenters, even though the culturing sometimes proceeds 

aerobically where fermentation can be considered an 
unintended stream. This scientific classification was possibly 
inherited from the manufacture of alcoholic drinks, one of the 
first bioprocesses in history. The broad variety of 
bio-processing operations makes it impossible to explore all 
possibilities for CI techniques to be applied. 

B. Many studies have examined either one or multiple 
computational intelligence methods in controlling 
bioprocess’ in general or other specific areas (Alford, 2006; 
Harms et al., 2002; Komives and Parker, 2003; Glassey et al., 
1997; Lee et al., 1999). Others, however, only mention them 
very briefly, such as (Clementschitsch and Bayer, 2006; 
Schugerl, 2001). An elaborate study involving a two-year 
investigation into the employment of neural networks for the 
control of processes was reported by Lennox et al. (2001). 
These authors provide a detailed description of the 
conclusions drawn from the study, while also concentrating 
on data problems together with neural network issues. 
Pertinent problems that should be addressed when employing 
neural networks in bioprocesses, as suggested by Karim et al. 
(1997), are the appropriate scaling of data, the choice of a 
suitable network structure – taking into account the 
appropriate choice of process parameters, and the role of the 
algorithm. Previous issues and different neural networks have 
been studied in their review in relation to different 
microbiological systems. The computation of the optimum 
rate of the substrate feed is of vital importance in fed-batch 
fermentation; the approximation process can be described as a 
unique control problem (Chaudhuri and Modak, 1998) and 
owing to this, a complicated job of optimization is to be 
unraveled. Additional feed regulation is a very complex 
process since it is quite difficult to tune and has a profound 
effect on the desired stream; under-feeding may cause 
microorganism starvation and over-feeding may result in the 
formation of undesired products and may interfere with the 
formation of the product. As a result, the development of an 
appropriate food strategy is crucial to the successful 
fermentation of fed-batch products. 

The influential paper based on the algorithms for search 
optimization of biotech processes by Simutis & Lübbert 
(1997), highlights the significance of search algorithms 
(compared to the conventional approach linked to the 
Pontryagin Maximum Principle). This shows that the 
employment of arbitrary searches methods, which are much 
more rudimentary, easier to comprehend and enforce, can 
essentially lead to the use of random search procedures. Three 
randomized search procedures were employed in the analysis, 
viz. chemotaxis algorithm, simulated annealing and 
evolutionary programming. Highlights found in this study are 
recommendations to new investigators that "the evolutionary 
ANN algorithm with sigmoid-based functions should be used 
to evaluate the optimized control profile of complicated 
processes." Explaining methods to enhance the efficiency of 
process optimization and control models, it was concluded by 
Simutis et al. (1997) that "the efficiency of models can be 
improved." This proved to be better than using either of these 
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methods on a stand-alone basis. The employment of hybrid 
process designs was also reinforced by the thoughts and 
deliberations by Galvanaukas et al. (2004). 

4. FUTURE PROSPECTS OF COMPUTATIONAL 
MODELING IN BIOFUEL PRODUCTION 

The use of biomass as a substrate in biofuel production has 
sky-rocketed in recent times owing to the contribution 
towards sustainable growth in a circular economy. Process 
optimization of biomass-based processes to boost the yield 
and productivity of the bio-fuels required is crucial to the 
lucrative economic outlook of bioprocesses. Bioprocess 
design and optimization from a modeling stand point has 
shown to be a capable method for this purpose, in conjunction 
with additional tools such as genetic engineering and 
bioprocess monitoring, to promote methodical design and 
optimization studies with the objective of swiftly enhancing 
the productivity of the feedstock process for the development 
of bio-fuels. Consolidative cell and biochemical kinetic 
modeling may aid in the creation of fermentation techniques 
or in the identification of genetic modification contenders for 
improved bioprocess efficiency from lignocellulose to adhere 
to the technological and economic demands. Nevertheless, 
models that have been developed recently do not provide a 
monitoring and signaling system or cell stress reaction 
mechanism when cultivated in biomass supernatant, which 
also plays a pivotal role in computing fermentation 
performance. Addition of high-throughput omics data to 
explain cell control and genome kinetics is a likely imminent 
trend to continually enhance the precision of the consolidative 
modeling system for biomass-based design, optimization and 
scale up. 
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