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 
ABSTRACT 
 
Type Ia Supernovae (SNe Ia) form a distinct class of objects 
to serve as standard candle for cosmological measurements. 
However, recently it has been found that the all the SNe Ia are 
not uniform and there could be sub-classes within the SNe Ia 
category. We investigate the possibility of sub-categorization 
of SNe Ia using Density Based Clustering Algorithm and 
observed the dependence of SN brightness on morphology of 
host galaxy. Our analysis, based on 40 SNe Ia, shows the 
presence of different subgroups within the SNe Ia class. 
 
Key words: supernova, clustering, morphology, luminosity  
 
1. INTRODUCTION 
 
Explosion of a star is considered as gigantic event of this 
universe. This explosion when on its peak, outshine the 
brightness of whole galaxy. These explosions are termed as 
Supernovae (SNe) explosions. A star, during its lifetime 
builds number of elements mentioned in periodic table due to 
nuclear fusion. These elements are released in space during 
Supernova explosions. Thus, SNe are the source of life in this 
universe creating solar system, galaxies from the matter 
expelled into space in the form of particles into clouds of gas 
and dust. 
 
Supernovae (SNe) explosion are classified as thermonuclear 
and core collapse depending upon type of explosion. 
Thermonuclear explosion results into Type Ia Supernovae 
whereas core collapse of a big star results into Type II, Type 
Ib and Type Ic Supernovae. All stars irrespective of their 
mass, follows same process of burning at initial stage where 
hydrogen is converted into helium. When hydrogen in the 
core gets exhausted, nuclear fusions stops, and core starts 
contracting. Due to the contraction, temperature of the core 
rise and it results in fusion of helium into carbon. When the 
helium also gets consumed, core again starts contracting. Next 
level is fusion of carbon but in low mass star, fusion process 
stops, resulting into remnant of degenerate carbon-oxygen 
core referred as white dwarf. 
Type Ia Supernovae (SNe Ia) are ultimate explosion of white 
dwarf that accretes mass from its companion star in binary  

 
 

 
 
system. After accreting when the mass of white dwarf exceeds 
over the Chandrasehkar limit of 1.4 solar masses, it results 
into Supernova Type Ia explosion. SNe Ia are considered as 
distance indicators due to their standardized luminosity. The 
inter-relation between standardized luminosity and 
light-curve serve a key role to understand the features of SNe 
Ia. 
 
To determine classes within spatial data related to 
Supernovae, some competent algorithm was required. Density 
based spatial clustering of applications with noise (DBSCAN) 
has been used for the purpose as it is an unsupervised method 
with least dependency on domain knowledge. Moreover, with 
its unique feature DBSCAN can find outliers in the data also. 
 
2. DATA SET 
 
The data used in our analysis has been collated from various 
sources [1, 2, 4]. The final data set is presented in table 1. It 
contains 40 type Ia SNe along with their tag in column 1. The 
photometric information, the b-band absolute magnitude (MB) 
and the decline rate (∆m15) are presented in column 2 and 3 
respectively. Information of the host galaxy, the name, 
morphology type and the corresponding numerical codes (T) 
are available in column 4, 5 and 6 respectively. 
 
2. METHODOLOGY: DENSITY BASED CLUSTERING 

 
To determine the presence of groups in the data one needs to 
apply clustering algorithms [8, 9]. Density based spatial 
clustering of applications with noise (DBSCAN) is a widely 
used powerful clustering technique [6]. It is a density based 
non-parametric clustering algorithm which has several 
advantages over other clustering methods such as K-Means. 
Given a set of points in some space it can group the tightly 
packed points together by calculating the distance between the 
points. 
Usually the Euclidean distance is considered, however, some 
other means of distance calculation such as Manhattan 
distance can also be used [7]. A brief account of the technical 
details of DBSCAN is given in section 3.1. 
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    Table 1: Table of 40 Supernovae 

 
 
 
 
 
 
 

SN Name ∆m15 MB Galaxy Morphology Type T 

SN1992A 1.47 -18.81 NGC1380 S0 -1.9 

SN1989B 1.34 -18.87 NGC3627 SBb 3 

SN2003kf 1.01 -19.37 M-02-16-02 Sb? 3 

SN1996X 1.25 -19.24 NGC5061 E0 -5 

SN1999ee 0.94 -19.46 IC5179 Sbc 4 

SN1990N 1.08 -19.23 NGC4639 SBbc 3.8 

SN1994D 1.32 -19.06 NGC4526 S0 -2 

SN2003du 1.06 -18.93 UGC 9391 SBdm 8 

SN2001el 1.15 -18.71 NGC1448 Sc 5.9 

SN1997br 1.04 -19.62 E576-G40 SBd: pec 7 

SN1999cw 0.94 -19.24 M-01-02-01 SBab pec: 1.5 

SN1991T 0.95 -19.62 NGC4527 SBbc 3.8 

SN1998bu 1.04 -19.12 NGC3368 Sab 2 

SN1983G 1.37 -18.62 NGC4753 S0 -2.2 

SN2002bo 1.17 -19.42 NGC3190 Sa pec 1 

SN2002er 1.33 -19.45 UGC10743 Sa? 1 

SN1984A 1.21 -19.46 NGC4419 SBa 1 

SN1989A 1.06 -19.21 NGC3687 SBbc 4.1 

SN2002dj 1.12 -19.05 NGC5018 E3: -5 

SN1981B 1.11 -19.21 NGC4536 SBbc 4.5 

SN1999by 1.87 -16.64 NGC2841 Sb 3 

SN1991bg 1.93 -16.81 NGC4374 E -4.7 

SN1997cn 1.86 -16.95 NGC5490 E -5 

SN1993H 1.70 -18.20 E445-G66 SBab 1.9 

SN1986G 1.78 -17.48 NGC5128 S0 -2.2 

SN1990O 0.96 -19.40 M+03-44-03 SBa 1 

SN1990T 1.15 -19.17 PGC0063925 S0 -2 

SN1991S 1.04 -19.24 UGC 5691 Sab 1.8 

SN1991U 1.06 -19.49 IC4232 Sbc 3.8 

SN1991ag 0.87 -19.40 IC4919 SBd 7.9 

SN1992K 1.93 -17.72 E269-G57 SBab 1.9 

SN1992P 0.87 -19.34 IC3690 Sbc 4 

SN1992al 1.11 -19.47 E234-G69 SBc: 5.1 

SN1992bc 0.87 -19.64 E300-G09 Sc 5 

SN1992bk 1.57 -19.03 E156-G08 E -5 

SN1992bl 1.51 -19.13 E291-G11 SBa 1 

SN1992bo 1.69 -18.76 E352-G57 S0/a -1.5 

SN1993ah 1.30 -19.28 E471-G27 S0 -2 

SN1937C 0.87 -19.56 IC4182 Sm 8.9 

SN1972E 0.87 -19.69 NGC5253 Sd 8 
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3.1 The DBSCAN Algorithm 

The density-based clustering works on a set of points in given 
space, (defined by the data table) partition into several dense 
regions called clusters. Different clusters are separated by 
sparse regions. The algorithm requires mainly two 
parameters; one of them is the minimum number of points 
(minPts) required to form a cluster. The second parameter is 
the distance used to explore the neighbourhood of a point and 
is denoted by ε. 

 
All the points in the given space are visited in a specific 
manner. We start with an arbitrary point and explore its 
ε-neighbourhood. If the point has enough number of other 
points (minPts) in the ε-neighbourhood then that point is 
termed as core point, and a cluster starts forming, otherwise 
the point is termed as noise. All points that are within the 
boundary of the ε-neighbourhood of that core point are termed 
as boundary point, and these boundary points are also 
included within the same cluster along with all other core 
points with in ε-neighbourhood. Core points and boundary 
points required to include in the cluster are determined using 
the concept of direct density reachable and density reachable 
points. The above process is repeated until all the density 
connected points are found and included in one cluster. It 
should be noted that a point once labelled as noise while 
forming one cluster may be found in another cluster later so 
every un-visited point needs to be dealt with above mentioned 
process. 
 
To determine the ε-neighbourhood of a point one needs to 
calculate the distance between the core point and its 
neighbours. Usually the Euclidean distance is taken into 
consideration, calculated as follows in 3-dimensional 
Cartesian space: 

 dE =√x2 + y2 + z2 . (1) 
In general, the space and its dimensions are determined by the 
data columns. Dimensions are equal to the number of columns 
used from the data sample and it also represents the required 
parameters. It is not necessary to use the Euclidean distance 
formula, other distance functions like Manhattan function can 
also be used. We have used Euclidean distance to find 
distance in our analysis. 
 
One must be careful while choosing the numerical value of the 
parameters ε and the minPts. For instance, if ε is too small and 
minPts is large, the ε-neighbourhood may not have sufficient 
points to fulfil the minPts criteria for a cluster. In such a 
situation most of the points may be labelled as noise. On the 
other hand, if ε is too large then most of data points may fall in 
the same cluster. Both the situations do not represent the 
actual subgroups in the data. We have taken minPts ≥ 3 in our 
analysis. A technique to test the validity of DBSCAN 
clustering discussed below could be helpful in deciding the 
value of ε. 

 
3.2 Silhouette Score and Validity of Clustering 
After the clusters have been formed one should check the 
consistency of these clusters. Silhouette score [5] provides a 

way to test the consistency of the clusters in the data. This 
method can be applied on any method such as K-means or 
DBSCAN. It compares the similarity of a point to its own 
cluster known as cohesion to its dissimilarity with the nearest 
cluster known as separation. The cohesion for an object i in 
each cluster X is calculated as 

      (2) 

where N(X) is the number of objects in the cluster X and d(i,j) 
is the distance to jth object of cluster X. The separation of ith 

point to its nearest cluster Y is calculated as 

  .     (3) 

Now the Silhouette score is calculated as 

        (4) 

A small value of ai and a large value of bi shows that cluster X 
is cohesive and is well separated from other clusters. A 
positive Silhouette score is expected in this case. On the other 
hand, bi > ai leads to negative Si and indicates that the clusters 
are not well separated. A small deviation in  will 
change the configuration of the clusters drastically in this 
case. Since, the score in Eq. 4 is normalised, its value lies 
between −1 and +1; and a value close to +1 is favoured. By 
calculating the Silhouette score for various values of ε one can 
determine a rational value of the parameter ε for which 
Silhouette score is maximum. This value can now be used in 
the DBSCAN algorithm to look for subgroups in the data. 

         

 

Figure 1: Graph shows correlation between ∆m15 and MB of 40 SNe 
Ia with best fit line. 
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    Figure 2: Graph shows correlation between T and ∆m15.                                    

 

 
Figure 3: Graphs between Silhouette-Score and Epsilon for                                              

DBSCAN algorithm on T and MB. 

 
Figure 4: Graphs between Silhouette-Score and Epsilon for                                  

DBSCAN algorithm on T and ∆m15. 
 

Table 2: Correlation among various columns of data sample. 
 

Columns Correlation Coefficient 

∆m15 - MB 0.86 

T - ∆m15 -0.59 

 
 
Table 3: Correlations within clusters when DBSCAN is  
                          implemented on T and MB. 

 
Cluster no. Data points ∆m15,MB T,MB 

1 7 0.802 -0.343 

2 12 0.949 -0.514 

3 5 0.897 0.642 

4 4 0.934 -0.317 

5 10 0.837 0.664 

 
 
Table 4:  Correlations within clusters when DBSCAN is  
                      implemented on T and ∆m15.  

 
Cluster 
no. 

Data 
points 

∆m15,MB T,MB T,∆m15 

1         28 0.842 -0.219 -0.447 

2 12 0.865 -0.288 -0.155 
 

4.  RESULTS 
 
First, we determine the correlation among various columns of 
the data set presented in table 1. The results have been shown 
with best fit line in Fig 1 and table 2. As expected, Fig 1 and 
1st row of table 2 show a strong correlation between the 
absolute magnitude MB and the decline rate ∆m15. This 
correlation indicates that bright SNe decline slowly and forms 
the basis of calibration of SNe Ia as standard candles for 
cosmological applications [3]. A slightly poor correlation is 
found between T and ∆m15, as seen in Fig 2 and the second 
row of table 2. Since, ∆m15 is correlated with MB, it shows that 
late type galaxies (higher values of T) favor brighter SNe Ia. 
 
Before implementing the DBSCAN algorithm on the data set, 
we need to obtain an appropriate value of ε. A graph between 
Silhouette-Score and ε has been plotted in Figure 3 and Figure 
4. As discussed in section 3.2, the value of ε with highest 
silhouette score is favored. DBSCAN algorithm is 
implemented on sets of two parameters using best epsilon 
value obtained from Silhouette Score Coefficient technique.  
 
Now we implement the DBSCAN algorithm on the data 
sample of 40 Supernovae given in table 1. The value of ε as 
shown in Fig 3 and Fig. 4 corresponds to the highest 
Silhouette score. When DBSCAN is implemented on the 
parameters T vs. MB, it results five clusters, as shown in Fig 5. 
As referred in table 3, a strong correlation exists between MB 

and ∆m15 within each cluster. Apart from this, a relatively 
poor correlation is also found between T vs. MB within each 
cluster. 
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Figure 5:  Graph between T and MB with five clusters. 

 
Figure 6:  Graph between T and ∆m15 with two clusters. 

DBSCAN is also implemented on the parameters T vs. ∆m15. 
Now two clusters have been identified as shown in Fig 6. 
Table 4 specify a strong correlation between MB and ∆m15 

within each cluster and relatively poor correlation between T 
vs. ∆m15  

 
4. CONCLUSION 

 
We have implemented the Density based scan algorithm on 
the SNe Ia data presented in table 1. Silhouette score is used 
for confirming the validity of the algorithm. For this work, we 
conclude that although SNe Ia form a distinct class of objects, 
there is a scope of sub-classes within this category. Based on 
the parameters selected for the analysis there exist some 
clusters or groups of SNe Ia. In some of these groups the 
correlations between the usual parameters such as galaxy 
morphology (T) and the absolute magnitude (MB) of the SN 
are quite different from other groups for SNe Ia category. For 
instance, the overall correlation between T and MB of SNe Ia is 
negative, which indicates that higher T (late type galaxies) 
favor lower ∆m15 (fainter SNe). However, two clusters in table 
3 indicates that SNe of these groups obey a reverse trend. A 
detailed analysis with a bigger set of SNe Ia and larger set of 
parameters may indicate some surprising results. 
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