

Shehab Abdulhabib Alzaeemi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3366 – 3375

3376

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse137932020.pdf

https://doi.org/10.30534/ijatcse/2020/137932020

ABSTRACT

This paper proposed an enhanced data handling technique by
introducing multiple layers of security in securing sensitive
text data, which is realized by using both cryptography and
steganography techniques. The proposed method is
cost-effective as the data compression technique is observed.
This study uses Polybius cipher to transform plaintext
containing vital information into an unintelligible format
called ciphertext. The ciphertext is compressed using the
Huffman coding algorithm, where output is embedded in an
image file using the Least Significant Bit (LSB) algorithm for
the steganography technique. Simulation results show that
the proposed methodology produced stego images with better
performance as to file size, Peak Signal to Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and error
metrics as against the stego image generated using the lone
LSB steganography technique.

Key words: Cryptography, Huffman code, least significant
bit, Polybius square, steganography

1. INTRODUCTION

In today’s digital age, the concern for information security
has become more significant as the exchange of essential
information through computer and internet media has gained
the attention and interest of attackers. The rapid increase of
attacks on the electronic exchange of information has drawn
concern that calls for a more robust method of data transfer
and communication security [1].

The regarded solution for the abovementioned concern has
paved the way for the development of cryptography and
steganography [2]. Cryptography is the science and
mathematics of hiding and obscuring information into an
unintelligible format as protection to adversaries.
Cryptography is categorized into two: symmetric and
asymmetric key cryptography [3], [4]. The former introduces

a single key concept that is instrumental for the cipher
process using different cipher techniques while the latter uses
a separate key for both encryption and decryption processes.
The graphical representation of cryptographic types and their
key distribution concepts are shown in Figures 1-3.

Figure 1: Categories of cryptography

Figure 2: Symmetric key cryptography concept

Figure 3: Asymmetric key cryptography concept

Steganography, on the other hand, is a technique of covered
writing that embeds secret files to other non-secret files. The
file that contains the secret data is called carriers. Carriers of
secret data can be text, image, audio, and video files.
Modified carrier, despite having embedded files on it, shows
no trace of alteration and looks like the original carrier [5],
[6]. Steganography is divided into different types. Some of
the following techniques include (1) text steganography,

An Improved Image Steganography through Least

Significant Bit Embedding Technique with Data Encryption
and Compression Using Polybius Cipher and

Huffman Coding Algorithm

Jan Carlo T. Arroyo1, Charisse P. Barbosa2, Meljohn V. Aborde3, Fe B. Yara4, Allemar Jhone P. Delima5
1-5College of Computing Education, University of Mindanao, Davao City, Davao del Sur, Philippines

5College of Engineering, Technology and Management, Cebu Technological University-Barili Campus,
Cebu, Philippines

jancarlo_arroyo@umindanao.edu.ph1, charisbarbosa@umindanao.edu.ph2, mjaborde@umindanao.edu.ph3,
fe_yara@umindanao.edu.ph4, allemardelima@umindanao.edu.ph5

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3376 – 3383

3377

where information is hidden in the text file; (2) audio
steganography, where secret information is attached to audio
files; (3) video steganography, where secret information is
hidden in digital video format; and (4) image steganography,
where secret information is hidden behind pixels of colored
or gray images [7], [8].

However, cryptography or steganography is not capable of
protecting data alone. With the combination of both
technologies in one system, enhanced data security and
transmission processes are ensured [9], [5], thus, this study.
To reduce storage cost and transmission time, a technique
called data compression is done. The remaining sections of
this paper are organized as follows: Section 2 introduces the
existing algorithms to be used in this study. The proposed
methodology is outlined in Section 3. Section 4 presents the
results and discussion of the proposed work, and Section 5
shows the conclusion.

2. RELATED LITERATURE

2.1 Polybius Cipher

The Polybius Cipher uses a 5x5 square matrix wherein
characters are placed in alphabetical order from left to right,
then top to bottom [10]–[13], as shown in Table 1. Cells in
the matrix are identified corresponding to their relative
indices in the grid represented by the combination of the row
and column number.

Table 1: Traditional Polybius square matrix
 1 2 3 4 5

1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Encryption and decryption using the Polybius cipher are
relatively easy since no key is used for this technique. In
encrypting a plaintext, characters are matched with the matrix
to retrieve their equivalent bigrams. Bigrams represent the
character coordinates in the matrix based on the intersection
of rows and columns. For instance, the plaintext
COMPUTING is encrypted as 133432354544243322,
wherein C is found in row 1 column 3; thus, C is represented
as the bigram 13. The ciphertext is presented in Table 2.

Table 2: Encryption using traditional Polybius square
Plaintext C O M P U T I N G
Position 0 1 2 3 4 5 6 7 8
Ciphertext 13 34 32 35 45 44 24 33 22

The decryption process is done by comparing each bigram to
the grid to retrieve its equivalent plaintext value. For
example, the ciphertext 133432354544243322 is translated
into plaintext COMPUTING. The results of the decryption
process are shown in Table 3.

Table 3: Decryption using traditional Polybius square

Ciphertext 13 34 32 35 45 44 24 33 22
Position 0 1 2 3 4 5 6 7 8
Plaintext C O M P U T I N G

2.2 Huffman Coding

The Huffman coding, developed by David A. Huffman, is an
optimal prefix code used for lossless data compression [14],
[15]. The algorithm uses variable-length codewords in
substitution, based on a table derived from the occurrence
frequency of characters from the data. The most frequent
symbols are represented with fewer bits. For instance, a
100,000-character data file containing the letters A to F is
encoded. The frequency count and equivalent codewords are
presented in Table 4.

Table 4: Frequency and codewords
 A B C D E F
Frequency (in
thousands) 49 17 14 10 6 4

Fixed-length
codeword 000 001 010 011 100 101

Variable-length
codeword 0 100 101 110 1110 1111

If a 3-bit fixed-length codeword representation is used, the
file can be encoded in 300,000 bits. However, using a
variable-length codeword allows the message to be encoded
in only 212,000 bits, wherein (49 * 1 + 17 * 3 + 14 * 3 + 10 *
3 + 6 * 4 + 4 * 4) * 1,000 = 212,000 bits. This optimal method
saves approximately 29% of space.

Figure 4: Huffman binary tree

The Huffman coding algorithm uses a binary tree to generate
a codeword for a specific symbol based on the character
frequency count. First, create a leaf node for each symbol and
add it to the queue. Next, create a new internal node with
these two nodes as children and with a frequency equal to the
sum of the two nodes' frequency. After, add the new node to
the queue. Repeat the process while there is are still nodes in
the queue. The remaining node is the root node, and the
Huffman binary tree is complete. With the given example, the
tree and the generated code words are shown in Figure 4.

2.3 Least Significant Bit in Image Steganography

LSB in steganography is a renowned technique known for its
simplicity in embedding sensitive data in other objects by
replacing some of the least significant bits of a cover file
[16]–[20]. Like other steganographic algorithms, LSB used

Shehab Abdulhabib Alzaeemi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3366 – 3375

3378

in image steganography performs in such a way that minor
modifications made to pictures are not noticeable using the
naked eye.

LSB works by altering each pixel of the image through its
RGB color space. Since every RGB component is composed
8 bits of memory, LSB manipulates the last bit of each
component to embed secret data. For example, a 9-bit binary
message 101001101 is encoded into a group of 3 neighboring
pixels, as shown in Figure 5.

Figure 5: Embedding message to pixels

The bits from the message replace the least significant bits of
each RGB component. If the LSB is equal to the message bit,
it is skipped; otherwise, it is substituted. Based on the
example, 9-bits of data was embedded in the sequence at the
expense of masking 4 of bits (shown in red) as presented in
Figure 6.

Figure 6: Embedded message using LSB

3. PROPOSED METHODOLOGY

The proposed method follows the encrypt-compress-embed
technique. It involves the use of the Polybius cipher for
encryption and the Huffman Coding algorithm for text
compression. After, the result is embedded in an image using
the LSB method. The flowchart of the proposed process is
presented in Figure 7.

To perform the proposed method, the following steps are
executed as follows:

a. Identify a plaintext, cover image, and key.
b. Using the key, generate a Polybius square.
c. Encrypt the plaintext using Polybius cipher and the

generated matrix
d. Compress ciphertext using Huffman Coding
e. Embed the binary sequence result to the image by

traversing through each pixel and replacing the LSB.

In decoding a hidden message using the proposed method,
the steps are presented in Figure 8 and detailed as follows:

a. Identify the image and key.
b. Using the LSB method, retrieve the embedded binary

sequence.
e. Decompress the sequence using Huffman coding
f. Generate the Polybius square using the key input

h. Decrypt ciphertext using Polybius cipher and the
generated matrix.

Figure 7: Encoding a message using the proposed method

Figure 8: Decoding a message using the proposed method

The proposed method was implemented in Python. The
sample Lena, Peppers, and Plane images shown in Figure 9,
hereto referred as dataset 1, dataset 2, and dataset 3,
respectively, downloaded from [21], [22] were utilized. The
specifications of each dataset are presented in Table 5. The
sizes of the messages embedded are 16kb, 32kb, and 48kb.
The key used to generate the Polybius is CIPHER. The
simulation was performed in an i7-7000HQ 2.8 GHz 16GB
RAM 4GBVRAM Windows 10 laptop computer. The Peak
Signal to Noise Ratio (PSNR), Structural Similarity Index
(SSIM), and compression rate tests were executed to validate
the feasibility of the proposed method.

Table 5: Dataset specifications
 Dimension File type Color mode File Size
Dataset 1 512x512 PNG Grayscale 290KB
Dataset 2 512x512 PNG Grayscale 159KB
Dataset 3 512x512 PNG Grayscale 240KB

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3376 – 3383

3379

Figure 9: Testing dataset

The PSNR is used to assess the quality of an image by
comparing the amount of distortion between the original and
the altered images [23], [24]. If the value of the PSNR is high,
it means that there are lesser noise and good image
restoration quality. A PSNR of 100 denotes no significant
noise detected between the two images. The PSNR is defined
by a mean squared error (MSE), which finds the magnitude of
error between the images. The equation used to find PSNR
value is expressed as:

(1)

where MAXC refers to the maximum possible value of the
pixel in the image and the MSE is expressed as:

(2)

where, m and n are the number of rows and columns
respectively, C(a,b), and S(a,b) are the pixels located at index
a and b given cover image C and stego image S.

Another measure to test the viability of the proposed method
is the use of the Structural Similarity Index (SSIM). SSIM is
a metric that measures perceived changes or degradation in
the quality of images caused by modifications [25], [26].
Basically, this measure identifies how similar one image is to
another. The SSIM is calculated as:

(3)

where is the average of x, is the average of y, is the
variance of x, is the variance of y, is the covariance of
x and y, = = are two variables to stabilize the
division with the weak denominator, L is the dynamic range
of the pixel-values, by default. The
closer the value of SSIM to 1, the more identical the two
images are.

4. RESULTS AND DISCUSSION

The simulation results using both LSB image steganography
technique and the proposed method applied on Lena, Pepper,
and Plane datasets are shown in this section. The histogram,
PSNR, SSIM, MSE, and file size analyses for the used dataset
are also presented.

4.1 Image Steganography Using Dataset 1

Figures 10-12 show the histogram of the original and stego
images embedded with 16kb, 32kb, and 48kb secret
messages generated using the lone LSB and the proposed
method. In plain view, results show that there is no
significant difference between the original image and the
stego image. However, it is evident in the histogram results
shown in Tables 6-8 that significant changes were made to
the images wherein the lone LSB method had more noise
since it obtained lesser PSNR value as compared to the
proposed method.

Figure 10: Dataset 1 with 16kb secret message

Figure 11: Dataset 1 with 32kb secret message

By embedding a 16kb message on the image, the lone LSB
method produced a PSNR of 58.62 decibels (dB), which is
10% lower than the 61.27 dB generated using the proposed
method. This goes to show that the lone LSB image
steganography has more noise than the proposed method.
Further, the SSIM value of the proposed method is closer to 1
as against the lone LSB steganography technique, which
means that the generated stego image is almost identical to
the original image despite being embedded with a secret file.
Extent on the size of the files, the proposed method generated
a stego image with a smaller file size as against the method
that uses LSB alone. Both methods generated stego images
with 300,005 bytes and 314,615 bytes, respectively. Further,
the MSE statistical tool used revealed a 45% difference with
0.0485 and 0.089 error rates for the proposed method and the
lone LSB, respectively. The summary of results is presented
in Table 6.

Shehab Abdulhabib Alzaeemi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3366 – 3375

3380

Table 6: Dataset 1 with 16kb message indexed result

 LSB Proposed Method Variance
PSNR 58.62 61.27 +10.15%
MSE 0.089 0.0485 -45.50%
File Size 314,615 300,005 -4.64%
SSIM 0.99954 0.99970 +0.16%

When a 32kb message is encoded in dataset 1, the stego
image generated using LSB, and the proposed method shows
no visible trace of modifications when inspected by the naked
eye. However, significant changes were made to the images
wherein the lone LSB method gained more noise since it
obtained a PSNR value of 55.52 dB as compared to the
proposed method with 57.98 dB. As for the file sizes, the
proposed method generated a stego image with 321,444
bytes, which is 8.69% lower as against the lone LSB method
with 352,049 bytes stego file size. The SSIM value of the
proposed method is also closer to 1, indicating similarity to
the original image. Based on the statistical error test, the lone
LSB method obtained an error rate that is 43.40% higher than
the proposed methodology, as evident in Table 7.

Table 7: Dataset 1 with 32kb message indexed result
 LSB Proposed Method Variance

PSNR 55.52 57.98 +4.43%
MSE 0.182 0.103 -43.40%
File Size 352,049 321,444 -8.69%
SSIM 0.99920 0.99948 +0.02%

After embedding a 48kb message in dataset 1, the proposed
method still shows no visible trace of modifications that is
perceivable by the naked eye. However, extent on the noise
of the two stego images, the stego image generated by the
lone LSB method shows higher noise as against the proposed
method. Further, the proposed method generated an output
file with lesser file size having 346,227 bytes as against the
389,784 bytes stego image of the lone LSB. Furthermore, the
MSE and SSIM value of the stego image generated using the
proposed methodology show better results against the LSB
method alone. The summary of results is presented in Table
8.

Figure 12: Dataset 1 with 48kb secret message

Table 8: Dataset 1 with 48kb message indexed result
 LSB Proposed Method Variance

PSNR 55.52 56.11 +1.06%
MSE 0.275 0.159 -42.18%
File Size 389,787 346,277 -11.16%
SSIM 0.99889 0.99927 +0.03%

These findings show that the proposed method gains higher
PSNR and SSIM values, lower error percentages, and smaller
file sizes in all of the test cases, which therefore denotes
higher quality images with lesser noise and a cost-effective
method.

4.2 Image Steganography Using Dataset 2

The histogram, PSNR, SSIM, MSE, and file size analyses for
the Peppers image dataset embedded with 16kb, 32kb, and
48kb secret messages encoded using LSB, and the proposed
method are presented in Figures 13-15 and Table 9. The
histogram of both stego images generated using LSB and the
proposed method shows no visible trace of modifications
when compared to the carrier. However, it is evident in the
PSNR and SSIM values, and stego image file sizes that the
proposed method performed better than the LSB alone.
Further, the proposed method has produced lower MSE
values as compared to the lone LSB method.

Figure 13: Dataset 2 with 16kb secret message

Figure 14: Dataset 2 with 32kb secret message

With a 16kb secret message embedded to the carrier, a stego
image with a file size of 303,958 bytes was generated using
the proposed method, which is 4.57% lower than the 318,531
bytes stego image output of the lone LSB. Further, the lone
LSB image steganography technique produces a stego image
with 58.42 dB PSNR, while the proposed method produces
an output that has a PSNR value that is 3.95% higher. As for
the SSIM value, the proposed method produced an output
that is very close to the original image as it obtained an SSIM
value of 0.99980 as against the 0.99963 of the lone LSB
method.

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3376 – 3383

3381

When embedded with a 32kb secret message, the lone LSB
method produced a stego image with 55.40 dB PSNR, while
the proposed method has a stego image that has lesser noise
with PSNR value of 55.70 dB which is 4.15% higher than the
former.

By adding a 48kb secret message on the dataset 2, the lone
LSB method produced an SSIM value of 0.99899. However,
the SSIM value of the stego image generated by the proposed
method is much closer to 1 with a value of 0.99939, which
denotes insignificant change compared to the carrier. The
MSE values of stego images generated by the lone LSB
image steganography and the proposed method when
embedded with 32kb and 48kb secret messages show
minimal error rates with 41.17% variance for the former and
40.71% for the latter. The index comparison of the stego
images with their corresponding metric values is shown in
Table 9.

Figure 15: Dataset 2 with 48kb secret message

Table 9: Indexed simulation results using dataset 2
 LSB Proposed Method Variance

Dataset 2 embedded with 16kb secret message
PSNR 58.42 60.73 +3.95%
MSE 0.093 0.054 -41.93%
File Size 318,531 303,958 -4.57%
SSIM 0.99963 0.99980 +0.01%

Dataset 2 embedded with 32kb secret message
PSNR 55.40 57.70 +4.15%
MSE 0.187 0.110 -41.17%
File Size 353,934 325,437 -8.05%
SSIM 0.99932 0.99957 +0.02%

Dataset 2 embedded with 48kb secret message
PSNR 53.65 55.92 +4.23%
MSE 0.280 0.166 -40.71%
File Size 394,067 349,686 -11.26%
SSIM 0.99899 0.99939 +0.04%

Findings show that the proposed method gains higher PSNR
and SSIM values with lower error percentages and smaller
file sizes in all test cases where dataset 2 is embedded with
16kb, 32kb, and 48kb secret messages.

4.3 Image Steganography Using Dataset 3

Figures 16-18 show the histogram of the original and stego
images embedded with 16kb, 32kb, and 48kb secret message
generated using the proposed method and the lone LSB
image steganography. In plain view, results show that there is
no significant difference between the carrier and stego

images. However, it is evident in the histogram analysis
shown in Table 10 that significant changes were made to the
images wherein the lone LSB method had more noise since it
obtained lesser PSNR value as compared to the proposed
method.

Figure 16: Dataset 3 with 16kb secret message

With a 16kb message embedded to dataset 3, the lone LSB
method revealed a peak signal to noise ratio value of 58.41
dB. In comparison, the proposed method shows a 3.95%
variance at 60.71 dB from both stego images generated. As
for the file size, the proposed method produced a stego image
with a smaller file size against the stego image generated by
the lone LSB technique with a variance of 4.75%.

Further, the stego image with a 32kb secret message
generated by the proposed method shows a structural
similarity index value that is much closer to 1 as compared to
the SSIM value of the stego image generated using the lone
LSB method with 0.99936 and 0.99884 SSIM values,
respectively. Both stego images obtained a lower mean
square error with 0.187 and 0.110 error rates using the lone
LSB and the proposed method.

Furthermore, by embedding a 48kb secret message on the
carrier, the stego image generated by the lone LSB method
revealed a 53.62 dB peak signal to noise ratio value. The
stego image generated using the proposed method obtained a
PSNR value of 55.95 dB. This denotes that the stego image
generated by the lone LSB has more noise since it obtained
lesser PSNR value when compared to the proposed method.
The indexed comparison of the file sizes, PSNR, SSIM, and
MSE values of the stego images generated by both techniques
are shown in Table 10.

Figure 17: Dataset 3 with 32kb secret message

Shehab Abdulhabib Alzaeemi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3366 – 3375

3382

Figure 18: Dataset 3 with 48kb secret message

These findings show that the proposed method gains higher
PSNR values, lower error percentages, and smaller file sizes
in all cases, which therefore equates to higher quality images
with lesser noise and better storage.

Table 10: Indexed simulation results using dataset 3
 LSB Proposed Method Variance

Dataset 3 embedded with 16kb secret message
PSNR 58.41 60.71 +3.93%
MSE 0.093 0.055 -41.08%
File Size 276,049 262,949 -4.75%
SSIM 0.99947 0.99971 +0.02%

Dataset 3 embedded with 32kb secret message
PSNR 55.39 57.67 +4.11%
MSE 0.187 0.110 -41.17%
File Size 309,434 284,626 -8.01%
SSIM 0.99884 0.99936 +0.05

Dataset 3 embedded with 48kb secret message
PSNR 53.62 55.95 +4.34%
MSE 0.281 0.164 -41.63%
File Size 344,849 304,152 -11.80%
SSIM 0.99854 0.99898 +0.04%

5. CONCLUSION

In this paper, the combination of cryptography and
steganography for increased data security and transmission
efficiency is observed. To save storage costs, a lossless
compression technique is done. The Polybius cipher was
instrumental for the encryption and decryption of the secret
message in the form of plaintext. The ciphertext generated by
the Polybius square is compressed using the Huffman coding
algorithm. The compressed unintelligible secret message is
now embedded in an image using the least significant bit
embedding technique. The proposed method has paved the
way for a more secure data handling technique by introducing
layers of security protocols. Simulation results revealed that
the carrier, when applied with the proposed method, shows
no trace of data alteration, hence embedding of the secret
message is undetectable. Further, a reduction in file size was
achieved with the use of the compression technique as against
the image steganography using LSB alone.

REFERENCES

[1] J. V. Karthik and B. V. Reddy, “Authentication of
secret information in image steganography,” Int. J.
Latest Trends Eng. Technol., vol. 3, no. 1, pp.
97–104, 2013.

[2] D. Seth, L. Ramanathan, and A. Pandey, “Security
Enhancement: Combining Cryptography and
Steganography,” Int. J. Comput. Appl., vol. 9, no. 11,
pp. 3–6, 2010.
https://doi.org/10.5120/1433-1932

[3] S. N. Gowda, “Innovative enhancement of the Caesar
cipher algorithm for cryptography,” in International
Conference on Advances in Computing,
Communication and Automation, 2016.

[4] M. Abdalla, J. H. An, M. Bellare, and C.
Namprempre, “From identification to signatures via
the Fiat-Shamir transform: Necessary and sufficient
conditions for security and forward-security,” IEEE
Trans. Inf. Theory, vol. 54, no. 8, pp. 3631–3646,
2008.
https://doi.org/10.1109/TIT.2008.926303

[5] A. Baby and H. Krishnan, “Combined Strength of
Steganography and Cryptography- A Literature
Survey,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3,
pp. 1007–1010, 2017.

[6] A. Saini, K. Joshi, and S. Allawadhi, “A Review On
Video Steganography Techniques,” Int. J. Adv. Res.
Comput. Sci., vol. 8, no. 3, pp. 1015–1020, 2017.

[7] R. J. Mstafa and K. M. Elleithy, “Compressed and
raw video steganography techniques: a
comprehensive survey and analysis,” Multimed.
Tools Appl., vol. 76, pp. 21749–21786, 2017.

[8] S. M. Nasreen, G. Jalewal, and S. Sutradhar, “A
Study on Video Steganographic Techniques,” Int. J.
Comput. Eng. Res., vol. 5, no. 10, pp. 30–34, 2015.

[9] S. Mishra and P. Pandey, “A Review on
Steganography Techniques using Cryptography,”
Int. J. Adv. Res. Scinece Eng., vol. 4, no. Special
Issue 1, pp. 1–4, 2015.

[10] O. Reyad, “Cryptography and Data Security: An
Introduction,” 2018.

[11] D. Kahn, Codebreakers. Macmillan and Sons, 1967.
[12] J. F. Dooley, History of Cryptography and

Cryptanalysis. 2018.
https://doi.org/10.1007/978-3-319-90443-6

[13] D. Salomon, Coding for Data and Computer
Communication. Springer, 2005.

[14] D. A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proc. IRE, vol. 40,
no. 9, pp. 1098–1101, 1952.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, “Huffman codes,” in Introduction to
Algorithms, 2009, pp. 428–437.

[16] S. Goel, S. Gupta, and N. Kaushik, “Image
Steganography -- Least Significant Bit with Multiple
Progressions,” in Proceedings of the 3rd
International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2014,
2015, pp. 105–112.

[17] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and
T. Kalker, Digital Watermarking and
Steganography, Second Edi. Burlington: Morgan
Kaufmann, 2008.

[18] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,
“Techniques for data hiding,” IBM Syst. J., vol. 35,
no. 3.4, pp. 313–336, 1996.
https://doi.org/10.1147/sj.353.0313

[19] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding
optimal least-significant-bit substitution in image

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3376 – 3383

3383

hiding by dynamic programming strategy,” Pattern
Recognit., vol. 36, pp. 1583–1595, 2003.

[20] K. Curran, X. Li, and R. Clarke, “An Investigation
into the Use of the Least Significant Bit Substitution
Technique in Digital Watermarking,” Am. J. Appl.
Sci., vol. 2, no. 3, pp. 684–654, 2005.

[21] “Public-Domain Test Images for Homeworks and
Projects,” Retrieved from
https://homepages.cae.wisc.edu/~ece533/images/. .

[22] “The USC-SIPI Image Database,”
http://sipi.usc.edu/database/.

[23] K.-H. Jung and K.-Y. Yoo, “Data hiding method
using image interpolation,” Comput. Stand.
Interfaces, vol. 31, no. 2, pp. 465–470, 2009.

[24] G. Swain and S. Lenka, “Classification image
steganography techniques in spatial domain: A
study,” Int J Comput Sci Eng Tech, vol. 5, pp.
219–232, Jan. 2014.

[25] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Trans. Image
Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
https://doi.org/10.1109/TIP.2003.819861

[26] Z. Wang and A. C. Bovik, “Mean squared error:
Love it or leave it? A new look at Signal Fidelity
Measures,” IEEE Signal Process. Mag., vol. 26, no.
1, pp. 98–117, Jan. 2009.
https://doi.org/10.1109/MSP.2008.930649

