
Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1800

ABSTRACT

The technological world is surround with Internet oriented
services and its architecture is purely based on MultiServer
Platform oriented as well as the security concerns are more
important to deal with MultiServer platforms as like many
web concerns to deal with (for example: Google, FaceBook
and so on). All these concerns follow a strategy called Single-
Sign On (SSO), in which it provides efficient solutions to deal
the authentication issues based on token or key based
scenarios. In this SSO based system, users have to sign into
system by using authenticated username and password with
one time and the remaining processes will be handled by using
generated tokens. In the past system, there are several
methodologies to associate with this Single-Sign On norm, but
all are falling under certain problems and security issues.
These all issues found because of using traditional security
mechanisms such as key-hashing, data-hashing and so on. So,
that a new technique is required to resolve these issues and
provide an intelligent token generation scheme. In this paper,
an efficient cloud oriented authentication security system is
followed, which is based on Single-Sign On logic in
association with latest and powerful token generation
mechanism called Branca. Branca usually generates a token
based on details provided by user and produces a secret key
with current date/time as well as the key is tokenized by using
encryption mechanism, which is called Authenticated
Encrypted Token (AET). An Authenticated Encrypted Token
creates a path to secure the message, which cannot be visible
to the intruders/sniffers to alter or acquire it. The name Branca
is formed to attract, which is for "IETF-XChaCha20-
Poly1305-AEAD" type messages association-with additional
version number and time-stamp. The name Branca is a best
option for secure authentication mechanism by means of its
authenticated-and-encrypted Application Programming
Interface tokens. Branca features does not specify any
additional payload-formats and compare to other options, with
the help of this Branca technique user can have modern
encryption schemes and smaller token size to process their
data.

Key words: Single-Sign On, SSO, Branca, Authenticated Encrypted
Token, AET

1.INTRODUCTION

In today's internet world, each and every individual belong
multi-server environment to deal with the communication and
data preservation needs, which is handled by many internet
services and commercial internet based organizations such as
Google, Facebook, Twitter and so on. All are applying some
promising strategies to provide efficient authentication norms
to their clients and users, which is called as Single Sign-On
strategy. In industry there are several authentication schemes
available to clients with the ability sign on using one set of
username and password alleviating the need of multiple
identities and multiple passwords. Although promising, SSO
mechanisms need to be extra robust and provide utmost
authentication for their users. Authentication Key based
schemes are the most popular and well-known robust scheme
to provide efficient security mechanism over cloud
environments to make feel the clients and users on secure
level. Some of the unidirectional authentication security keys
provide strong key nature to prevent the user and data in safer
manner. Due to the unidirectional nature of the authentication
channel between the service provider and the client in SSO
and the lack of a recent authentication key, researchers have
pointed out vulnerabilities in such schemes leading to attacks
such as impersonation attacks. In this paper, we proposed an
efficient solution that effectively handles the Single Sign-On
(SSO) scheme, which is called, Branca Strategy. Branca is a
secure and easy way to use (key) token format which makes it
hard to shoot or guess by hackers or intruders in the cloud
environment. It uses IETF XChaCha20-Poly1305 AEAD
symmetric encryption to create encrypted and tamperproof
tokens/keys.

Payload itself is an arbitrary sequence of bytes and it can
use for example a JSON object, plain text string or even
binary data serialized by Message Pack or Protocol Buffers.
The main objective of the proposed system (Branca) is
enhancing the security nature of the cloud environment, to
provide the easy solution of authentication problems as well as
related issues and finally the goal is to provide all these
features with small token size. The token format of Branca is

Remya Chandran1, Dr.A.Sasi Kumar2

1Ph.D Research Scholar, Department of Information Technology, School of Computing Sciences, Vels Institute
of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India.

2Professor, Department of Information Technology, School of Computing Sciences, Vels Institute of Science,
Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India.

1nivedika@gmail.com, 2askmca@yahoo.com

Efficient Cloud Authentication Scheme using Single Sign-On Nature in Hands
with Branca Strategy

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse137922020.pdf

https://doi.org/10.30534/ijatcse/2020/137922020

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1801

usually contains a header, cipher text and an authentication tag
and in which the header consists of version, timestamp and
nonce and putting them all together we get following
structure.

Version (1B) || Timestamp (4B) || Nonce (24B) || Cipher

text (*B) || Tag (16B)

String representation of the above binary token must use

base62 encoding with the following character set.

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabc

defghijklmnopqrstuvwxy

Figure 1: Architectural View of Single-Sign On

2. SYSTEM ANALYSIS

A. Existing System Summary

Because of the needs of communication environments and
social Medias, people require to authenticate into multiple-
servers with proper credentials. An improvement of Cloud-
Computing-Nature and Internet Enabled Services such as IoT
gives boom to the Single-Sign On Methodology. This
methodology acts like a token based approach, which
generates token for processing and allow users to login into
system with username and password but in background further
processes are handled by tokens [1][4][5]. However in this
methodology the tokenization process is carried out over
network medium, so there are lots of chances to get the token
be leaked [4]. Generally Single-Sign On scheme operates
based on three-difference key parts such as: (i) Service Access
Time - user permission is essential, (ii) Service Provider and
(iii) Customers/Client - in front end [1][2][3]. In past systems
[2][3][6] authors found that the logical mistakes occurred over
the implementations of Single-Sign On methodology to work
with traditional security mechanisms such crypto keys and so
on. Anyway, most of the traditional approaches follow Merkle
Has Tree based approach for processing the crypto tokens [2].
In that [2] authors found that the user felt attacked in two
cases such as: Identity Hijacking Attack and Data Hijacking
Attack. These two different attacks causes major damage in
past systems, in that Identity Hijacking Attack purely focuses
on user's login credentials, which it attains the input from the
user and pass those authentication input to the hijacker present
into the network or outside to the network. The second
category called Data Hijacking Attack, in which the
attacker/hijacker trying to get the data from the user/client
end. But most of the time this attack is happened only for
corrupting the actual data, because usually all the data passed
via server is in the form of crypto-text. However, the attack
possibilities are high enough in the past systems. So, that a
new token generation principles are required to provide high
level of security mechanisms to the customers to make them
feel free and highly efficient in working with that.

B. Proposed System Summary

In the proposed system, our fundamental objective is to
build a powerful resolution that proficiently handles the
security of Single-Sign On methodology. In this paper, we
give uncommon consideration to the potential reasons for
certain Single-Sign On vulnerabilities. From a crypto-service
perspective, access to the Single-Sign On requires the Service-
Handlers, Customers just as Identity-Manager to convey their
'communications to open and private keys as found in most of
the plans talked about in the past implementations [6][7][8][9].
The security of the entirety condition is dependent upon these
keys. On the off chance that in any capacity whatsoever these
keys are undermined, there is the problem of taken one's
identity, secret key renouncement and their preferences. In this
proposed system, a Keyless-Signature Strategy is introduced,
that depends on using Branca logic and Authenticated

Login Request

V
e
r
i
f
i
e
d

User/Customer

Service
Provider-3

Service
Provider-2

Service
Provider-1

Signature/Identity
Provider

Credential Check

Submit
Credentials

Channel
Availability

URI Return

Access URI

Channel
Availability

C
h
e
c
k
e
d

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1802

Encrypted Token (AET) principles. In Table 1, the
documentations utilized in the paper are presented.

Figure 2: Proposed System Architectural View

Table 1: Single-Sign On Parametric-Symbols

Parametric-
Symbols Summary

IDP Middle Identity-Provider
Cl Client/Customer
SP Service Provider
SH Service Handlers

Seed’ Secret-Tokens Generated by
Service-Providers

LO Client Logout Activity
A Authenticated Token
Co Computational Cost

3. SYSTEM IMPLEMENTATION

A. Attack Model

The proposed system model considers the following attack
models while processing the authentication request with
Branca logics in the accompanying advances. The following
are the different types of attack possibilities over
communications between client and server scenario.

(i) Attacker/Hijacker tries to attain the contact details of the
particular user by means of sending a request URI to
respective user.
(ii) Attacker/Hijacker tries to act like a normal host and
monitor the networks by means of sniffing nature.
(iii) Attacker/Hijacker tries to hijack the messages via session
values stored into the respective client machine.
(iv) Attacker/Hijacker sends cross-linked messages to client
end to confuse the input and attain the authentication-
credentials.
(v) Attacker/Hijacker starts sniffing the data in network caches
and rescues that for their destructive purposes.

B. Single-Sign On Tokenless Key Generation Procedure

The Tokenless Key Generation Procedure of Single-Sign
On methodology associated with the proposed logic is
illustrated in detail over this section. Before that the key
modules of Single-Sign On logic is analyzed as follows:

(i) User-Details Provider: The User-Details Provider module
handles confirmation and gives validation declarations to the
Service-Providers and Customers. The User-Details Provider
keeps track of a Crypto-Schedule, which is pre-determined
and refreshed intermittently over particular period of time (in
the accompanying advance we will appear at the point when
the Crypto-Schedule is refreshed), not-with-standing enlisting
each sign in by the customer in a Crypto-Tree.

(ii) Customer: The primary transactions between the customer
and the User-Details Provider include the creation and passing

Branca Strategy

Utilize User Identity

User
Authentication

Single-Sign
On Scheme

Authentication
Attributes

Token
Generation

Process

Structure: Version (1B) || Timestamp (4B) || Nonce
(24B) || Cipher text (*B) || Tag (16B)

Character Set:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZa

bcdefghijklmnopqrstuvwxy

New Signature less
Token Generated

Time-Stamp
Analysis

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1803

of verification details ("username" and "password"). This
progression can be SSL/TSL made sure about and the primary
sign in and each consequent sign in are utilized as contribution
for the crypto-tree. When the foundation of the crypto-tree is
determined, the base are connected and encrypted to create the
new key for the proposed strategy.

(iii) Service Provider: Like the customer, the Service-Provider
also communicates with the User-Details Provider to check
and get verification attestations concerning a specific
customer. Traffic between the Service-Provider and Customer
is made sure about by utilizing an uni-directional crypto-tie,
which is intended to deliver a bi-directional verification
channel.

The User-Details Provider is liable for refreshing the

Crypto-Keys on particular time period based on different login
schedules. Each time the crypto-schedule is refreshed, the root
esteem is given over to the Service-Providers also, the
customer as the new key for verification and the key
demonstrations as a benchmark to approve the correspondence
between entities. Thus, rather than sharing an open key among
customers and servers as-well-as using private keys, the
protection of which is basic to the system, the key is utilized
for confirmation of realness of the conveying entities. In that
capacity, if a attacked Service-Provider or Customer attempts
to get a grip of a customer's authentication details, they would
need to have a refreshed and new form of the key.

--
Algorithm: Keyless Token-Generation
--
Input: User Details
Output: Encoded Token
Step-1: Gather the passing query from the client end.
Step-2: Apply the collected Result over JSON query logics.
Step-3: Check if the applied data length is greater than 0 or
less than 0.
Step-4: If it is greater than 0, then generate the Token Data.
Step-5: Generate the Token-ID by gather the user-id from the
input query.
Step-6: Generate the Token-Name by gather the user’s first
name from the input query.
Step-7: Generate the Token-Mail by gather the user’s mail-id
from the input query.
Step-8: Generate the Token-Address by gather the user’s
address from the input query.
Step-9: Generate the Time Stamp with the formulation of
Floor = Date /1S.
Step-10: Token Generated with the base of Step-5 to 9.
Step-11: Assign the Generated Token to JSON for further
verifications.

--

The following details will clearly explains the Pseudocode

used to generate the token in real-time manner with the help of
above mentioned algorithm logics (Keyless Token-
Generation).

--
Pseudocode: Keyless Token-Generation
--
String result="";
result="SELECT * FROM users WHERE email='" +
req.body.email + "'";
resultOut = JSON.stringify(result);
resultOut = JSON.stringify(result);
data = JSON.parse(resultOut);
console.log(data.insertId);
if (data.insertId.length != 0) {
 tokenData = {
 user_id: data.insertId,
 name: req.body.first_name,
 email: req.body.email,
 address: req.body.address,
 timestamb: Math.floor(new Date() / 1000)
 }
data = JSON.stringify(tokenData);
const token = branca.encode(data);
console.log(token);
res.header('auth_token', token).send({ code: 200, token: token
});
--

C. BRANCA: Single-Sign On Token Based Authentication
Procedure

In this section of the paper, we introduce a Single-Sign On
Token based Authentication Procedure in detail. The
following algorithm clearly explains the concept of SSO
Token based Authentication Norms.

--
Algorithm: Branca - SSO Token-Based Authentication
--
Input: User Authentication Credentials
Output: Boolean Result
Step-1: Create a Constant type Variable Ex. key.
Step-2: Take an object for Branca.
Step-3: Collect the Authentication token from the Client end.
Step-4: Decode the collected token by using Branca object.
Step-5: Ex. Branca.Decode(Collected_Object);
Step-6: Verify the decoded token and store the result into user
defined variable.
Step-7: Check the decoded token timestamp with present time.
Step-8: If the timestamp matches with the token timestamp,
then provide the positive result to user.
Step-9: Otherwise return the token expiry alert to the
respective user.
Step-10: Token based SSO Authentication process Completed.

--

The following details will clearly explain the Pseudocode
used to authenticate the user in real-time manner with the help
of above mentioned algorithm logics (Single-Sign On Token
based Authentication).

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1804

--
Pseudocode: Branca - SSO Token-Based Authentication
--
const key = "supersecretkeyyoushouldnotcommit";
const branca = require("branca")(key);
module.exports = function auth(req, res, next) {
let token = req.cookies['auth_token']
console.log(token)
 if (!token) return res.status(401).send({ message: 'You Must
Login First' });
try {
 const verified = branca.decode(token);
 console.log("token section")
 console.log(verified.toString())
 let data = verified.toString();
 decodedToken = JSON.parse(data)
 console.log(decodedToken.timestamb)
 if (decodedToken.timestamb * 1000 < Date.now()) {
 req.user = data;
 next();
 } else {
 return res.status(400).send("token expired")
 }
 } catch (err) {
 res.status(400).send({ message: "invalid token" })
 }
}
--

D. Encryption and Decryption Strategies of Branca SSO
Tokens

In this section, the process of encryption and decryption
will be clearly discussed and the proposed encryption strategy
is AES-JS, which is a standard and powerful implementation-
of-Javascript Advanced Encryption Standard cipher-
conversion algorithm and vice versa as well for de-cipher.
This cipher conversion and de-conversion algorithm supports
multiple key types such as 128, 256 and so on. In the proposed
system of SSO based Branca implementation, this AES-JS
algorithm is associated to provide more security in the results.
The following algorithm definitions clearly describe the nature
and flow of the algorithm.

--
Algorithm: AES-JA Encryption
--
Input: Plain Text
Output: Cipher-Text
Step-1: Create a Constant type Function, Ex. encryptData.
Step-2: Pass the argument Data to process.
Ex. Argument = Data.
Step-3: Initialize the variable for key definitions.
Step-4: Assign the 16 Key values as an input to the variable
mentioned in Step-3.
Step-5: Declare a byte variable to collect the plain data by
using the function called “aesjs.utils.utf8.toBytes()”.
Step-6: Assign the Key specification to the AES-JS function.

Step-7: Encrypt the converted data bytes by using
“aesCtr.encrypt()” function.
Step-8: Assign the Encrypted data to the byte variable for
precedence.
Step-9: Step-8 is achieved by using fromBytes function, such
as “aesjs.utils.hex.fromBytes()”.
Step-10: Encrypted Data Generated. Ex. encryptedHexData.

--

The following details will clearly explain the Pseudocode

used to authenticate the user in real-time manner with the help
of above mentioned algorithm logics (AES-JS Encryption).
--
Pseudocode: AES-JA Encryption
--
const encryptData = (data) => {

let key_128 = [67, 1, 2, 34, 4, 5, 6, 7, 8, 9, 10, 22, 12, 13,
14, 87];
let dataBytes = aesjs.utils.utf8.toBytes(data);
let aesCtr = new aesjs.ModeOfOperation.ctr(key_128,
new aesjs.Counter());
let encryptedDataBytes = aesCtr.encrypt(dataBytes);
let encryptedHexData
= aesjs.utils.hex.fromBytes(encryptedDataBytes);
return encryptedHexData;

}
--

The following algorithm definitions clearly describe the
nature and flow of the AES-JS decryption algorithm nature.

--
Algorithm: AES-JA Decryption
--
Input: Cipher Text
Output: Plain-Text
Step-1: Create a Constant type Function, Ex. decryptData.
Step-2: Pass the argument Encrypted_Data to process. Ex.
Argument = encryptedHexData.
Step-3: Initialize the variable for key definitions.
Step-4: Assign the 16 Key values as an input to the variable
mentioned in Step-3.
Step-5: Declare a byte variable to collect the encrypted data
bytes by using the function called “aesjs.utils.hex.toBytes”.
Step-6: Assign the Key specification to the AES-JS function.
Step-7: Decrypt the Encrypted_Data bytes by using
“aesCtr.decrypt()” function.
Step-8: Assign the decrypted data to the byte variable for
precedence.
Step-9: Step-8 is achieved by using fromBytes function, such
as “aesjs.utils.utf8.fromBytes()”.
Step-10: Decrypted Data Retained.

--

The following details will clearly explain the Pseudocode

used to authenticate the user in real-time manner with the help
of above mentioned algorithm logics (AES-JS Decryption).

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1805

--
Pseudocode: AES-JA Decryption
--
const decryptData = (encryptedHexData) => {

let key_128 = [67, 1, 2, 34, 4, 5, 6, 7, 8, 9, 10, 22, 12, 13,
14, 87];
let encryptedBytes =
aesjs.utils.hex.toBytes(encryptedHexData);
let aesCtr = new aesjs.ModeOfOperation.ctr(key_128,
new aesjs.Counter());
let decryptedBytes = aesCtr.decrypt(encryptedBytes);
let decryptedText =
aesjs.utils.utf8.fromBytes(decryptedBytes);
console.log(decryptedText);
return decryptedText;

}
--
4.RELATED-WORKS”

“In the year of 2016, the authors "M. Ge, K.-K. R. Choo, H.
Wu, and Y. Yu [10]", proposed a paper titled "Survey on key
revocation mechanisms in wireless sensor networks [10]", in
that they described such as: in modern network based or
internet enabled service scenarios, attacks and its resemblance
is really high, so that the protection mechanisms need to be
improved accordingly. Data Confidence is considered as a
core in this paper [10] as well as the authors illustrate the
status of key-revocation principles over decentralized-hybrid
environments. The concept of rekeying in wireless sensor-
networks are also analyzed over the paper [10].

In the year of 2015, the authors "D. He and D. Wang [11]",

proposed a paper titled "Robust biometrics-based
authentication scheme for multiserver environment [11]", in
that they described such as: the importance of authentication
schemes with crypto-principles. In this paper, the concept is
achieved based on two-different transaction precedences over
open-network medium, such as: (i) Authentication using
Password based approach and (ii) Authentication using RFID-
SmartCard principles. The major issues regarding the
proposed approach created two problems, which is ellaborated
by means of the following two questions, such as: (a) Did you
forget the Password ? and (b) Did you miss your Smart-Card?.
So, that the proposed approach need to be revised with some
advanced principles based on MultiServer concepts with the
help of elliptic-curve-cryptography scheme [11]. And the
proposed scheme demonstrate the logics of "Burrows Abadi
Needham" as well in results [11].

In the year of 2015, the authors "V. Odelu, A. K. Das, and

A. Goswami [12]", proposed a paper titled "`A secure
biometrics-based multiserver authentication protocol using
smart cards [12]", in that they described such as: HeWang
scheme and its associated principles are robust against
vulnerabilities with temporary session-memory based attack
and impersonation-attack. But the paper itself clearly state
these principles not stated the user-anonimities [12].
Moreover, HeWang strategy can't give the client disavowal
when the SmartCard is lost/stolen or client's verification
parameter is uncovered. Aside from these, HeWang strategy

has some structure imperfections, for example, wrong secret
password based login and its outcomes, and wrong password
update during updation stage. We at that point propose another
safe multiserver confirmation convention utilizing bio-metric
based SmartCard and "Elliptic Curve-Cryptography" with
greater security functionalities. Utilizing the Burrows Abadi
Needham rationale, to show that the proposed schema gives
security confirmation [12].

Table 2: Comparative Study

Merkle Hash Tree with
SSO Provision

Proposed Branca
Technique Provision

Lack of Data Concentration,
due to that data lost will
happen suddenly when the
data overflow occurred [16].

All the data processing is
handled based on temporary
authentication mode only,
so that the data lost cannot
happen. Even if it happens,
the presently working data
may lose instead of all.

Host Address Missing, due
to such missing of address
leads data un controllability
over social media streams
[14][16].

Each and every time of
authentication Branca
approach creates a new
identity to user and
periodically updates the
address automatically. So
the host identification is not
at all a problem to proposed
approach of Branca.

Cryptographic hash
functions are complicated
while making the data to
hash and while de-hashing it
will be simple. It leads the
data to be corrupted a any
time without the known
causing [15][16].

Uses advanced
cryptographic and randomly
changing key nature for
encryption and decryption
functions, so proposed
methodology follows
efficient crypto logics as
well.

Storing huge data into the
remote servers with week
security measures as
mentioned in the past
research summary in this
paper leads to make the data
more complicate and
privacy is a questionable one
[10[11][12].

Data storage security is
really high and which will
be briefly elaborated in
proposed system research
summary over this paper in
previous section.

Past hashing systems
associated with merkle tree
methodology in SSO using
external authentication
privacy norms such as
Biometric appliance and
single keyword data
protective mechanisms such
as OTP and so on, which
leads the data and
authentication dependency
over server [9][10][11].

Branca approach follows
completely independent
data and security logic,
which uses separate
authentication norms. If
biometric need to be used
means that will be an
additional feature of
Branca, not a dependable
feature.

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1806

5. RESULTS AND DISCUSSION

The proposed empirical results are implemented using the

genuine digital medical image processing tool called
MATLAB, which is used to design the proposed system with
DEFS algorithm and all the specifications of DEFS and the
Subspace ensemble learning classification are clearly
demonstrated in above sections and the outcomes of-the
implemented-system is clearly mentioned as follows. The
following figure Figure.3 shows that the regression ranges for
Margin-Based Feature-Selection process.

Figure 3: Regression for MBFS

The following figure Figure.4 illustrates the Confusion
Matrix scenario of the Margin-Based Feature-Selection
process.

Figure 4: Confusion Matrix for MBFS

The following figure Figure.5 illustrates the Performance
measurement of ten different parameters for Margin-Based
Feature-Selection process.

Figure 5: Performance measurement of 10 parameters for
MBFS

The following figure Figjure.6 illustrates that the regression
ranges for Differential-Evolution-Feature-Selection process.

Figure 6: Regression for DEFS
The following figure Figure.7 illustrates the Confusion

Matrix scenario of the Differential-Evolution-Feature-
Selection process.

Figure 7: Confusion Matrix for DEFS

Remya Chandran et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1800 – 1807

1807

The following figure Figure.8 illustrates the Performance
measurement of ten different parameters for Differential-
Evolution-Feature-Selection process.

Figure 8: Performance measurement of 10 parameters for
DEFS

6. CONCLUSION AND FUTURE SCOPE

In this paper, an intelligent Cloud Authentication Scheme

using Single Sign-On Nature based Branca Strategy is
implemented, which is more suitable to the MultiServer
Authentication-strategies well. Many past server side schemes
are available for Single-Sign On scheme in literature', but all
are suffered under certain lackings such as uni-directional
authentication norms, insufficient security parameters, poor
performance and so on. In the proposed SSO based Branca
application provides an efficient way to resolve all the above
mentioned problems clearly under sevral cases such as speed,
security and reliability. The proposed system follows the
encryption strategy of Authenticated Encrypted Token (AET),
which is operating under the principles of powerful JavaScript
based Advanced Encryption Standard (AES-JS). The proposed
system provides bi-directional authentication norms and high-
security enabled credential data maintenance port, which
illustrates the robustness of the proposed Branca based Single-
Sign On strategy.

REFERENCES

[1] 2012, CSID; CSID Conducts Study of Consumer Password
Habits, Finds Disconnect in Practices and Mindset. (Journal,
Electronic), 1149.
[2] R. Wang, S. Chen, and X. Wang, "Signing me onto your
accounts through facebook and google: A traffic-guided
security study of commercially deployed single-sign-on web
services," in Security and Privacy (SP), 2012 IEEE
Symposium on, 2012, pp. 365-379.
https://doi.org/10.1109/SP.2012.30
[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G.
Pellegrino, and A. Sorniotti, "An authentication flaw in
browser-based Single Sign-On protocols: Impact and
remediations," Computers & Security, vol. 33, pp. 41-58,
2013.
https://doi.org/10.1016/j.cose.2012.08.007
[4] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G.
Vigna, and Y. Chen, "Protecting Web-based Single Sign-on

Protocols against Relying Party Impersonation Attacks
through a Dedicated Bidirectional Authenticated Secure
Channel," in Research in Attacks, Intrusions and Defenses, ed:
Springer, 2014, pp. 276-298.
[5] L. Lamport, "Password authentication with insecure
communication," Communications of the ACM, vol. 24, pp.
770-772, 1981.
https://doi.org/10.1145/358790.358797
[6] W.-B. Lee and C.-C. Chang, "User identification and key
distribution maintaining anonymity for distributed computer
networks," Comput Syst Sci Eng, vol. 15, pp. 211-214, 2000.
[7] T.-S. Wu and C.-L. Hsu, "Efficient user identification
scheme with key distribution preserving anonymity for
distributed computer networks," Computers & Security, vol.
23, pp. 120-125, 2004.
https://doi.org/10.1016/j.cose.2003.09.005
[8] Y. Yang, S. Wang, F. Bao, J. Wang, and R. H. Deng,
"New efficient user identification and key distribution scheme
providing enhanced security," Computers & Security, vol. 23,
pp. 697-704, 2004.
[9] Y.-P. Liao and S.-S. Wang, "A secure dynamic ID based
remote user authentication scheme for multi-server
environment," Computer Standards & Interfaces, vol. 31, pp.
24-29, 2009.
https://doi.org/10.1016/j.csi.2007.10.007
[10] M. Ge, K.-K. R. Choo, H. Wu, and Y. Yu, ``Survey on
key revocation mechanisms in wireless sensor networks,'' J.
Netw. Comput. Appl., vol. 63, pp. 2438, Mar. 2016.
[11] D. He and D. Wang, ``Robust biometrics-based
authentication scheme for multiserver environment,'' IEEE
Syst. J., vol. 9, no. 3, pp. 816823, Sep. 2015.
[12] V. Odelu, A. K. Das, and A. Goswami, ``A secure
biometrics-based multiserver authentication protocol using
smart cards,'' IEEE Trans. Inf. Forensics Security, vol. 10, no.
9, pp. 19531966, Sep. 2015.
https://doi.org/10.1109/TIFS.2015.2439964
[13] M.-C. Chuang and M. C. Chen, ``An anonymous multi-
server authenticated key agreement scheme based on trust
computing using smart cards and biometrics,'' Expert Syst.
Appl., vol. 41, no. 4, pp. 14111418, Mar. 2014.
https://doi.org/10.1016/j.eswa.2013.08.040
[14] D. Mishra, A. K. Das, and S. Mukhopadhyay, ``A secure
user anonymity preserving biometric-based multi-server
authenticated key agreement scheme using smart cards,''
Expert Syst. Appl., vol. 41, no. 18, pp. 81298143, 2014.
https://doi.org/10.1016/j.eswa.2014.07.004
[15] Y. Lu, L. Li, H. Peng, and Y. Yang, ``A biometrics and
smart cards-based authentication scheme for multi-server
environments,'' Secur. Commun. Netw., vol. 8, no. 17, pp.
32193228, 2015.
https://doi.org/10.1002/sec.1246
[16] https://www.codementor.io/blog/merkle-trees-
5h9arzd3n8
[17] Remya Chandran and A. Sasi Kumar, “An Efficient
Keyless Signature and Improved Version of Merkle Signature
Scheme-CMSS”, International Journal of Engineering and
Advanced Technology (IJEAT), Volume 8, Issue 5, June
2019.

