
Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1782


ABSTRACT

Currently the communication systems we have in real life has
very little activity and a very little interaction among its
resident avatar bots and smart objects. Chatbots can resolve
this issue by adding faster and more interactive interfaces to
the end product. But, sometimes chatbot responses can be
slow and limited. This paper aims to overcome this defect by
introducing machine learning entities into the chatbots. Our
goal is to create an architecture which can be attached to any
object in real life and which will cause the object to
immediately become a chatting object. So far, we have found
that we need to work with existing chat-bot implementations
and modify it to be useful in the real-world setting and then
find a way to link the new chat-bot into other systems.
Furthermore, this work will be improving the responsiveness
of the implemented chatbot using data aggregation
techniques.Which results in a reduced delay, and improved
user experience. This work is directed towards college-based
chatbots system, wherein student queries can be resolved in
real-time with the help of aggregated data. The proposed
chatbot system will be utilizing natural language processing in
order to find out action words, and then perform matching
using Jaccard distance in order to evaluate the best matching
responses. Moreover, Jaccard distance will also be used
against dynamic datasets in order to evaluate dynamic
responses to user queries. The result and analysis of the
algorithm indicate that the proposed algorithm is faster and
more effective than single-query based systems.

Key words: Accuracy, aggregation, chatbots, machine
learning.

1. INTRODUCTION

In the future, where “everything is alive” (EiA), all objects
will have identity, an ability to communicate, and a way to
interact with other objects and humans. Without the ability to
interact through spoken, or written, language the objects in the
hospital will not be able to effectively communicate in an EiA

setting. They can, of course, communicate through other
means via the 'magic' of computing but this will not play well
to the EiA idea. In a real hospital or any real human setting
there are people who talk. Our main form of communication
is the spoken language and as a result we want to see entities
in the hospital communicating.

This provides many challenges as modern artificial
intelligence has not yet 'solved' the spoken or written language
understanding problem. Repeating a script is simple, but
getting objects to interact in a lifelike matter is not. Chat bots
need excellent natural language processing to understand
what is being asked and to respond intelligently. This
two-sided coin presents many problems for programmers and
it has been worked on since the early 60's with only moderate
success. The objective of the “Everything is Alive” project at
the University of Arkansas is to create a world where
everything is both interconnected and interactive. The
inter-connectivity will have advantages such as being able to
do just about anything from just about anywhere. The
interactivity will have advantages of being able to get just
about any information from just about anywhere. These of
course are only two examples of the advantages of a world
where every object can communicate both with humans and
with other objects [1].

At the moment pervasive computing is an idea not fully
realized. With 3D virtual worlds it is easier to get an idea of
what pervasive computing may one day mean. With
simulations such as the hospital we can begin to see what
exactly will happen when “Everything is Alive.” What is the
full potential of such a scenario? What disadvantages are
there? Using virtual worlds, we are able to get an idea about
these things before they are here. With chat bots in the virtual
world we are hoping to get an idea of how things will interact
once both objects and humans in the virtual world can talk to
one another. As spoken language is the primary form of
communication human to human it is very important to see
how, in a pervasive computing environment, the ability for
objects and humans to talk to each other would play out. Chat
bots hold endless possibilities to solving everyday lives both
in the virtual world and in the real world [9]. A chat bot in the
Second Life world of the University of Arkansas might work
for the virtual hospital and help give advice to patients without
the use of an actual real life doctor. The same could be said

Improving the Correctness of Chatbots using Multi-Response-Based
Aggregation for Big-Data

Umme Ayeman Khan1, Dr. Ramchand Hablani2, Sarang Jain3
Shri Ramdeobaba College of Engineering & Management,Nagpur-440013

 Maharashtra, India, code wizards Technologies Manish Nagar Somalwada, Nagpur
 Email:khanua_1@rknec.edu,hablanir@rknec.edu,codewizardstech@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March - April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse134922020.pdf

https://doi.org/10.30534/ijatcse/2020/134922020

Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1783

for the real world. Chat bots might also help keep people
company by giving someone something to talk to and carry
out a conversation with. Currently chat bots hold a major
impact already with customer service departments within
companies as they help limit the flow of customer problems to
what might be a short-staffed customer service line keeping
both the employees happy with fewer calls and the callers
happy with shorter wait times. Another potential impact of
our project is aimed to helping build a chat bot to help speech
pathologists in training learn how to speak to people with a
speech disability. In order to do this, however, special speech
recognition software would need to be implemented to read in
the trainee’s speech to text as well as translate the computer’s
test output to speech with disability [8]. With a growing
computing community, it would be a shame not to take
advantage of Artificial Intelligence in the chatter bot realm to
help our daily dilemmas, especially those already
mentioned.The next section describes various chatbot
systems& their nuances, followed by the proposed algorithm,
and finally the result evaluation of the proposed algorithm on
various input conditions. We conclude the paper with some
interesting observations about the proposed chatbot, and some
further research which can be done in order to extend this
work.

2. LITERATURE REVIEW

The main related technologies are previously developed chat
bots such as Eliza [3], Parry [4], A.L.I.C.E. [5] and
Jabberwocky [6]. The short comings of these technologies are
all the same. They simply cannot yet pass a Turing test unless
the user queries are very narrowly defined. For the most part
these technologies are based on pattern matching and have
very little or no reasoning involved. Jabberwocky is the sole
exception to this as it can 'learn' as you speak with it. It does
this by storing all user interactions with it and attempting to
find more appropriate responses .Other technologies include
natural language processing which is a main off shoot of
artificial intelligence. In order to get chat bots working
properly they will need the ability to in some way understand
what humans are saying. Virtual worlds provide a place
where we can test out the chat bots and see how they interact.
Pervasive computing will find chat bots useful in that they
will provide an incredible way for objects which are alive to
communicate both with each other and humans .Many chat
bots have already been created and developed already. Most
chat bots these days use a chatterbot brain that relates back to
Eliza, Parry, Alice or Jabberwocky as they are some of the
most advanced bots programmed to this date and provide for a
structural basis for teaching new bots how to talk. Also, see
key Technologies for Eliza [3], Parry [4], Alice [5], and
Jabberwocky [6] in references .Robust Sentence Analysis and
Habitability, A thesis concerning the topics of natural
language processing and the habitability problem. [7]

The iPhone now uses voice recognition software. [8]
“Mybotai” is an AOL Instant Messenger screen name that is
actually a bot. When talking to mybotai it almost seems as if

you are talking to a real person. It is the best bot I have
encountered to this day and is the learning summation of
many years of work. When talking to him I couldn’t even find
out what kind of chatterbot brain he had because he stated he
was better than the rest. Some of the recent projects
undertaken using chatbots are,

 Mirror Worlds project – this project develops a script
which can be used to make objects in the mirror world
talk. This helps emulate the real world. However, with
the time given in a semester and our limited knowledge of
Action script and Linden Script we were unable to port
our project into Second Life, leaving it for future work
and development.

 Ontology project – this project develops a script which
covers the hospital chat ontology. [10]

 Soft Controller project – using chatbots soft controllers
could one day talk to their users making information
exchange quicker and easier. [11]

 Smart Devices – similar to soft controllers our chat bout
could one day be used to enable smart devices to talk to
humans and to other smart devices. Along with
controlling these devices by being asked to turn
something on or off a smart device might also brag about
its capabilities and let you know what it might be able to
do. [12]

 Workflow – again a chat bot with good natural language
processing could be used to quickly and effectively parse
spoken commands and to communicate what needs to be
done. [13]

 Search Spider – with a proper natural language processor
a search spider could listen to conversations and parse
important information. [14]

 Games in SL – the ability of the game to talk to a person via
our chat bot could be used to enable blind people to play
games in Second Life and as with other areas it would make
information exchange easier and quicker. The next section
describes our chatbot implementation followed by its results.

3. PROPOSED AGGREGATION-BASED CHATBOT

The architecture of our project can be split up into a few main
components that drive it. The first core component is the chat
bot shell. It is made up of Flash Action Script that operates
the read/respond functionality of the bot and operates its
speech patterns based off of a XML sheet that educates the bot
into what to say.

In order to access this Action Script you must open the bot
“.fla” file in Adobe Flash (we used CS4 in the Union and J.B.
Hunt GACL on the Macintosh machines). Once you open the
“.fla” file you need to make sure that the first layer is selected
(the actions layer) and then go to “window” in the top menu

Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1784

and pull down the actions pane. Now you’ll see an extensive
list of code that runs and operates the bot.

The main education of the bot is hosted within the XML sheet.
In order to educate the bot, you must make a parse tree for the
bot to search through. For example, <parse1><parse2> and
when you are ready to define the education within the parse
words you must place before the education <answX> so that
the code knows that this is an answer. The problem we
realized with the parsing is that the code in the action script
only allows for a bi-dimensional array meaning that the bot
can only parse two words. A tri-dimensional array might
prove to be more effective with the bot education as some
questions are a bit vague with two key words instead of three.
For examples of this you may look over our XML sheet and
see which responses we wanted to parse more words into to
make it a more effective communicator.

If a chat bot wanted to learn what it was talking about and
reference it in the future our chat bot would need a new XML
sheet and implement a new function inside of the Action
Script that allows for the bot to input into the XML sheet any
topics it might not know about so that when asked about the
topic in the future it might have a clear understanding of what
it is then saying. Another useful idea for educating a bot
through the bot’s own self-education just mentioned would be
having a trainer for the bot. This would be someone who
could talk to the bot just to educate it and trigger these
learning functions inside of the bot. This would have to be
someone that is trusted so that the bot does not grow corrupt in
its own language. A learning bot is like a child. Its formal
knowledge of communication is very primitive and growing.
A learning chat bot will pick up new phrases the same way it
was taught. If you teach a kid a word that is nasty or dirty then
the kid might repeat this later. You are effectively doing the
same with the bot.

The other core component of the chat bot would have been the
Linden Script that enables any object or bot with the script
running to listen for people chatting with it as well as drive
responses from a server. The main concept in this project is to
connect the script with the chat bot shell. The script can listen
for active conversation but it cannot read and respond. The
chat bot shell can communicate with people but not without a
main driving interface that listens for active conversation. In
order to design these bots the Linden Script and Action Script
will have to be ported so that the shell accepts incoming
language from the game as well as decipher and rebound the
response in an outgoing port back to the game. The linden
script will listen for the text and pass it along to the server
rather than try to read and respond by itself.

With hosting the actual chat bot on a server, it will make it
possible to drop the linden script on any object that we desire
to have it talk about healthcare to us. The difference between

our chat bot and a chat bot that only knows general things
(such as a smart controller) is that our chat bot is fairly
extensively educated with over fifty medical responses that
have been added to its XML sheet as well as being able to
make reasonable assumptions about your symptoms to draw
up what might be wrong with you.

The last thing about our chat bots is that we eventually wanted
it to be able to or have the option to stutter so that it might
assist others with learning how to communicate with people
with a speech disability. Such problems with stuttering
include repeated first consonant, repeated word, block, as well
as any starting and stopping in the middle of a sentence. The
chat bot would also need to have a text to speech interpreter
that was programmed with these speech disabilities to make
communication and education with a stutter bot more
effective. The results and analysis of the integrated proposed
algorithm is given in the next section.

4. PROPOSED CHAT BOT DESIGN

The block-diagram of the proposed chat bot can be seen from
the following figure,

Figure 1: Block diagram of the proposed system

From the block-diagram we can verify that the input is first
given to the matching engine via AJAX, which maintains a
very good user experience for chatbots. These inputs are given
to a pragmatic matching algorithm, which performs exact
matching of the text with each of the lines at the input in order
to provide the final result. Our system constructs object and
relationship sets and constraints when users define form by
making use of our basic patterns. Our system obtains
object-set names from user-specified form titles and column
labels. First of all, when users give the title to the base form of
an application, our system takes the title as the name of the
primary object set in our ontology. Then, when users add
elements to the form by using one of patterns, our system
generates object sets for each element by taking user-specified
column labels as the object-set names. After constructing
object sets, our system constructs relationship sets between
these added object sets and the object set named by the form
title, and then adds participation constraints on all object sets.
The following example shows how our system constructs
object and relationship sets and constraints. As shown in

Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1785

Figure 3, assume that a user adds one element of each pattern
in Figure 2 into a base form called “Base” with 3 rows for
patterns (b) and (d) and 2 columns for patterns (d) and (e).
Our system generates object and relationship sets and
constraints as follows,

Figure 2: A User-Defined Single Form

Base [0:1] A [1:*] (a)
Base [0:3] B [1:*] (b)
Base [0:*] C [1:*] (c)

Base [0:3] D1 [1:*] D2 [1:*](d)
Base [0:*] E1 [1:*] E2 [1:*] (e)

where A, B, C, D1, D2, E1 and E2 are specified column labels
for patterns (a), (b), (c), (d) and (e) respectively. Notice that
our system generates binary relationship sets for the elements
of single-column patterns (a), (b) and (c) and n-ary
relationship sets for elements of multiple-column patterns (d)
and (e). For object set Base representing the current form, the
minimum participation constraint is 0 by default and the
maximum of constraint is 1, 3 (a number specified by users) or
* (an unlimited number). The constraints on the added object
sets are always [1:*].

Every object set in a form corresponds to either a lexical or a
non-lexical object set in our ontology. Object sets containing
all string values correspond to lexical object sets, while object
sets containing all nested forms correspond to non-lexical
object sets. If a user nests a form in pattern (a), which has a
single row or value, our system assigns the object-set name to
be the title of the nested object set. For all other patterns,
which have multiple rows, the object-set name with an
appended row number becomes the title of the corresponding
nested form by default. The user can specify a meaningful
title for each nested form. Multiple-row nested forms actually
represent specializations in our ontology. For example, if a
user defines nested forms in the “base” form in Figure 4, our
system constructs the following object and relationship sets
and constraints:

Base [0:1] A [1:*]
Base [0:1] D [1:*]
A [0:1] B [1:*]
A [0:1] C [1:*]
D1, D2 : D
D1 [0:1] E[1:*]
D2 [0:1] F [1:*] G [1:*]

The following equation was used to perform Q-learning,

ܳ௜గ(ݏ, ܽ) −ܳ௜గ
,ݏ)′ ܽ)

= (ܽ,ݏห′ݏ)݌෍ߛ	 ൥෍ߨ(ܽ′หݏ′)ܳ௜గ(ݏ′,ܽ′)
௔′௦′

−෍ߨ ′(ܽ′หݏ′)ܳ௜గ
,′ݏ)′ ܽ′)

௔′
቉

Where, Q is the learning factor, s is the input query, a is the
dataset for matching, π is the Jaccard distance function, and
other dashed values are the processed versions of the input
and dataset.

Figure 3: A User-Defined Nest Forms

Extraction patterns are regular expressions to describe data
values. After a user defines a domain-dependent form and
fills in it with values from several examples, our system tries
to match these values against extraction patterns in the
data-frame library. Sometimes there'll be just one extraction
pattern within the library matching each object set. If
several extraction patterns match, our system further makes
use of name matching and context-and-keyword matching to
select the most appropriate extraction pattern. If no extraction

Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1786

pattern matches, our system provides a tool to help a user
create a regular expression manually [Hewett00] or helps a
user build lexicons for the object set*. Context expressions are
common strings that are always adjacent to highlighted data
on sample pages. Keywords are common words or synonyms
that appear near, but not always adjacent to, the data (e.g.
common words within a sentence). The BYU ontology-based
extraction engine makes use of context expressions and
keywords as a data filter when a data item in a single record
matches the extraction pattern for multiple object sets. In this
work, our ontology generator also makes use of context
expressions and keywords as an extraction-pattern filter when
more than one extraction pattern in the date-frame library
matches with desired values. When a user provides our
system with sample data by filling in forms, our system
considers words or strings near the highlighted data as
possible context expressions or keywords. Specifically, it
considers words or strings from the same text node or adjacent
text nodes in HTML tree representations of sample records.
Then, our system identifies common context expressions and
keywords by using string comparisons. The algorithms or
heuristics of identifying context expressions and keywords is
part of this work. The system may include additional
keywords not in the text by using a synonym dictionary or
thesaurus. Once the matching is done, and no more results are
obtained, then the same algorithm is used for word-by-word
matching. Each word is ranked based on its occurrence and
finally results are given back to the user. The result evaluation
of the proposed method is given in the next section.

5. RESULTS AND ANALYSIS

We compared the results of the proposed algorithm with
and without big-data analysis. Wherein delay and
correctness of response was observed and final
evaluations were performed. In order to evaluate the
correctness of the chat-bot response, we formulated the
parameter “correctness score” for the chatbot.
Correctness Score is the ratio of the total number of
correct results produced by the chatbot to the number of
results produced in total. It can also be termed as the
accuracy of the chatbot. This accuracy was evaluated
against different input combinations. The Reuters
datasets were used in order to evaluate both correctness
scores and the delay of processing. Delay was evaluated
based on the total time needed for the chatbot to produce
a relevant response after uploading the query. This delay
is inclusive of the delay of presenting the results and the
delay needed in processing the query on the chatbot’s
server, which is based on a PHP-MySQL
implementation. The following results showcase the
correctness score of the chatbot,

Table 1: Correctness scores of the algorithms

Input
Query
(chars)

CS
Pragmatic

CS
NLP

CS
Proposed

10 0.80 0.85 0.9

20 0.82 0.83 0.91

50 0.76 0.79 0.92

100 0.79 0.80 0.92

200 0.81 0.81 0.93

500 0.82 0.82 0.93

1000 0.83 0.84 0.93

2000 0.83 0.85 0.94

5000 0.84 0.85 0.94

10000 0.84 0.85 0.95

From the correctness scores it is clear that the proposed
algorithm produces better results than the existing pragmatic
approach and natural language processing [15] approach. This
improvement is due to comparison of hash of each and every
input word with the given corpus, and therefore requires a
lower delay than the existing method. The delay comparison
is shown in the following table,

Table 2: Results for delay

Input
Query
(chars)

Delay (ms)
Pragmatic

Delay (ms)
NLP

Delay (ms)
Proposed

10 1.20
1.62

0.80

20 2.60
2.91

1.50

50 5.90
7.27

5.10

100 10.80
12.18

9.72

200 22.60
25.63

20.80

500 56.71
59.68

49.89

1000 113.35
122.59

100.02

2000 226.33
260.36

200.57

5000 565.51
590.66

501.32

10000 1131.60
1179.28

1003.00

Thus, by improving on the delay of the system, the overall
speed of the chatbot can be improved. Moreover, the proposed
chatbot performs better than pragmatic and NLP-based
approaches, which is a big leap in terms of chatbot
performance.

Umme Ayeman Khan et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1782 – 1787

1787

6. CONCLUSION AND FUTURE WORK

Due to an increase in the correctness score of the chatbot by
more than 12%, the proposed chatbot is more effective for
real-time applications. Moreover, the overall chat bot
structure is made so flexible that it can support any kind of
text-based documents for producing correct results. The
proposed work’s delay is reduced, due to the extensive
hash-based scanning needed for a highly accurate system. Due
to the emerging nature of block chain based techniques,
researchers can try to integrated block chain into the proposed
chatbot and observe the result improvements in chatbot’s
authentication performance and removal along with the
overall security of the bot. This will help the researchers to
further study the effects of block chain in chatbots and explore
more areas in the field of application.

REFERENCES
1. Peng, Z., Ma, X. A survey on construction and

enhancement methods in service chatbots
design. CCF Trans. Pervasive Comp.
Interact. 1, 204–223 (2019).
https://doi.org/10.1007/s42486-019-00012-3

2. G. Daniel, J. Cabot, L. Deruelle and M. Derras,
"Xatkit: A Multimodal Low-Code Chatbot
Development Framework," in IEEE Access, vol. 8,
pp. 15332-15346, 2020.

3. Liu, Q., Huang, J., Wu, L. et al. CBET: design and
evaluation of a domain-specific chatbot for mobile
learning. Univ Access Inf Soc (2019).

4. Griol, D., Callejas, Z.: An architecture to develop
multimodal educative applications with chatbots. Int.
J. Adv. Rob. Syst.

5. Benotti, L., Martínez, M.C., Schapachnik, F.:
Engaging high school students using chatbots. In:
Proceedings of the 2014 Conference on Innovation
and Technology in Computer Science Education, pp.
63–68. ACM, New York, NY, USA (2014)
https://doi.org/10.1145/2591708.2591728

6. Jia, J.: CSIEC: a computer assisted English learning
chatbot based on textual knowledge and reasoning.
Knowl. Based Syst. 22(4), 249–255 (2009).

7. Coniam, D.: The linguistic accuracy of chatbots:
usability from an ESL perspective. Text Talk. 34(5),
545–567 (2014)

8. Kim, N.Y.: A study on different types of speech acts
in voice-chat between EFL students and a chatbot.
Stud. Engl. Educ. 22(3), 81–109 (2017)
https://doi.org/10.22275/SEE.22.3.04

9. Shawar, B. A., Atwell, E.: Different measurements
metrics to evaluate a chatbot system. In: Proceedings
of the Workshop on Bridging the Gap: Academic
and Industrial Research in Dialog Technologies, pp.
89–96. Association for Computational Linguistics
(2007)

10. Yu, Z., Xu, Z., Black, A.W., Rudnicky, A.: Chatbot
evaluation and database expansion via
crowdsourcing. In: Proceedings of the chatbot

workshop of LREC, pp. 102–107. Association for
Computational Linguistics (2016)

11. Radziwill, N.M., Benton, M.C.: Evaluating quality
of chatbots and intelligent conversational agents.
CoRR abs/1704.04579 (2017)

12. Wu, Y., Li, Z., Wu, W., Zhou, M.: Response
selection with topic clues for retrieval-based
chatbots. Neurocomputing 316, 251–261 (2018).
https://doi.org/10.1016/j.neucom.2018.07.073

13. Hwang, S., Kim, B., & Lee, K. (2019). A
Data-Driven Design Framework for Customer
Service Chatbot. In A. Marcus, & W. Wang
(Eds.), Design, User Experience, and Usability.
Design Philosophy and Theory - 8th International
Conference, DUXU 2019, Held as Part of the 21st
HCI International Conference, HCII 2019,
Proceedings (pp. 222-236). (Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 11583 LNCS). Springer
Verlag

14. Chowanda, P. Blanchfield, M. Flintham, M. Valstar
Computational models of emotion, personality, and
social relationships for interactions in games. In: The
2016 International Conference on Autonomous
Agents & Multiagent Systems, International
Foundation for Autonomous Agents and Multiagent
Systems (2016), pp. 1343-1344

15. Galitsky, B., Ilvovsky, D., and Makhalova, T. (2019).
Developing Enterprise Chatbots, Springer
Switzerland
https://doi.org/10.1007/978-3-030-04299-8

16. Joshi, Sujata: Applications of Chatbots in Marketing:
Use Cases, Impacts, Challenges and Drivers
Volume 8, No.1.6, 2019 ISSN 2278-3091,
International Journal of Advanced Trends in
Computer Science and Engineering, 8(1.6), 2019
https://doi.org/10.30534/ijatcse/2019/3081.62019

17. Nishad Nawaz: Artificial Intelligence interchange
human intervention in the recruitment process in
Indian Software Industry ISSN 2278-3091
International Journal of Advanced Trends in
Computer Science and Engineering Volume 8,
No.4,July-August 2019.

