
Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3540

ABSTRACT

Web service composition is about maximizing the benefits of
different Web services by composing a certain number of Web
services to deliver a fully end-to-end service. This paper
presents a review of the two major trends of Web service
compositions: top-down composition and bottom-up
composition. The top-down composition starts with a
well-defined goal and search criteria before searching for the
composition, while the goal and search criteria in the
bottom-up composition are not well defined. The bottom-up
composition is often called Web service mining. Web service
mining is a new trend that aims at discovering useful and
interesting compositions of existing Web services.

Key words: Web service, Web service Composition, Web
service mining, interesting compositions

1. INTRODUCTION

Service-oriented computing (SOC) paradigm considers
services as the main constituent elements that support
low-cost and rapid development of interoperable distributed
applications in heterogeneous environments [35] [3] [17].
The technology of Web services allows enterprises to express
their internal processes as services that can be accessed by the
Internet. Some of the resources of large companies such as
Google and Facebook are made available through Web
services (32). Web service technology started as an initiative
to solve the problems of interoperability and integration
amongst existing Web applications [29]. Many business
processes that are implemented by Web services would reduce
the cost of building new business applications since the
existing Web services can be reused to build new applications.

Web services are distributed computing applications over the
Internet that can be accessed via a set of homogeneous XML
interfaces. The W3C defines a Web service as “a software
system designed to support interoperable
machine-to-machine interaction over a network. A Web
service consists of a set of computational or physical activities
with a number of resources to fulfill customers’ needs [32]
[42].

Web services can be described, published, discovered and
interacted through certain Internet protocols. A Web service
needs to be described by a service provider and published to a
service registry such as UDDI. As an alternative method, a
service provider can publish some documents for Web service
discovery such as Web Services Inspection Language (WSIL)
documents. Consequently, other applications can discover
and invoke Web services.

Web service composition is a value-added procedure that
aggregates different Web service functions and produces a
new function (s) that cannot be provided by any atomic or
other composite Web services [9]. This paper considers two
trends of Web service compositions: top down and bottom-up
composition approaches. The top down composition trend
starts with a well-defined goal and search criteria and the goal
identifies the functionality of the new composition.

On the other hand, the goal and search criteria in the
bottom-up composition trend are not well defined. The
bottom-up composition is often called Web service mining
[42]1. The two composition trends differ in their composition
requirements and mechanisms. In addition, the value of the
resultant composition vary: the outcomes of the top-down
composition is expected and planned for, while the outcomes
of the bottom-up composition is less predictable and aims to
find useful and interesting Web service compositions [42].

In order to reduce the size of search space in the bottom-up
approach, a general goal can be provided, for example, a
general goal for a person is to live a long healthy life, then the
Web service mining seeks to find useful and interesting Web
service composition that can fulfill the general goal. Such
compositions can include descriptions for certain life styles,
general health related recommendations or advising drinking
certain herbal mixes etc.

To the best of our knowledge, this is the first research that
reviews the two trends of Web services composition. In
addition to briefly introducing the most recent Web service
composition technologies, this paper also aims to accentuate
the differences in the mechanisms of both the top-down and
bottom-up compositions as well as the expected outcomes.

The rest of this paper is organized as follows: Section 2
reviews the recent methods in the top-down service

Trends of Web Service Composition
Khalid Mansour

Zarqa University, Jordan, kmansour@zu.edu.jo

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse134862019.pdf

https://doi.org/10.30534/ijatcse/2019/134862019

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3541

composition. Section 3 reviews the service mining methods.
The last section concludes the paper.

2. Top-down Web Services Composition

The top-down Web service composition is the main trend
where most studies addressed this type of composition from
different aspects, see [30] [15] [36] [24] [34] [40]. Figure 1
shows a simple Web service architecture showing a Web
service provider sending a UDDI registry information about
the available Web services via a WSDL file, a Web service
requester contacts the UDDI registry searching for a Web
service of a certain functionality. UDDI provides information
-if any- to the service requester. Finally, the service requester
contacts the service provider via a Simple Object Access
Protocol (SOAP) message then the service provider replies
with a SOAP message as well, see the numbering sequence in
Figure 1. The service provider, the service requester and the
service registry are the main three roles involved in any Web
service application.

 Figure 1: Web service architecture

Web service are one of two types: SOAP-based Web services
and Representational State 3 Transfer (REST) Web services
that utilizes the REST model [12].

2.1. Web Service Composition Standards

Two different top-down complementary standards are used to
standardize Web service composition, the first one targeted
the old Web service paradigm and proposed a number of
XML-based standards such as BPEL [8]. The second
approach uses the concept of semantic Web services and
developed standards such as OWL-S [19]. A brief
introduction to a few standards of each of the above types is
presented next:

 XML-based standards

1 bottom-up composition and Web service mining will be used

interchangeably in this paper.

1- Web Services Business Process Execution Language
(WS-BPEL). WS-BPEL or BPEL2 for short is an
XML-based language for Web service composition.
It was appeared in 2004. Different types of
primitives are introduced in BPEL: the primitives
invoke, reply and receive are used for interactions
amongst the Web services under consideration.
Other primitives such as wait, assign, throw, exit
and empty indicate wait for some time, copy data,
error state, termination the current composition and
doing nothing respectively. More complex activities
can be formed by combining the mentioned
primitive activities using structured activities
(constructs) such as while, flow and sequence
.

2- Business Process Modelling Language (BPML).
BPML 3 is a language for business process
modelling and it was appeared in 2002. The recent
version of BPML includes several concepts of Web
Service Choreography Interface (WSCI) that
considers the choreography of Web services. The
MPML modelling language is similar to BPEL in
terms of the basic and structural activities. For
example, the basic primitive's action, assign, and
call are used to invoke services, assign a new value
to certain message and instantiate a process a
process respectively. Structured activities are also
provided such as choice, while and sequence.

3- Electronic Business Using XML (ebXML). ebXML4 is
an international initiative established to enable
enterprises of any size to conduct business over
the Internet. ebXML consists of four main
components: messaging service, registry, trading
partner information and Business Process
Specification Schema (BPSS). The messaging
service component enables exchanging business
messages amongst organizations that is
independent of any file transport mechanism (e.g.,
SMPT, FTP) or network type. The registry stores
information about businesses. The trading partner
information uses the protocol Collaboration
Protocol Profile and Collaboration Protocol
Agreement to provide an XML definition of a
document that contains details of how an
organization is able to conduct business
electronically and specifying the details of how
two organizations have agreed to conduct business
electronically respectively. Finally, BPSS provides
an XML modelling document that defines the Web
service composition members.

 Semantic-based standards

2 docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
3 xml.coverpages.org/bpml.html.
4 xml.coverpages.org/ebXML.html.

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3542

Semantics improve software discovery and reuse. In
addition, it facilitates composition of Web services
and enables the integration of legacy applications.
With semantic information annotated the Web
services, the interface and function of a Web service
is described with more specifications than the ones
used by standard Web service technologies, e.g.,
WSDL. For example, if a service declares that it
takes a string as input, it still does not provide
enough information. For example, that string can
be a DNA sequence, an output report from
another program etc. The semantic information
would provide such extra information using
ontologies [4].The following standards are
semantic based standards.

1- Web Ontology Language (OWL-S). OWL-S5
previously called DAML-S. OWL-S uses
semantics to describe and reason services.
The OWL-S uses ontologies in describing
services. The service profile ontology is used
to describe services that facilitates service
discover latter. A description of functional and
non-functional properties are used in service
description and queries. The process model
ontology describes both the composition and
execution of Web services. The grounding
ontology describes the accessing a service
details.

2- Web Service Modeling Framework (WSMF).
WSMF was proposed in 2002 to provide a
suitable conceptual model for developing and
describing both atomic Web services and
composite Web services. Its philosophy is
based on maximal decoupling complemented
by a scalable mediation service [6]. Its goal is
to enable e-Commerce by applying semantic
Web technology to Web services. WSMF
consists of ontologies, capabilities
repositories, Web services descriptions, and
mediators. The capabilities repositories define
the problems that need to be solved by Web
services. The web services descriptions define
various aspects of a Web service. Finally, the
mediators bypass interoperability problems.
WSMF contains two major projects: the
semantic Web enabled Web Services and the
Web service modeling ontology.

3- Web Service Semantics (WSDL-S). The current
WSDL standard lacks semantic expressivity
required to represent Web services since the
WSDL works only at the syntactic level. The
semantic information specified in the WSDL-S
document contains definitions of the input,

output, precondition and effects of Web
service operations. The WSDL-S is preferred
over (OWL-S), for more information see the
link below5.

Using certain criteria presented in [32], Table 1 compares
between the six Web service standards presented in this
section. The first three standards lacks the semantic
support while semantic-based standards lack many of the
criteria used by the table.

Table 1: Comparison between a sample of
web services composition standards

2.2. Web Services Composition Methods

Web services composition is a complex task due to many
factors: the number of Web services increases rapidly which
makes finding new Web services more difficult. In addition,
Web services can be created and updated on the fly which
requires the composition system checks for new updates at
every runtime [9].

Web service composition can be divided into three major
categories [37] [38]: Explorative composition, semi-fixed
composition and fixed composition. In the explorative
composition, once a request from a client is specified, the
service composition is created on the fly. In the semi-fixed
composition, the service composition is specified statically
while the real bindings are decided during runtime. The fixed
composite category requires that composition structure is
specified before and the component services are statically
bound.

In the following paragraphs we discuss possible services
composition methods: Firstly, the static and dynamic
compositions are discussed. Secondly, manual,
semi-automated, and automated composition types are
explained. Finally, the orchestration and choreography types

5 www.w3.org/Submission/WSDL-S/

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3543

of the sequence of activities that make up a business process
are presented.

In static composition which comes under the fixed composite
category, the services composition is performed at the design
time. The designer selects the services needed for the
composition, then bound it together and deploy it, then it can
be executed. The disadvantage of this type of composition is
that the steps of the static composition is needed to be repeated
again in case the functionality(s) of a service(s) in the
composition is/are changed or the composition requirement is
changed. Since changes in the business environments are
expected to occur frequently, using the static composition
approach faces difficulties to apply in reality. On the other
hand, dynamic Web services composition, which comes
under the explorative composition category is a more
automated approach where services are determined and
replaced at run time. Since the business environment is
dynamic, the dynamic composition is more suitable than
static composition. The drawback of this approach is that
composing service during run time faces some difficulties
related to time limits, measuring the correctness of
compositions and others, see [13] [11].

Manual composition (belongs to the fixed composition
category) involves a human designer who needs to create an
abstract composite process using certain standard language
(e.g., BPEL) then the designer binds the Web services to the
abstract process manually. This composition method can be
time consuming and error-prone procedure. In addition, as
the case with the static composition, the composition needs to
be repeated again in case of any change in requirements
and/or functions provided by any Web service included in the
composition.

On the contrary, the automated services composition (belongs
to the explorative composition category) approach is the
complete opposite of the manual composition. It is expected
that every step in the automated composition approach be
automated.

Automated composition approaches are based on the artificial
intelligence (AI) planning techniques and the semantic Web.
The input this type of composition are a set of Web services
and a specified requirements and the output is the composite
service that fulfill the composition goal. A fully automated
services composition is a challenging task since the selection
process can be affected due to the fact that Web services do not
share a full understanding of their semantics [10] [5]. The
semi-automated composition improves the efficiency of the
manual composition and at the same time reduce the
complexity associated with the fully automated composition.

With the semi-automated composition, the user is assisted at
each step of the service composition process to inferring the
entirety of the desired workflow [4]. The work in [23] presents
a framework for semi-automated Web service composition in

Semantic Web. The proposed framework allows for providing
many composite services using one integrated service while
maintaining a merged ontologies repository for the composite
services.

Creating business processes from Web services can follow
either the orchestration aspect or the choreography aspect
[26]. According to [26] “Orchestration refers to an executable
business process that can interact with both internal and
external Web services”. In other words, service orchestration
represents a centralized executable business process that
coordinates the interaction among different services. The
business executable process is responsible for invoking and
combining the services. On the other hand, service
choreography is a decentralized approach which provides
description of the participating services by defining the
exchange of messages, rules of interaction and agreements
between two or more services. Figure 2 illustrates the
concepts of Orchestration and Choreography.

Figure 2: Orchestration and Choreography.

Choreography involves collaboration between different
services since these services comes from different providers.

2.3. Web Service Composition Life Cycle
Utilizing a composite service involves several steps called the
life cycle of composite service. Four main are required for
utilizing a composite service: the definition phase, the service
selection phase, the deployment phase and execution phase
[32] [37].

However, the life-cycle presented in [37] have the planning
phase as the first step and does include the service selection
phase. The following is a summary for each phase:

1- Definition phase. User requirements and preferences
for the composite service are specified. The
requirement is used to create an abstract process
model, i.e., the abstract composite service. The
abstract composite service specifies the control and
data flow amongst the services, a set of activities, the
quality of service requirements (QoS), etc. This
phase should meet the expressibility and correctness
requirements. The expressibility property indicates
that the process modeling language should be

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3544

capable of modeling complex structures such as
sequence and iteration, representing data and specify
the data flow amongst activities, supporting
exception handling, etc. The correctness property is
met if it is possible to ensure that the composite
service acts according to its functional and
non-functional requirements.

2- Selection phase. This phase aims to find a good
candidate service(s) for performing certain
function(s). Since there are large number of
available Web services, automation the selection
phase expedites the process of selecting good
candidate services. Service discovery can be based
on syntactic matching or semantic matching. To
increase the level of automation in the service
selection phase, semantic matching is used since it
provides more information than just the names and
identifiers that are provided in the syntactic
matching. Besides automation the service selective
process, service selectability property is also
important since the results of searching for a Web
service can results in multiple services that have
similar characteristics. After selection the best Web
services, they are bound to their corresponding
activities and the composite service is produced.

3- Deployment phase. After constructing the
composition in the previous phase, the composed
service is deployed to be invoked by users. This
phase results in an executable composite service.

4- Execution phase. The execution engine instantiates
and execute the composite service. During this
phase, certain properties are required, for example
the execution of the composite service should be
adaptable since certain components of the composite
service can change or disappear. One possible
solution is to automate the replacement of Web
services with others at runtime. Scalability is another
important property; when the size of the composite
services becomes large, it can affect the execution of
the composite. Scalability can be evaluated during
the execution of a composite service. The last two
important properties are reliability and monitoring.
The reliability indicates how robust the composition
mechanism against the exceptional behaviors during
the execution of the composite service is. On the
other hand, monitoring the composite service during
runtime is important in verifying the effeteness of
the composite mechanism. For example, data related
to QoS can be collected during service composition
runtime.

2.4. Automation of Web Service Composition

Manual and static composition methods cannot cope with the
increased complexity of the Web services composition

process; the number of Web services increases rapidly, the
existing Web services can become unavailable at any time, the
inputs requirements of Web services may change as well as
their outputs, etc. Automation of Web services composition
becomes necessary in such dynamic environment. The
automation of a process indicates that the process model can
be generated automatically or the correct services can be
located if an abstract process model is given [29].

Several prototypes are presented in the literature to either
semi-automate or automated the composition process. For
example, eFlow, Self-Serv and WISE prototypes/frameworks
support the semi-automated service composition. On the
other hand, FUSION, SWORD and ASTRO prototypes
support automated service composition. Several platforms for
service composition are also available: IBM Business Process
Manager, Oracle BPEL Process Manager, Apache ODE and
more others. For more details about the available service
composition prototypes and platforms, see [14] [32]. The
composition strategies used in service composition prototypes
are based on workflow composition or AI planning [10] [39]
[29].

If the process model is defined then the workflow composition
can be used. On the other hand, the AI planning methods are
used in case the set of preferences and constraint are available
and at the same time, the process model does not exist.
Consequently, depending on the AI planning methods, the
process model can be generated automatically [29].

According to [20], when the service has an interface
containing action definitions that is the representation of how
web services actually behave, then interacting with a Web
service is considered a planning problem. The AI service
composition can be divided into five categories [29]: Situation
calculus, Planning Domain Definition Language (PDDL),
rule-based planning and theorem proving. The following is a
brief summary for each category:

5- Situation calculus. A logical language for
representing changes where situations are the
first-order objects which can be quantified over [16].
The work presented in [21] adapted and extended the
Golog language to automate the construction of Web
services where Golog is a logic programming
language built on top of the situation calculus. The
requirements and constraints provided by users are
presented by the first-order language of the situation
language. Each Web service is considered as a
Primitive Action or a Complex Action. A Primitive
Action is an action that changes the state of the
world while a Complex Action is a collection of
Primitive Actions.

6- PDDL. PDDL is a standardized input for the
state-of-the-art planners. The language that can be
used as a transfer format is supported by a wide

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3545

range of planning engines [25]. When planning for a
service composition, DAML-S descriptions -which
is similar to PDDL representation- could be
translated to PDDL format. Then different planners
can be used for further service composition. A tool
that transforms a Web services composition problem
into an AI planning problem is presented in [25].
The AI planning problem is then delegated to a
suitable planner. The proposed tool uses the PDDL
language is used as a transfer format.

 Rule-based planning. What matters here is the
composability rules that consider the syntactic and
semantic properties of Web services. The work
presented in [22] uses the composability rules by
comparing the syntactic and semantic features of
Web services to judge whether two services are
composable. Applying the proposed rules results in
reaching a meaningful composition. The SWORD
tool mention previously is an example for building
composite Web services using rule-based planning.

 Theorem proving. This approach is based on
automated deduction. At the start, the user
requirements and the available services are
described in a first-order language, then constructive
proofs are generated with SNARK theorem prover.
The last step is to extract the descriptions of service
composition from certain proofs. Structural
Synthesis of Program (SSP) for automated service
composition is used in [18]. SSP is a deductive
approach that uses specifications for synthesis. The
service composition depends on the
proofs-as-programs property of intuitionist logic.
Moreover, [28] proposes a method for automatic
composition of semantic Web services using Linear
Logic theorem proving. Finally, the work presented
in [2] shows that the Linear Logic theorem prover
can deal with both the service specification and the
semantic Web information.

Other AI service composition methods that do not belong to
any of the above categories exist, for example, [7] Case-based
reasoning is used in dynamic Web services composition.

At the end of this section, we present two open research issues
in service composition technology [14]: Social/crowd
computing support and engineering composite services. The
existence of social networks and crowd-souring enable access
to large number of individuals. As we know, Humans can
perform some computational tasks better than machines such
as ranking a number photos or providing an opinion on a
given topic. Currently, Web services technology considering
machine computations and does account for the specific needs
that emerge when humans are involved in applications. New
mechanisms are needed to bring together human and machine
computations.

The engineering composite services challenge results from
using several semantically unrelated notations for
engineering composite services. Further research is needed in
the areas of: Unified methods, models and tools.

2.5. QoS Evaluation Criteria

Evaluating a composite service is important since a successful
composite needs to fulfill certain functional and
non-functional requirements. In addition, the evaluation
criteria can be used to compare between different composites.
The notion of quality of service (QoS) is usually used to
evaluate the non-functional attributes [31]. Several QoS
attributes are used to evaluate the non-functional
requirements such as availability, response time, security,
traceability etc.

The research presented in [31] listed 19 QoS evaluation
criteria. Certain aggregate functions are used to evaluate a
composite service [1]. For example, the summation function
can be used with QoS attributes like response time, price and
reputation, multiplication function can be used with the
availability and reliability attributes and the minimum
function can be used with the throughput criterion.

3. BOTTOM-UP WEB SERVICE COMPOSITION
Bottom-up Web services composition or Web service mining
is a new discipline research area that aims at finding useful
and interesting Web services compositions [41]. Unlike the
top-down services composition approach, the Web service
mining composition aims at finding unexpected and
interesting compositions starting without a specific goal or
search criteria. Web service mining is inspired from the
formation of natural and biological molecules where a certain
number of atoms under certain conditions recognize each
other and forms a molecule.

Other web services mining approach depends on analyzing
the execution log for finding execution patterns of web
services where the mostly executed patterns are located.
These patterns are expected to be the most effective ones since
they are repeated in large numbers. The atomic web services
they are part of the execution pattern can be further tested
improved which will enhance the performance of the
composites [33] [27]. However, this section focuses on the
web service mining aiming for finding an interesting web
service compositions.

In case of the top-down composition approach, the more
specific the goal and search criteria are, the search space
becomes smaller and the formed compositions are more
relevant. On the other, with help of a service mining tool, the
web service mining task is to discover any interesting and
useful service compositions in the available search space or to
find the most executed patterns of web services from the
execution log.

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3546

The two approaches of web services mining are different,
while the approach relying on analyzing the execution log
searches the log for execution patterns, the second
approached searches for relevant web services for forming
non-exiting and interesting web services compositions.

For performance reasons, usually the web service mining start
with vague goal(s) and search criteria [41]. For example, a
genome data can be submitted to the service mining tool, the
results can be the expected disease(s) that are encoded in the
genome and certain recommendations or treatments for the
disease(s).

4. WEB SERVICE MINING FRAMEWORK

A framework for mining Web services is presented in [42].
This framework can be considered as the life cycle of Web
service mining which has several differences with the life
cycle of the top-down composition presented in Section 2.3.
The proposed framework uses the sow →grow →weed →
harvest analogy. The services mining framework consists of
the following phases:

1- Scope specification. This is the sow phase that
involves defining the context of mining by a domain
expert. The seeds here refers to area of interest which
are the Web services functional areas such as cell
enzyme and drug functions.

2- Search space determination. To avoid the problem
combinatorial explosion, this phase defines a
focused library of existing Web services as the initial
pool for further mining.

3- Screening the growing phase. This phase filters the
Web services in the focused library. In addition, the
potentially interesting composition leads are
identified.

4- Verification or the weeding phase. The composition
leads from the previous phase are verified using the
invocation plans and other characteristics such as
run time conditions.

5- Evaluation or the harvest phase. The interestingness
of initial invocation plans are evaluated. In addition,
modifications to the plans can be proposed. The
modified plans is verified again.

5. CONCLUSION

This paper reviews the relevant work in the area of web
service compositions. Two trends of web services
compositions are reviewed. The first trend is the top-down
composition approach. The top-down composition starts with
a defined goal and search criteria. The resulted composition
can be evaluated by quality of service attributes such as
response time, price, security etc. The second trend is the Web

service mining. The web service mining approach does not
require a specific goal or search criteria. The objective of this
type of composition is to find all unexpected and interesting
compositions in certain domain. The web services mining is a
relatively new research area. More research work is needed to
improve the usefulness and interestingness of web services
composites.

ACKNOWLEDGEMENT

This research is funded by the deanship of scientific research
at Zarqa university, Jordan.

REFERENCES
1. M. Alrifai, D. Skoutas, and T. Risse. Selecting Skyline

Services for QoS-basedWeb Service Composition. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 11–20, New York,
NY, USA, 2010. ACM.
https://doi.org/10.1145/1772690.1772693

2. G. Bellin and P. J. Scott. On the pi-Calculus and Linear
Logic. Theoretical Computer Science, 135(1):11–65,
1994.

3. M. Bugliesi, A. Marin, and S. Rossi. Model checking
adaptive service compositions. Science of Computer
Programming, 94:289–306, 2014.
https://doi.org/10.1016/j.scico.2013.11.031

4. M. DiBernardo, R. Pottinger, and M. Wilkinson.
Semi-automatic web service composition for the life
sciences using the BioMoby semantic web framework.
Journal of Biomedical Informatics, 41(5):837–847,
2008.

5. L. A. Digiampietri, J. J. Prez-alczar, and C. B. Medeiros.
AI Planning in Web Services Composition: a review of
current approaches and a new solution. SBS, pages
983–992, 2007.

6. D. Fensel, C. Bussler, Y. Ding, and B. Omelayenko.
TheWeb Service Modeling Framework WSMF.
Electronic Commerce Research and Applications,
1(2):113–137, 2002.

7. H. Fouad and A. Baghdad. Dynamic web service
composition: use of case based reasoning and AI
planning. In In Proceedings of the fourth international
conference on web and information technologies
(ICWIT), pages 22–29, 2012.

8. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel
web services. In Proceedings of the 13th International
Conference on World Wide Web, WWW ’04, pages
621–630, New York, NY, USA, 2004. ACM.

9. M. Ghobaei-Arani and A. Souri. Lp-wsc: a linear
programming approach for web service composition in
geographically distributed cloud environments. The
Journal of Supercomputing, 75(5):2603–2628, May
2019.
https://doi.org/10.1007/s11227-018-2656-3

10. O. Hatzi, D. Vrakas, N. Bassiliades, D.
Anagnostopoulos, and I. Vlahavas. The PORSCE II

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3547

framework: using AI planning for automated Semantic
Web service composition. The Knowledge Engineering
Review, 28:137–156, 2013.

11. R. Khadka and B. Sapkota. An Evaluation of Dynamic
Web Service Composition Approaches. In M. van
Sinderen and B. Sapkota, editors, 4th International
Workshop on Architectures, Concepts and Technologies
for Service Oriented Computing ACT4SOC 2010, pages
67–79, Portugal, 2010. SciTePress.

12. Kobusiska and C.-H. Hsu. Towards increasing reliability
of clouds environments with restful web services. Future
Generation Computer Systems, 87:502 – 513, 2018.

13. M. Kuzu and N. K. Cicekli. Dynamic planning approach
to automated web service composition. Applied
Intelligence, 36(1):1–28, 2012.

14. L. Lemos, F. Daniel, and B. Benatallah. Web service
composition. ACM Computing Surveys, 48(3):1–41,
dec 2015.

15. X. Liang, A. K. Qin, K. Tang, and K. C. Tan. Qos-aware
web service selection with internal complementarity.
IEEE Transactions on Services Computing,
12(2):276–289, March 2019.
https://doi.org/10.1109/TSC.2016.2598776

16. F. Lin. Situation Calculus. In Handbook of Knowledge
Representation, pages 649–669. 2008.

17. J.-W. Liu, L.-Q. Hu, Z.-Q. Cai, L.-N. Xing, and X. Tan.
Large-scale and adaptive service composition based on
deep reinforcement learning. Journal of Visual
Communication and Image Representation, page
102687, 2019.

18. S. Lmmermann. Runtime Service Composition via
Logic-Based Program Synthesis . PhD thesis, Podunk
IN, 2002.

19. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D.
McDermott, D. McGuinness, B. Parsia, T. Payne, M.
Sabou, M. Solanki, N. Srinivasan, and K. Sycara.
Bringing semantics to web services: The owl-s
approach. In J. Cardoso and A. Sheth, editors, Semantic
Web Services and Web Process Composition, pages
26–42, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.
https://doi.org/10.1007/978-3-540-30581-1_4

20. D. McDermott. Estimated-Regression Planning for
Interactions with Web Services. In In Proceedings of the
6th International Conference on AI Planning and
Scheduling, pages 43–54, 2002.

21. S. Mcilraith. Adapting Golog for composition of
semantic web Services. Pages 482–493, 2002.

22. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid.
Composing Web Services on the Semantic Web. The
VLDB Journal, 12(4):333–351, Nov. 2003.

23. D. Mukhopadhyay and A. Chougule. A Framework for
Semi-automated Web Service Composition in Semantic
Web. In Cloud Ubiquitous Computing Emerging
Technologies (CUBE), 2013 International Conference
on, pages 161–166, Nov 2013.

24. J. A. Parejo, S. Segura, P. Fernandez, and A. Ruiz-Corts.
QoS-aware web services composition using GRASP
with Path Relinking. Expert Systems with Applications,
41:4211–4223, 2014.
https://doi.org/10.1016/j.eswa.2013.12.036

25. J. Peer. A PDDL Based Tool for Automatic Web Service
Composition, pages 149–163. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

26. C. Peltz. Web Services Orchestration and
Choreography. Computer, 36(10):46 52, 2003.

27. Ran Tang and Ying Zou. An approach for mining web
service composition patterns from execution logs. In
2010 12th IEEE International Symposium on Web
Systems Evolution (WSE), pages 53–62, Sep. 2010.

28. J. Rao and P. Kngas. Logic-based web services
composition: From service description to process model.
In In Intl. Conference on Web Services (ICWS), pages
446–453. IEEE, 2004.

29. J. Rao and X. Su. A survey of automated web service
composition methods. In In Proceedings of First
International Workshop on Semantic Web Services and
Web Process Composition, pages 43–54, 2004.

30. S. Sadeghiram, H. Ma, and G. Chen. Distance-guided
ga-based approach to distributed data-intensive web
service composition. CoRR, abs/1901.05564, 2019.
https://doi.org/10.1109/CEC.2018.8477729

31. C. Salem, H. Serge, M. Lynda, M. Vincent, and Y.
Samir. Multicriteria Evaluation Based Conceptual
Framework for Composite Web Service Selection.
Evaluation and Decision Models: Real Case Studies,
2011.

32. Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S.
Bourne, and X. Xu. Web services composition: A
decade’s overview. Information Sciences, 280:218–238,
2014.

33. B. Upadhyaya, R. Tang, and Y. Zou. An approach for
mining service composition patterns from execution
logs. Journal of Software: Evolution and Process,
25(8):841 870, 2013.

34. M. Viroli. On competitive self-composition in pervasive
services. Science of Computer Programming,
78:556–568, 2013.

35. Y. Wei and M. B. Blake. Service-Oriented Computing
and Cloud Computing: Challenges and Opportunities.
Internet Computing, IEEE, 14:72–75, 2010.

36. N. Xi, C. Sun, J. Ma, and Y. Shen. Secure Service
Composition with Information Flow Control in Service
Clouds. Future Gener. Comput. Syst., 49:142–148,
2015.

37. J. Yang and M. Papazoglou. Service components for
managing the life-cycle of service compositions.
Information Systems, 29(2):97–125, 2004.
https://doi.org/10.1016/S0306-4379(03)00051-6

38. J. Yang, M. P. Papazoglou, B. Orriens, and W. J. van
Heuvel. A rule based approach to the service
composition life-cycle. In Web Information Systems
Engineering, 2003. WISE 2003. Proceedings of the

Khalid Mansour, International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3540 – 3548

3548

Fourth International Conference on, pages 295–298,
Dec 2003.

39. T. Yu, Y. Zhang, and K.-J. Lin. Efficient Algorithms for
Web Services Selection with Endto- end QoS
Constraints. ACM Trans. Web, 1(1), May 2007.

40. X. Zhao, L. Shen, X. Peng, and W. Zhao. Toward
SLA-constrained service composition: An approach
based on a fuzzy linguistic preference model and an.
Information Sciences, 2014.
https://doi.org/10.1016/j.ins.2014.11.016

41. G. Zheng. Web Service Mining. PhD thesis, Virginia
Polytechnic Institute, 2009.
https://doi.org/10.1007/978-1-4419-6539-4_4

42. G. Zheng and A. Bouguettaya. Web Service Mining
Framework, pages 31–75. Springer US, Boston, MA,
2010.
https://doi.org/10.1007/978-1-4419-6539-4_4

