
Ambreen A. Sattar et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2447 – 2451

2447


ABSTRACT

Stemming is the process of mapping various inflections of a
word to its base form. Stemmer is an essential component of
Information Retrieval (IR) systems and different Natural
Language Processing pipelines. This research reports the
development and evaluation of stemmer for a resource poor
language Sindhi. The stemmer is using a lexicon-based affix
removal technique for stemming. The developed lexicon
represents the base forms and the algorithm uses this lexicon
during the affix removal process. The overall performance
accuracy is evaluated, and stemmed error rate is calculated.
The results show 89.57% overall performance accuracy.

Key words: Natural language processing, Information
Retrieval, Sindhi, Lexicon, Yet another Suffix Stripper,
Hidden Markov Model.

1. INTRODUCTION

Modern information retrieval (IR) systems make use of
Natural Language Processing (NLP) techniques to improve
their performance. Natural language processing (NLP) is the
branch of computer science concerned with how computers
can be used to understand and manipulate natural language
text or speech to carry out effective operations [5]. IR deals
with the processing of documents which include the text so
that they can be retrieved rapidly based on the query of the
user [13]. One of the NLP techniques used by IR systems is
stemming. Stemmer is an essential component of almost all
IR systems [1] which is used to reduce inflected words to their
base forms [3-4]. Many stemmers are available for languages
such as English (e.g. [10], [17]), Arabic (e.g. [2], [9]), and
Urdu [8]. This research study focuses on the development of a
stemmer for Sindhi language. Sindhi is a resources poor
language in terms of NLP applications. Few Sindhi stemming
research studies are also available and discussed in following
section. However, this research study tries to improve the
performance efficiency of Sindhi stemming.

Various types of stemming algorithms are there, they follow
different techniques to find the base form of the inflected
words. These algorithms are divided into three different
categories which include: affix removal, statistical and hybrid
algorithms. In affix removal stemming algorithms prefixes
and suffixes are removed by applying some set of rules. While
in the statistical methods, statistical information is used from
a corpus or dictionary to learn morphology. N-Gram, YASS
[11] and HMM (Hidden Markov Model) stemmers are
examples of statistical stemmers. Prefixes and suffixes are
removed after applying some statistical procedure [6]. On the
other hand, hybrid methods are combination of affix removal
techniques and statistical methods. The proposed Sindhi
stemmer uses the affix-removal method to find out the base
forms of inflected words.

Following sections discuss related work, methods and
materials including stemming algorithms and different
stemming scenarios, results, and conclusion.

2. RELATED WORK

Most of the classical stemming research work include
different studies of developing English stemmers. For
instance, Lovins Stemming Algorithm [10], which uses
technical vocabularies. It identifies and removes the longest
endings by using transformation rules. Another popular
stemmer is Porter Stemmer [17]. The Porter stemming
algorithm makes use of list of suffixes, transformation rules
and context-sensitive rules. Suffix removal and word
conflation algorithm [21] is another classical work which
extends the Lovins Stemming Algorithm by enhancing the
coverage of suffixes list. Later [22] proposed another
stemming algorithm developed at Lancaster University. It
uses an iterative algorithm with stored rules. Krovetz
stemming algorithm [23] is another work on English
stemming which uses inflectional rules of plural to singular,
past tense to present tense, gerund and continuation “ING”
removal, along-with some transformation rules.

Sindhi Stemmer using Affix Removal Method

Ambreen A. Sattar1, Suhni Abbasi2, Mutee U Rahman3, Amber Baig4 and Masroor Nizamani5
1Information Technology Centre, Sindh Agriculture University, Tandojam, Hyderabad, Pakistan,

ambreen.nizamani7@gmail.com
2Information Technology Centre, Sindh Agriculture University, Tandojam, Hyderabad, Pakistan,

suhni.abbasi@sau.edu.pk

3Department of Computer Science, Isra University, Hyderabad, Pakistan, muteeurahman@gmail.com
4Department of Computer Science, Isra University, Hyderabad, Pakistan, amberbaig@gmail.com

5 Department of Computer Science, Isra University, Hyderabad, Pakistan, masroor342@gmail.com

 ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1331032021.pdf

https://doi.org/10.30534/ijatcse/2021/1341032021

Ambreen A. Sattar et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2447 – 2451

2448

Apart from classical stemming work for English discussed
above various stemmers for closely related languages to
Sindhi including Urdu and Punjabi are also available. For
Urdu a stemming algorithm named “assas band” was
proposed by [19] which uses prefix and suffix removal
technique with exception lists to ensure prefix or suffix
removal. Another stemmer for Urdu is Light weight stemmer
for Urdu proposed by [18]. This algorithm uses rule-based
approach where inflectional morphology rules are used.
Prefixes and suffixes are removed however, exceptions are
handled by using an exceptional list like assas band. Another
research work for Urdu stemming include [8]. This stemmer
was developed by using a rule-based technique. Stemmer has
two main components: rules and the lexicon. To remove
prefixes and suffixes from the word, rules were developed.
Also, the database (lexicon) was designed which contains root
words along with their frequencies. When input was given to
the system, tokens were generated of the words by using
delimiters as space. The text was normalized by removing
special characters like.? , ‘ “@. After normalization prefix
and suffix rules were applied to the word. If the appropriate
rule, not found, then the system will return this word as a root
word. However, if rule found for that particular word, then the
word is further divided into possible morphemes. Afterwards,
these morphemes are matched against the one which is stored
in the database to find frequencies. Maximum frequency in
possibilities list is looked up and word with maximum
frequency is returned as root form. The accuracy of this
Rule-based Urdu stemmer is 85.14%.

For Punjabi an enhanced stemmer based on suffix removal
and table lookup techniques is proposed by [7], this study is
applied on Gurmukhi script examples.

Among related work for Sindhi stemming [16] is one of the
initial stemming studies for Sindhi. In this work first
Rule-based stemming algorithm for Sindhi language is
proposed. The proposed algorithm is divided into two parts,
first is the lexicon and the second is developed Rules. A
lexicon has a total of 50,327 words. The original word, its
prefix, and suffix can be added, updated, and removed from
the lexicon directly from the user interface of the developed
application. Total 50,327 words stored inside the lexicon. The
second part of an algorithm is Rules, there is a total of 38
Linguistic Rules developed and included in repositories.
Sixteen rules are developed for prefixes and fifteen rules for
suffixes. The performance accuracy of an algorithm was
84.85%.

[20] presented their stemming work for Sindhi where they
proposed an algorithm for stemming. Proposed algorithm
finds the root of the word by breaking it into different affixes,
this root is considered the base work or stem. Affixes and
suffixes are removed by using table lookup method. Accuracy
results are not reported, the algorithm and some statistics of
the corpus / words are presented.

Later [15] proposed an unsupervised stemming algorithm for
Sindhi. The overall experimental setup includes ten thousand
(10000) sentences, the algorithm, and its implementation.
List of suffixes is used for suffix striping. The overall
accuracy of 87% is achieved which is better than the earlier
rule based stemming accuracy which was 85%. However, this
stemming algorithm is tested and evaluated on Devanagari
script of Sindhi.

3. METHODS AND MATERIALS

This research study comprises of the development of the
stemmer by truncating the prefixes and suffixes to get the
original base word form or stem. A lexicon containing root
words is developed using the MySQL database, A
lexicon-based algorithm is also proposed and discussed.
Figure 1 shows the overall flow of proposed algorithm.
Following sections discuss the overall methodology with
proposed algorithm and different stemming scenarios.

Figure 1: Overall Flow of Proposed Algorithm.

3.1 Proposed Algorithm

A lexicon-based affix removal algorithm for stemming is
proposed. Base forms or stems are stored in a lexicon
database. For every input word system looks that word into
the stem lexicon, successful search implies that it is already in

Ambreen A. Sattar et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2447 – 2451

2449

base word form, therefore the system simply returns same
word as a stem. In case of unsuccessful search, it is not a stem,
the algorithm will truncate the affix and keep searching the
lookup table until the stem is found, or half of the word length
is reached. There are different scenarios in this process.
Following sections discuss different stemming scenarios with
examples.

3.2 Stemming Scenarios

Different stemming scenarios can be there, for example
consider a case of suffix removal where after tokenization the
candidate token for stemming is “نشانیون”. Initially the
stemming process will remove the last letter “ن” and resulting
word “نشانیو” will be looked into the stem / root words list. In
this case “نشانیو” is not a valid stem and will not be found in
the lookup list. As the total length of candidate word “نشانیون”
is seven, therefore, the process of removing the last letter is
repeated at least three times in case of unsuccessful lookup
and the successful retrieval of stem process will terminate
immediately. In this case process will be repeated as “نشانیو” is
not a valid stem. The last letter “و” of remaining word “نشانیو”
will also be removed and resulting token “نشاني” will be
looked up in the stem words list. This time “نشاني” is a valid
stem therefore, search will be successful and “نشاني” will be
returned as stem of “نشانیون”.

Another case may be when truncated word is not found in the
list at all. For example, the token “شعبا”, when truncated will
have word form “شعب”, which is invalid and will not be found
in the stem list. In this case next iteration will cause word to
be truncated to “شع” which is also invalid. The process of
removing the last letter will now stop as half of the word is
truncated. The algorithm will now start looking the minimum
edit distance stem for the candidate token, which in this case
will be “شعبو”. Therefore, the resulting stem “شعبو” will be
returned.

While considering a prefix removal scenario same procedure
is repeated as discussed above. However, instead of last letter
removal a list of prefixes is searched and matching smallest
prefix is removed and resulting word is searched in the stem
list. For example, consider the case of word “ناپسند”. Here, “نا”
will be removed and resulting word “پسند” will be returned as
stem.

Words can also have prefix and suffix combinations where
both prefix and suffix are attached with base word forms
simultaneously. For instance, “بي واقفیت“ ,”اڻ ڄاٹائي” , and
 are some examples where both prefix and suffix are ”ناپسندي“
present. While dealing with these cases first prefixes are
removed as discussed above. The remaining word forms are
then applied suffix removal process on the same lines as
discussed earlier.

A GUI based tool is designed to test and evaluate the proposed
algorithm. Figures: 2, 3 and 4 show the sample input and
output screenshots of the tool.

Figure 2: Input Module of Stemmer

Figure 3: Text uploaded in Input Module of Stemmer

Figure 4: Output Module of Stemmer

Ambreen A. Sattar et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2447 – 2451

2450

4. RESULTS
The accuracy of the designed Sindhi stemmer is calculated by
using stemmed error rate (SER). To measure the performance
accuracy of the developed Sindhi stemmer, the stemmed error
rate was computed. The Stemmed Error Rate (SER) is defined
by [16] as given below.

For assessment, the performance of the designed stemmer, the
list of words of Sindhi were collected and SER is calculated
for prefixes, suffixes, and prefixes/suffixes. The calculated
SER for running examples are provided in Table.1

Table 1: SER of prefixes, suffixes and prefix-suffix

Corpora Total
words
Teste

d

Words
correctl

y
stemmed

Incorrectl
y Stemmed

Error
Rate

Prefix 72 66 6 8.33%
Suffix 150 148 2 1.33%

Prefix/Suffix 41 34 7 17.07
%

The developed Sindhi stemmer using affix removal method
has been measured on small data set having 72 prefix terms,
150 suffix terms, and 41 prefix-suffix terms. The SER of all
these terms is shown in Figure 5.

Figure 5: Stemmer Error Rate

5. CONCLUSION
Sindhi is considered a resource poor language in NLP studies.
Existing research studies for Sindhi stemming are of
preliminary nature where either the results are not reported or
performance needs improvements. The proposed stemmer
gives good results with improved performance as compared to
existing stemmers. The result of the stemmer was measured
using Stemmer Error Rate (SER). The performance accuracy
of the developed stemmer is 91.09%. The SER of prefix words
is 8.33%, SER of suffix words is 1.33% and SER of affix
words is 17.07%. It is also observed that by adding more

words in the lexicon, the performance accuracy of the Sindhi
stemmer improved.

REFERENCES
1. A. Alnaied, M. Elbendak, and A. Bulbul, "An intelligent

use of stemmer and morphology analysis for Arabic
information retrieval," Egyptian Informatics Journal,
2020.

2. A. Al-Omari, B. Abuata, and M. Al-Kabi, "Building and
benchmarking new heavy/light arabic stemmer," in
The 4th International conference on Information and
Communication systems (ICICS’13), 2013, pp. 17-22.

3. J. Atwan, M. Wedyan, and H. Al-Zoubi, "Arabic text
light stemmer," Int. J. Comput. Acad. Res, vol. 8, pp.
17-23, 2019.

4. A. Chen and F. Gey, "Building an Arabic stemmer for
information retrieval," in TREC, 2002, pp. 631-639.

5. J. Hirschberg and C. D. Manning, "Advances in natural
language processing," Science, vol. 349, pp. 261-266,
2015.

6. A. G. Jivani, "A comparative study of stemming
algorithms," Int. J. Comp. Tech. Appl, vol. 2, pp.
1930-1938, 2011.

7. G. Joshi and K. D. Garg, "Enhanced version of Punjabi
stemmer using synset," International Journal, vol. 4,
2014.

8. R. Kansal, V. Goyal, and G. S. Lehal, "Rule based urdu
stemmer," in Proceedings of COLING 2012:
Demonstration Papers, 2012, pp. 267-276.

9. S. Khan, W. Anwar, U. Bajwa, and X. Wang, "Template
Based Affix Stemmer for a Morphologically Rich
Language," International Arab Journal of Information
Technology (IAJIT), vol. 12, 2015.

10. J. B. Lovins, "Development of a stemming algorithm,"
Mech. Transl. Comput. Linguistics, vol. 11, pp. 22-31,
1968.

11. P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra,
and K. Datta, "YASS: Yet another suffix stripper,"
ACM transactions on information systems (TOIS), vol.
25, pp. 18-es, 2007.

12. J. Mehrad and S. Berenjian, "Providing a Persian
language singular-stemmer system (RICeST
Stemmer)," 2011.

13. C. Moral, A. de Antonio, R. Imbert, and J. Ramírez, "A
survey of stemming algorithms in information
retrieval," Information Research: An International
Electronic Journal, vol. 19, p. n1, 2014.

14. B. Nathani, N. Joshi, and G. Purohit, "A Rule Based
Light Weight Inflectional Stemmer for Sindhi
Devanagari Using Affix Stripping Approach," in 2018
3rd International Conference and Workshops on Recent
Advances and Innovations in Engineering (ICRAIE),
2018, pp. 1-4.

15. B. Nathani, N. Joshi, and G. Purohit, "Design and
Development of Unsupervised Stemmer for Sindhi

Ambreen A. Sattar et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2447 – 2451

2451

Language," Procedia Computer Science, vol. 167, pp.
1920-1927, 2020.

16. Shah, M., Shaikh, H., Mahar, J., and Mahar, S.
“Stemmer for information retrieval system using
rule-based stripping approach,”. Sindh University
Research Journal-SURJ (Science Series), vol. 48, No.4,
2016.

17. P. Willett, "The Porter stemming algorithm: then and
now," Program, 2006.

18. S. A. Khan, W. Anwar, U. I. Bajwa, and X. Wang, "A
light weight stemmer for Urdu language: a scarce
resourced language," in Proceedings of the 3rd
Workshop on South and Southeast Asian Natural
Language Processing, 2012, pp. 69-78.

19. A. Naseer and S. Hussain, "Assas-Band, an
affix-exception-list based Urdu stemmer," in
Proceedings of the 7th Workshop on Asian Language
Resources (ALR7), pp. 40-47, 2009

20. M. A. Dootio and A. I. Wagan, "Computer and
Information Sciences," 2017.

21. Dawson, J. “Suffix removal and word conflation,”
ALLC bulletin, vol.2, No.3, pp.33-46, 1974.

22. Paice, C. D. “Another stemmer,” In ACM Sigir Forum
Vol. 24, No. 3, pp. 56-61. New York, USA: ACM, 1990.

23. R. Krovetz. “Viewing Morphology as an Inference
Process,” In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM, New
York, pp 191-202, 1993

