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ABSTRACT 
 
TCP-Transmission Control Protocol is a connection oriented 
and reliable transport layer protocol to ensure process to 
process communication. Improving TCP's performance for 
wireless networks is always been a challenging task for the 
researchers. The primary reason of the TCP's performance 
degradation in wireless networks is its inability to 
differentiate losses to act accordingly. TCP suffers from 
inaccurate bandwidth estimation and fairness issue in wireless 
networks too. Over the years, researchers have proposed 
many TCP variants to enable TCP to maintain satisfactory 
performance in wireless environments. In the last decade, 
ML-Machine Learning techniques are started being applied in 
every possible area due to their numerous advantages. Many 
researchers have tried to apply various ML techniques to 
improve TCP's performance for wireless and wired networks. 
This paper discusses the fundamentals of ML techniques and 
their applicability with TCP. Some of the recent ML based 
TCP variants are discussed. The paper concludes with some 
future directions for researchers.  
 
Key words : TCP , Wireless Network , Machine Learning , 
Supervised Learning , Reinforcement Learning 
 
1. INTRODUCTION 
 
TCP-Transmission Control Protocol ensures connection 
oriented and reliable communication between two processes 
running at two end devices. Being a connection oriented 
protocol, it facilitates connection management to allow full 
duplex and stream communication. Being a reliable protocol, 
it facilitates congestion control, flow control and error control 
[1][2][3]. TCP was initially written for wired networks where 
the primary cause of packet losses is network congestion. 
TCP's primary focus is also on congestion control where it 
considers every packet loss as a cause of congestion. When 
the same TCP was used with wireless networks, a significant 
amount of performance degradation was found. The reason 
was TCP's inability to handle various non congestion issues of 
wireless networks. TCP's congestion control centric 
architecture was needed revisions to be suitable with the 
issues related with the wireless networks. These issues 
include packet loss classification, congestion window update 

 
 

and congestion inference. Packet loss classification is the 
ability to handle non congestion losses such as channel losses, 
losses due to route failures etc. TCP's strong consideration of 
any loss as a cause of network congestion reduces the 
transmission rate unnecessarily in presence of packet losses 
due to channel issues or route failures. Congestion window 
should be set considering the present status of the wireless 
networks. Congestion detection is also a critical task in 
wireless networks due to possibilities of other issues [4][5][6]. 

 
Over the years researchers have proposed various TCP 
variants which could be primarily classified into cross-layer 
approaches and layered approaches. Cross layer TCP variants 
receive feedback information (network state) from the lower 
layers for decision making where as layered TCP variants are 
not dependent on lower layers. TCP variants could be also 
classified according to how they handle various packet losses. 
These approaches could be classified based on loss 
differentiation, loss prediction or loss avoidance approach. A 
detail discussion of TCP variants is given in [7][8]. 

 
In recent years, ML is introduced with the computer networks 
too. The concept of ML based intelligent network protocol or 
application design is being applied for traffic analysis, 
network security and protocol optimization [9][10]. 

 
ML - Machine Learning is a group of statistical techniques 
which let computers learn from the available training data 
without being explicitly programmed. The goal is to let 
computers build a decision model themselves which will be 
keep improving with the experiments. ML focuses on 
exploration of training data to derive hidden patterns. These 
patterns are used to label unknown data through the decision 
model. ML techniques are started being used for many real 
world applications in the field of bioinformatics, computer 
vision, speech recognition, data analytic etc. From stock 
market predictions to the weather forecast, Students' 
performance predictions to medical diagnosis, Machine 
Learning is every where due to its numerous advantages such 
as flexility, accuracy and efficiency. Offline learning such as 
Supervised learning processes the training data to build the 
model which is used for decision making for future data. 
Online learning such as Reinforcement learning learns 
directly via interaction with the environment. The learning 
happens on trial basis without any prior model building 
phase[11][12].  
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 This paper discusses how ML techniques are incorporated for 
TCP performance improvement.  Section 2 and 3 discusses 
online learning based and offline learning based TCP variants. 
Section 4 compares these TCP variants. The paper concludes 
with future directions.  
 
2. TCP WITH ONLINE LEARNING 

 
This section discusses TCP variants with online learning. 
These variants try to overcome following limitations of rule 
based or TCP variants with offline learning.   

1.  Inability to adapt to new or unseen network scenario.  
2.  Inability to learn from the past experiences.  

 
2.1  Learning TCP 

 
 Learning TCP [13] has a learning automaton to set value of 
퐶푤푛푑 -Congestion Window dynamically. The automaton 
interacts with the environment by selecting an action 
probabilistically. Probabilities are maintained for the selection 
of actions as per the response received from the environment. 
The focus is to select a current action based on past actions 
and responses. Analysis of IAT - Inter Arrival Times of ACKs 
- Acknowledgements is performed to determine network 
condition. 

 
A 푇푖푚푒_푊푖푛푑표푤  is maintained to record 푁  most recent 
IATs of ACKs. 푀푒푎푛  - Average and 푆푡푑푑푒푣  - Standard 
Deviation of these values are calculated. A value of IAT is 
bounded in the range [푀푒푎푛 − 푆푡푑푑푒푣 , 푀푒푎푛 + 푆푡푑푑푒푣] 
where it is rounded to nearest value to minimize effect of very 
low (or high) IAT. The network state is defined as 
푇푖푚푒_푅푎푡푖표 and 훾.  

 
푇푖푚푒_푅푎푡푖표 = _  (1) 

  
훾 = _  (2) 

 
It is assumed that the maximum IAT is thrice of 푀푒푎푛. So 
upper bound of 푇푖푚푒_푅푎푡푖표  is 1 and lower bound of 
푇푖푚푒_푅푎푡푖표 is -2. If IAT is small compared to of 푀푒푎푛, 
푇푖푚푒_푅푎푡푖표 becomes near to 1 indicating early ACK. An 
ACK for which IAT is higher than of thrice of 푀푒푎푛  is 
considered as a late ACK. 푇푖푚푒_푅푎푡푖표 is -2 for late ACK. 훾 
is normalized network state. Value of 훿 is set to -2. In absence 
of heavy network load, early ACKs lead to the value of 훾 to be 
closed to 1. Subsequently 퐶푤푛푑 is increased. 

 
The performance index 훽(푛), at time step 푛 is set to either 훾 
(Increase state) or to 1− 훾  (Decrease state). The CALA - 
Continuous Action Learning Automata algorithm uses 훽(푛) 
to update the 휇(푛)  - Mean and 푠푖푔푚푎(푛)  - Deviation of 
update in 퐶푤푛푑. The detail arithmetic is discussed in [13]. 

 
2.2  ML Framework for RTT Estimation 
 
 A Machine Learning framework for RTT-Round Trip Time 
estimation [14] is proposed using experts framework method. 

Each of the experts guesses a value. RTT is derived using 
weighted average of these values. Weights are updated based 
on the difference between estimated RTT and actual RTT. A 
weight decides the confidence for an expert in terms of its 
accuracy of prediction. As RTT value is used to calculate 
RTO value, the accurate RTT estimation indirectly avoids 
unnecessary pauses(long RTO) or frequent retransmissions 
(small RTO). 

 
At every trial 푡 , a set of 푁  experts predict their values 
푥 ∀푖 ∈ {1, . . . ,푁} with weights 푤 , . The expert’s prediction 
푦  is compared with actual value 푦  using a loss function 퐿 to 
estimate error. 퐿 , (푥 ,푦 )  refers to the error at trial 푡  for 
expert 푖 with value 푥 .  

 

푦 =
∑ 	 , ∗
∑ 	 ,

 (3) 

  

퐿 , (푥 ,푦 ) = (푥 − 푦 ) , for푥 ≥ 푦
2 ∗ 푦 , for푥 < 푦  (4) 

 
The weights are updated with a learning rate 휂, 휂 > 0 . 
Weights are also shared among experts for the prediction 
improvement with a weight sharing rate 훼, 0 ≤ 훼 ≤ 1.  

 
푤 , = 푤 , ∗ 푒 ∗ , ( , ) (5) 

  
푝표표푙 = ∑ 	훼 ∗ 푤 ,  (6) 

  
푤 , = (1− 훼) ∗ 푤 , + ∗ 푝표표푙 (7) 

 
Values for the three parameters 푁 - Number of experts,휂 - 
Learning rate and 훼  - Weight sharing rate are set after 
experiments with several combinations. These values are set 
as 푁 = 100, 휂 = 2 and 훼 = 0.8.The discussion is given in 
[14]. 

 
2.3  Intelligent TCP 
 
 i-TCP - Intelligent TCP [15] is a NN-Neural Network based 
end to end congestion control solution for adhoc multihop 
wireless mesh networks. iTCP tries to improve congestion 
control for non deterministic and lossy wireless environment. 
A reinforcement learning based multi layer, feed forward and 
zero bias NN is designed to set 퐶푤푛푑 in the form of increase, 
decrease or remain unchanged update.  

 

A. Neural Network Design 
 The NN has one input layer, two hidden layers and one output 
layer. The input layer has three neurons corresponding to 
three inputs: 푡_표푢푡 -Number of consecutive timeouts, 
푑푎푐푘-Number of duplicate ACKs and current 퐶푤푛푑 . The 
first hidden layer has three neurons recommending strength to 
change 퐶푤푛푑 in the form of 푖푛푐푟-Increase, 푑푒푐푟-Decrease 
and 푠푎푚푒 -No change. The second hidden layer has two 
neurons: 푑푐푠푛 - determines the type of update with highest 
relative strength based on the outputs of neurons of first 
hidden layer. 푐ℎ푛푔 -regulates the strongest update with 
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reference of the output of 푑푐푠푛, output of all neurons of first 
hidden layer and current 푐푤푛푑. The output layer has a neuron 
푟푒푠  to set 퐶푤푛푑  based on its current value and output of 
second hidden layer. 

 
Reinforcement learning based adjustment of weights is 
performed. Dynamic weights are used for the neurons 
processing network feedback (Neurons 푡_표푢푡  and 푑푎푐푘 ). 
Weights for rest of the neurons are static. A detail discussion 
of weights adjustment and activation functions is given in 
[15]. The simulation is performed with NS2 and a real testbed. 

 
2.4  TCP – PCC 
 
 PCC - Performance Oriented Congestion Control [16] is a 
new architecture to understand what rate control actions can 
improve the performance. PCC sets a transmission rate and 
observes the results to calculate value for a utility function 
with an objective like high throughput and low loss rate. PCC 
is flexible as we can set different objectives by selecting 
utility function accordingly. 

 
PCC executes a set of micro experiments. A micro experiment 
shows sending at rate 푟, produces the utility 휇. PCC selects 
the rate which leads to the highest utility. The time is divided 
into MI-Monitor Intervals of one or two RTTs. For a MI, PCC 
sends data at the rate 푟 and observes SACK, throughput, loss 
rate and latency to calculate value 휇 of a utility function. One 
possible utility function is 휇 = 푇 − 퐿 (푇 is Throughput and 퐿 
is Loss rate). PCC has an online learning algorithm similar to 
of gradient ascent. PCC starts with a rate 푟 and tests rates 
(1 + 휖) ∗ 푟  (higher) and (1 − 휖) ∗ 푟  (lower) to select next 
rate, whichever gives higher utility. It continues till the utility 
is increasing. Once the utility is decreased, it returns to the 
state from where it continues testing both higher and lower 
rates to select best to continue with. The utility function is set 
with the goal of high throughput and low loss as,  

 
푈 (푥 ) = 푇 ∗ 푆푖푔푚표푖푑 (퐿 − 0.05) − 푥 ∗ 퐿  (8) 

 
푥 ,퐿  and 푇 = 푥 ∗ (1 − 퐿 ) are sending rate, loss rate and 
throughput of 푖  sender respectively. The sigmoid function is 
defined as,  

푆푖푔푚표푖푑 (푦) = ∗  (9) 
 
 The detail discussion on selection of value of 훼  and 
appropriateness of utility function is discussed in [16]. PCC’s 
control algorithm has three states: Starting state, Decision 
making state and Rate adjusting state.  

A.  Starting State 
 PCC starts with 2 ∗ 푀푆푆/푅푇푇  and doubles rate every 
MI-Monitor Interval. Instead of exit from the starting state on 
a packet loss, it continues till utility decreases. Once the utility 
is decreased, it returns to the rate which had higher utility and 
switches to the Decision making state.  

 

B. Decision Making State 
 PCC executes multiple RCTs - Randomized Controlled 
Trials to determine direction and amount of change in rate. 
Four consecutive MIs are divided into two pairs, each of 
having two MIs. For each pair, PCC tries higher rate 
(1 + 휖) ∗ 푟 and lower rate (1− 휖) ∗ 푟 to get utility values 푈  
and 푈  respectively. For each pair 푖 ∈ 1,2, utility values 푈  
and 푈  are compared.   

 
1.  If 푈 > 푈  and 푈 > 푈  then 푟 = (1 + 휖) ∗ 푟.  
2.  If 푈 < 푈  and 푈 < 푈  then 푟 = (1− 휖) ∗ 푟.  
3.  If 푈 > 푈  and 푈 < 푈  then no change in 푟.  
4.  If 푈 < 푈  and 푈 > 푈  then no change in 푟.  
 
 On no change of rate event, PCC continues in decision 
making state with increase in experiment granularity 휖 . 
휖 = 휖 + 휖 . The initial value of 휖 is 0.01. The minimum 
휖  is 0.01 and 휖  is 0.05.  

 

C. Rate Adjusting State 
 The 푛  rate can be set as,  

 
푟 = 푟 ∗ (1 + 푛 ∗ 휖 ∗ 푑푖푟) (10) 

 
푑푖푟 = ±  is the moving direction. If utility is decreased 
(푈 < 푈 ), rate is set to 푟  and PCC switches to Decision 
making state. 

 
Performance of PCC has been evaluated with 8 real world 
challenging network scenarios such as Inter data center 
environment, satellite links, unreliable lossy links etc. The 
detail discussion is given in [16]. 

 
2.5  Q-Learning TCP 

 
 Q-Learning TCP [17] deals with TCP’s fairness issue of 
favoritism of flows with small number of hops as compared to 
of flows with large number of hops. It is a cross layer, 
reinforcement learning based distributed network monitoring 
solution for fair resource allocation for wireless mesh 
networks and wireless multi hop networks. Each TCP sender 
represents the network as a MDP-Markov Decision Process 
and applies Q-Learning to maintain transition 
probabilities.Q-learning is a reinforcement learning algorithm 
where an agent learns via interaction with the environment. In 
this approach, TCP sender is the agent and network is the 
environment. The interaction helps the agent to build 
states-actions mapping called policies. The time is divided 
into decision epochs. In every epoch, TCP sender receives 
network statistics in the form of state space variables.  

A. States 
 The state space is in the form of Fairness Index and 
Aggressiveness Index. TCP sender uses Jain’s fairness index. 
The Jain’s fairness index at node 푘 at decision ephoch 푡 is,  

퐽 (푥 ,푥 , . . . . ,푥 ) = (∑ 	 )

∗∑ 	
 (11) 
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 Where 푛 is the number of flows originated or forwarded from 
node 푘 and 푥  is data rate of flow 푖. The fairness index is a 
continuous number between 0 and 1. The index as 0 and 1 
represents worst and best conditions respectively. To 
represent fairness index in the form of discrete state space, the 
[0,1] interval is divided into 푝  sub intervals 
[0,푓 ],(푓 ,푓 ],...,(푓 ,1]. 
 
The Aggressiveness Index of 푖  TCP sender is measured as,  
 

퐺(푖) = . 	 	 	 	 	
. 	 	 	 	 	

 (12) 
  
To represent aggressiveness index in the form of discrete state 
space, the [0,1] interval is divided into 푞  sub intervals 
[0,푔 ],(푔 ,푔 ],...,(푔 ,1]. 
 
Selection of values for 푝 and 푞 is a critical task as choosing 
small values shrink the state space and limit the convergence 
rate. Through extensive simulations and experiments these 
values are set as, 3 ≤ 푝,푞 ≤ 4. Thus the state space is of size 
푝 ∗ 푞 as,  
 
푆 = {(푓 ,푔 )|푓 ∈ {0,푓 , . . .푓 }and푔 ∈ {0,푔 , . . .푔 푞}} (13) 
  

B. Actions 
 Q-learning TCP sets the 퐶푤푛푑  - Maximum value for 
Congestion Window to achieve fairness without interfering in 
the congestion control algorithm. The action set is of Increase, 
Decrease, Stay operations. The increase and decrease factor is 
set to 50% of the current 퐶푤푛푑 . 
 
The detail of integration of Q-learning in TCP and reward 
function is given in [17]. The approach is evaluated with large 
number of simulations and real test bed experiments.  
 
2.6  Xavier TCP 
 
 Xavier TCP [18] is a reinforcement learning based adaptable 
congestion control solution. The congestion control problem 
is described as a MDP and Q-learning technique is used to 
form the policies.  

A.  States 
 The state space has two variables. 퐸푊푀퐴_푅푇푇  - 
Exponential Weighted Moving Average of RTT is a proxy for 
delay. 푅푇푇_푅퐴푇퐼푂 is a proxy for congestion. Both of these 
variables are updated on arrival of an ACK.  
 
퐸푊푀퐴_푅푇푇 = (0.8 ∗ 퐸푊푀퐴_푅푇푇) + (0.2 ∗ 푅푇푇 )
 (14) 
  

푅푇푇_푅퐴푇퐼푂 = 푅푇푇 /푅푇푇  (15) 
  

B. Actions 
 Xavier selects an action out of four actions on arrival of a non 
duplicate ACK.  
  

1.Exponential Growth: 퐶푤푛푑 = 퐶푤푛푑 + 1  
2.Linear Growth: 퐶푤푛푑 = 퐶푤푛푑 +   

3.Linear Decrease: 퐶푤푛푑 = 퐶푤푛푑 −   
4.No Change: 퐶푤푛푑 = 퐶푤푛푑  
  
The reward function is set with reference of the change in 
EWMA_RTT over time. The detail discussion is given in 
[18]. The simulation has been done with NS2.  
 
2.7  Learning based and Data driven TCP 
 
 Learning based and Data driven TCP [19] is a Q-learning 
based solution to set 퐶푤푛푑. It is shown that how function 
approximation can reduce the memory requirement of a 
learning protocol without compromising with the 
performance.  
 

A.  States 
 The state space has four variables. Each of these variables is 
discretized into 10 intervals.   
 
1. Moving average of inter arrival times between new ACKs.  
2. Moving average of inter arrival times between sent packets.  
3. Ratio between current RTT and best RTT so far.  
4. Slowstart Threshold.  

B.  Actions 
 There are five possible actions to define change in 퐶푤푛푑 in 
terms of number of bytes.   
 
1.Reduce by -1.  
2.No change.  
3.Increase by 5.  
4.Increase by 10.  
5.Increase by 15.  

 
 A state-action space with continuous variables requires a 
large memory to store Q-table. This problem can be reduced 
by discretization of continuous variables. Further for the 
reduction of memory requirement, function approximation 
technique is used to store approximation of the Q-table which 
requires less memory without compromising with the 
performance. Three approaches: TCP learning without 
function approximation, TCP learning with function 
approximation (CMAC and Fuzzy) are proposed for memory 
constraint IoT based application. The detail algorithm and 
selection of function approximation technique are discussed 
in [19]. The simulation has been performed with NS3.  
 
2.8  TCP G-Vegas 
 
 TCP G-Vegas[20] enhances TCP Vegas[21] with grey 
prediction. Inaccurate bandwidth estimation due to node 
mobility leads to performance degradation of TCP Vegas in 
wireless multihop adhoc networks with mobility. G-Vegas 
has two parts: Congestion control is enhanced with expected 
throughput, grey prediction and residual modification model. 
Adaptive 퐶푤푛푑  is achieved with quantification and 
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reinforcement learning model. The detail arithmetic is given 
in [20]. G-Vegas is implemented with NS2 and evaluated for 
various scenarios such as chain topology, reference point 
group mobility model and wireless mobile adhoc networks.  
 
2.9  Neural Network Based Reliable Transport Layer 
Protocol 
 
 A neural network based reliable transport layer protocol for 
MANET [22] is proposed to recognize and capture mobility 
patterns of nodes to differentiate packet losses. This solution 
tries to avoid unnecessary timeouts and 퐶푤푛푑 reduction in 
presence of link failures due to mobility. 
 
Each node maintains a 푀_푊푖푛 - Mobility Window to capture 
mobility pattern. 푀_푊푖푛 works as a left shift register and gets 
updated every Hello interval. 1 is inserted if node’s entry is 
present in neighbor table otherwise 0 is inserted. A node with 
high mobility has more number of 1’s in its 푀_푊푖푛 leading to 
the 푊_푊푖푛 - Average Weighted Mean of 푀_푊푖푛 closer to 1. 
푊_푊푖푛 of node 푛  at time 푡 is calculated as,  

 
푊_푊푖푛( , ) = 훼 ∗푀_푊푖푛 + (1− 훼) ∗ 푊_푊푖푛( , ) (16) 
  

A. Neural Network Design 
 A single layer, feed forward, biased and reinforcement 
learning based neural network is designed to compute 퐸퐶푤푛푑 
- Estimated Congestion Window. 퐸퐶푤푛푑 is in the form of 
increase, decrease or no change action with reference to the 
current 퐶푤푛푑. The inputs to the neural network are,   
 
1.퐸푟푟표푟_푅푎푡푒 - Rate of error due to congestion or link 
failure.  
2.퐶_푀_푊푖푛 - Cumulative moving average of 푀_푊푖푛 from 
the path from source to destination.  
3.Current value of 퐶푤푛푑.  

  
퐶_푀_푊푖푛 closer to 0 and 1 represent packet loss due to 
congestion and link failure respectively. The input layer has 
three neurons corresponding to three inputs: 퐸푟푟표푟_푅푎푡푒 , 
퐶_푀_푊푖푛 and 퐶푤푛푑. The hidden layer has three neurons to 
define strength of recommendation for each of the three 
updates: Increase, Decrease and no change. The output layer 
has one neuron to define 퐸퐶푤푛푑. The detail discussion of 
weights adjustment and activation functions is given in [22]. 
Simulation has been performed with Qualnet and neural 
network is validated with MATLAB.  
 
2.10  RL-TCP 
 
RL-TCP [23] is a reinforcement learning based TCP for wired 
networks with dynamic environment. RL-TCP has three 
components: sensing engine, learner and actuator. The 
sensing engine receives ACKs.  

A. States 
 The inputs to the learner are,   
 1. EWMA of ACK inter arrival time.  
 2. EWMA of packet inter sending time.  

3. Ratio of current RTT and minimum RTT.  
4. Slowstart Threshold.  
5. Current value of 퐶푤푛푑.  

  

B.  Actions 
 The actuator has an action space of four actions to update 
value of 퐶푤푛푑. 퐶푤푛푑 = 퐶푤푛푑 + 푥.   
 
1. Decrease by -1.  
2. No change.  
3. Increase by +1.  
4. Increase by +3.  
 
 The detail discussion on SARSA based Q-function design 
and evaluation is given in [23]. The simulation has been 
performed with NS2.  
 
2.11  Q-TCP 
 
Q-TCP [24] - Q-Learning based TCP lets the TCP sender 
learns the optimal congestion control using reinforcement 
learning. Q-learning is used to generalize TCP under wide 
range of network scenarios. Kanerva coding function 
approximation is used for the reduction of complexity and 
state space size.  

A. States 
 Q-TCP’s state space has three variables.   
1. 푎푣푔_푠푒푛푑  - Average interval between sending two 
packets.  
2. 푎푣푔_푎푐푘  - Average interval between receiving two 
consecutive ACKs.  
3. 푎푣푔_푟푡푡 - Average RTT.  
 
The logic is that in absence of congestion, 푎푣푔_푠푒푛푑  and 
푎푣푔_푎푐푘  should be same. If 푎푣푔_푠푒푛푑 < 푎푣푔_푎푐푘 , 
possibility of congestion can be considered.  
 

B. Actions 
 The action space has three actions to update 퐶푤푛푑 in terms 
of number of bytes.   
 1.Decrease by -1.  
 2.No change.  
 3.Increase by 10.  

 
 The detail discussion on using Q-learning, reward function 
and kanerva coding based function approximation is given in 
[24]. The simulation has been done with NS3. 

 
 

3  TCP WITH OFFLINE LEARNING 
  This section discusses TCP variants with offline learning.  
 
3.1  Bayesian Packet Loss Detection 
 
Bayesian Packet Loss Detection for TCP [25] differentiates 
congestion loss and packet reordering event. Packet loss 
detection through time out is time consuming. Fast 
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retransmission is suitable to detect small number of lost 
packets. Packet reordering event may trigger fast 
retransmission unnecessarily. It is necessary to detect an event 
and infer the reason behind it. Two probabilities 푃(푦|휃 =
푙표푠푠) and 푃(푦|휃 = 푟푒표푟푑푒푟)  are defined corresponding to 
lost packet and reordered packet events where 푦  refers to 
RTT- Round Trip Time value. Bayesian framework based 
inference mechanism analyzes distribution of RTT values to 
identify cause of DACK-Duplicate ACKs. The bayes detector 
find probability of packet loss 푃 . Probability of packet 
reorder 푃  will be 1− 푃 . Traces of TCP connections 
provided by NLANR -National Laboratory for Advanced 
Network Research and collected at Boston University are 
used as dataset. The detail arithmetic of probability 
distribution functions for bayes detector is given in [25].  
 
3.2  TCP with Packet Loss Classifier 
 
 A Packet Loss Classifier, TCP + Classifier [26] differentiates 
congestion loss and loss due to a link error on arrival of three 
DACKs. Congestion control is not activated if cause of a loss 
is classified as link errors. A decision tree based classifier 
processes the information of packets which caused three 
DACKs event and packets precede it. Average, minimum, 
maximum and standard deviation of one way delay and inter 
arrival time are maintained for most recent two RTTs. The 
input parameters are: 

  
1. 퐿 ,퐿 ,퐿  refer to the list of 3 packets which generated 
DACKs, packets received in previous RTT and packets 
received in previous of previous RTT respectively.  
2. 퐵퐿 and 퐵퐿  refers to packet received before loss and its 
queuing delay respectively.  
3. 퐿  and 퐿  refers to inter arrival times and queuing delays 
of packets 퐿 .  
 A function 퐹푐푡 is defined as,  

퐹푐푡(푋, 퐿) = ( ) ( )
	 ( )

 (17) 
 
The decision tree is a set of tests to classify a loss. A few 
conditions are discussed here. 
 
If 푀푎푥푖푚푢푚(퐿 )/퐴푣푒푟푎푔푒(퐿 ) < 1, loss is more likely to 
be due to congestion. This condition describes that the packets 
which causes DACKs (after loss) are received in more 
confined way as compared to of packets prior to a loss. 
Further conditions are checked to conclude cause of a loss. 
 
If 퐵퐿 /푀푖푛푖푚푢푚(퐿 ) < 1, loss is more likely to be due to 
link error. This condition describes a situation where a packet 
(after loss) has higher queuing delay as compared to of a lost 
packet’s queuing delay. 
 
퐹푐푡 based rules are used to find how far the lists of packets are 
from each other in terms of inter arrival times. For example, if 
the average of the inter arrival times of packets after a loss is 
very high as compared to of packets preceded a loss, 
congestion loss is considered. 
 

The dataset is composed of losses collected by simulation of 
large number of random networks with NS2. The detail 
information of dataset and classifier is given in [26].  
 
3.3  TCP ex Machina 
 
TCP ex Machina [27] introduces the concept of computer 
generated congestion control with its program named as 
Remy. This solution discovers congestion control rules from 
the prior network assumptions, traffic model and objective. 
The objective could be to achieve high throughput and low 
queuing delay. Remy takes these models as input to generate 
most appropriate congestion control algorithm Remy-CC (for 
TCP sender) which will maximize the total expected value of 
the objective function. As this process is being done prior to 
the implementation with an actual network, it is considered as 
an offline optimization solution. The prior network 
assumptions also called design range includes information of 
speeds of bottleneck links, prorogation delays of paths, queue 
sizes, degree of multiplexing etc. Traffic model specifies the 
load as a stochastic process. Alpha fairness metric evaluates 
the throughput on shared links. 
 
RemyCC Memory records sender state information with three 
variables which are updated every ACK. These variables are 
used as congestion signals.   
 
1. 푎푐푘_푒푤푚푎 is EWMA - Exponentially Weighted Moving 
Average of inter arrival times of ACKs.  
2. 푠푒푛푑_푒푤푚푎 is EWMA of time between TCP sender 
timestamps reflected in ACKs.  
3. 푟푡푡_푟푎푡푖표 is the ratio of current RTT and minimum RTT 
seen so far.  
 
 RemyCC defines the mapping between state and action with 
a look up table. On ACK, memory is updated and a suitable 
action is taken. The action has three components.   
 
 1.A multiple 푚 to the current 퐶푤푛푑. (푚 ≥ 0).  
 2.An increment 푏 to the current 퐶푤푛푑. 푏 can be negative.  
 3.A lower bound 푟 to set time interval between successive 
sends. (푟 > 0).  
 
 RemyCC defines a set of rules to map three dimensional 
memory with three dimensional action. The structure of rules 
is:  
(푎푐푘_푒푤푚푎, 푠푒푛푑_푒푤푚푎, 푟푡푡_푟푎푡푖표) ⇒ (푚,푏, 푟) (18) 
  
Remy uses a large number of randomly generated network 
configurations for evaluation. At the end of the simulation, 
objective function of every sender is summed to determine 
overall merit of goodness for a RemyCC. The detail of 
Remy’s design procedure and simulation with NS2 is given in 
[27].  
 
3.4  LP-TCP 
 
 LP-TCP [23] Loss Predictor based TCP CC predicts the 
probability (loss probability) of how likely a packet will be 
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lost if sent. The loss predictor is designed with random forests 
technique to derive loss probability. A network state is 
updated every ACK with following parameters.   
 
1.퐶푤푛푑 value and current packet in 퐶푤푛푑.  
2.EWMA, TS-Time Series and Minimum of ACK inter 
arrival times.  
3.EWMA, TS and Minimum of packet inter sending times.  
4.TS and minimum of RTT.  
5.TS of ratios of ACK inter arrival times.  
6.TS of ratios of packet inter sending times.  
7.TS of ratios of RTTs.  
 
 Time series of a parameter includes 8 most recent samples. If 
the loss probability is higher than of a decision threshold 푡ℎ, a 
packet send is postponed. To derive value of 푡ℎ accurately, 
throughput delay tradeoff metric 푀  is defined. 푡푝  is 
throughput and 푑 is delay set to 푅푇푇 − 푅푇푇 .  
 

푀 = 푙표푔(퐸(푡푝)) − 0.1 ∗ 푙표푔(퐸(푑)) (19) 
 

Threshold 푡ℎ is selected which maximizes value of 푀 . The 
implementation is done with NS2. The detail of threshold and 
experimental setup is given in [23]. 

4. COMPARISION 
 The performance of a TCP variant depends on the type of 
network it is being implemented for. As TCP's inherent 
architecture is more suitable for the wired networks, it is  
required to analyse appropriateness and performance of a TCP 
variant in wireless environment. Further to the traditional 
wireless networks (infrastructure based), wireless adhoc 
networks such as MANETs (infrastructure less with mobility 
of nodes) add more challenges. This section discusses how 
suitable various ML based TCP variants are to be deployed for 
MANETs. Table 1 discusses TCP variants with online 
learning. Table 2 discusses TCP variants with offline learning. 
 
Applying ML-Machine Learning with a network is always 
challenging. Selection of a ML type needs to be done with the 
consideration of its appropriateness and scope of learning in 
our application. It is also challenging to select the most 
suitable ML technique of a selected ML type. This needs to be 
done based on the purpose of learning and resource 
constraints of our application. 

5. FUTURE DIRECTIONS 
 ML-Machine Learning based network protocol design is 
still in its initial phase of implementation. Most of the 
proposed solutions are not widely implemented in real world 
networks too. The most of the ML based TCP variants focus 
on setting value of transmission rate (Cwnd). TCP's loss 
differentiation limitation could be solved by using ML. The 
intra flow contention issue could be solved by ML based ACK 
thinning schemes. TCP's security and QoS based parameters 
could also be set using ML. The present challenge is to select 
a ML algorithm which is best suited for TCP. At a network 
protocol level, either ML could be used to set values of 

various parameters or to design a protocol itself. There is still 
a lot to research in the direction of automatic protocol design 
to produce a generalized and adaptable solution for dynamic 
networks. A systematic analysis of performance of TCP with 
various ML algorithms may help researchers for intelligent 
TCP design.  
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Table 1 Online Learning based TCP Variants 
Sr TCP Variant Features Comments 
1 Learning TCP [13] Network state is decided based on the 

observation of IAT- Inter Arrival Time between 
two successive TCP ACKs. Performance Index is 
calculated based the analysis of series of IAT 
values. Continuous Action Updating Algorithm 
changes Cwnd probabilistically based on the 
Performance Index. 
 

This approach is complex for MANETs. Only 
Inter Arrival Time based analysis is inefficient in 
MANETs. 

2 ML Framework for RTT 
Estimation [14] 

Experts framework using fixed share experts 
algorithm is introduced for RTT estimation. 
Weights are updated based on difference between 
estimated RTT and actual RTT. 
 

RTT estimation is not accurate is MANETs. The 
relationship of Machine Learning based RTT 
with RTO can be de- rived. 

3 Intelligent TCP [15] A multi-layer, feed forward and reinforcement 
learning based Neural Network is introduced to 
estimate Cwnd. Simple inputs and activation 
functions are used. RTT is not used as input due 
to inefficient estimation. 

Only number of consecutive RTO and DACKs 
are used for reinforcement learning. More 
parameters could be used to improve accuracy. 
Mobility based input could be introduced to 
make it suitable for MANETs. 
 

4 TCP - PCC [16] 
Performance oriented 
Congestion Control 

It is based on trials with different sending rates to 
find the best rate according to the feedback utility 
function. 
 

It can be implemented only with TCP variants 
supporting SACK. 

  



Hardik K. Molia  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534 

3534 
 

 

Sr TCP Variant Features Comments 
5 Q-Learning TCP [17] It is reinforcement learning based, cross-layer, 

distributed solution for TCP fair- ness. Fairness 
index and Aggressiveness index states are 
introduced to set Maxi- mum Cwnd size 
dynamically. 
 

Model could be used to control Cwnd too.To 
achieve fairness, a node may need to 
compromise with throughput. Other TCP related 
issues could be addressed along with this 
solution. 

6 Xavier TCP [18] Objective is to achieve high throughput and low 
delay. It is a generalize approach across varying 
network topologies. It has simple inputs and 
algorithm based on analysis of RTT values. 
 

Reward function can be designed based on other 
inputs related with throughput. Non linear 
function approximation can be used to handle 
other issues like route failures, channel issues. 

7 Learning-based and 
Data-driven TCP [19] 

Q-Learning based TCP is proposed todetermine 
cwnd based on past network state. Two 
variations based on Cerebellar Model 
Articulation Controller and Fuzzy Kanerva 
based function approximation are proposed to 
reduce memory requirement in building the 
exploration space. 
 

This variant is proposed for IoT applications. It 
may not be suitable directly for MANET due to 
its complexity. 

8 TCP - GVegas [20] The prediction of future throughput based on 
grey prediction is used to promote the online 
control. The optimal exploration method based 
on Q-Learning and RTT quantizer are applied to 
search for the more reasonable changing size of 
congestion window. 
 

It is Specific to TCP Vegas. It is a 
computationally complex approach. 

9 Neural Network based 
Reliable Transport Layer 
Protocol [22] 

It recognizes and captures the mobility behavior 
of nodes. The captured  mobility behavior is used 
to identify the cause   of packet loss. Overcome the 
issue of band- width under utilization due to link 
failure caused by dynamic mobility behavior. 
 

It has no support for identification of packet loss 
due to channel issues. Mobility behavior analysis 
could be done in simple way to be suitable for 
resource restricted MANETs. 

10 Rl-TCP [23] 
Reinforcement Learning based 
TCP 

The input parameters are easy to calculate. It 
continuously learns and adapts in a dynamic 
network environment. 
 

This variant is proposed for wired networks. It is 
required to check its suitability with MANETs. 

11 Q-TCP [24] Function approximation based on Kanerva 
coding is used to reduce number of states for 
making Q-learning tractable. Dynamic 
Generalization Kanerva Coding Algorithm is 
proposed for performance improvement. 
 

This variant is proposed for wired networks. It 
may not be suitable directly for MANET due to 
its complexity. 

 

 

Table 2 Offline Learning based TCP Variants 
Sr TCP Variant Features Comments 
1 Bayesian Packet Loss 

Detection [25] 
The limitations of Timeout and Duplicate ACK 
based loss detection are discussed. RTT based 
Bayesian network is designed to find cause of a 
Duplicate ACK: Packet loss Vs Packet Reorder 
Event. 
 

RTT estimation is not accurate in MANETs. 
Other parameters should be considered with 
RTT. 

2 TCP with Packet Loss 
Classifier [26] 

Supervised learning based classification (decision 
tree) model to differentiate a loss into channel 
loss or congestion loss is pro- posed. 
 

Supervised learning based model may not be 
suitable for all scenarios of MANETs. 

3 TCP exMachina [27] Analysis of network assumptions and traffic 
detail in offline mode is performed to build a 
Computer Generated Congestion Control 
algorithm. No learning is required at run time. 
Packet loss and RTT are not directly used for 
congestion control. 
 

The learning phase is very time consuming. 
Designed for specific networks. Performance may 
degrades if network conditions change. 

4 LP - TCP [23] Loss Predictor 
based TCP 

The main purpose is to find how likely packet 
will be lost if sent. 

Due to supervised learning, When the topology 
and parameters of a network change, Loss 
Predictor needs to be relearned. This variant is 
proposed for wired networks. It is required to 
check its suitability with MANETs. 
 

 


