
Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3526

ABSTRACT

TCP-Transmission Control Protocol is a connection oriented
and reliable transport layer protocol to ensure process to
process communication. Improving TCP's performance for
wireless networks is always been a challenging task for the
researchers. The primary reason of the TCP's performance
degradation in wireless networks is its inability to
differentiate losses to act accordingly. TCP suffers from
inaccurate bandwidth estimation and fairness issue in wireless
networks too. Over the years, researchers have proposed
many TCP variants to enable TCP to maintain satisfactory
performance in wireless environments. In the last decade,
ML-Machine Learning techniques are started being applied in
every possible area due to their numerous advantages. Many
researchers have tried to apply various ML techniques to
improve TCP's performance for wireless and wired networks.
This paper discusses the fundamentals of ML techniques and
their applicability with TCP. Some of the recent ML based
TCP variants are discussed. The paper concludes with some
future directions for researchers.

Key words : TCP , Wireless Network , Machine Learning ,
Supervised Learning , Reinforcement Learning

1. INTRODUCTION

TCP-Transmission Control Protocol ensures connection
oriented and reliable communication between two processes
running at two end devices. Being a connection oriented
protocol, it facilitates connection management to allow full
duplex and stream communication. Being a reliable protocol,
it facilitates congestion control, flow control and error control
[1][2][3]. TCP was initially written for wired networks where
the primary cause of packet losses is network congestion.
TCP's primary focus is also on congestion control where it
considers every packet loss as a cause of congestion. When
the same TCP was used with wireless networks, a significant
amount of performance degradation was found. The reason
was TCP's inability to handle various non congestion issues of
wireless networks. TCP's congestion control centric
architecture was needed revisions to be suitable with the
issues related with the wireless networks. These issues
include packet loss classification, congestion window update

and congestion inference. Packet loss classification is the
ability to handle non congestion losses such as channel losses,
losses due to route failures etc. TCP's strong consideration of
any loss as a cause of network congestion reduces the
transmission rate unnecessarily in presence of packet losses
due to channel issues or route failures. Congestion window
should be set considering the present status of the wireless
networks. Congestion detection is also a critical task in
wireless networks due to possibilities of other issues [4][5][6].

Over the years researchers have proposed various TCP
variants which could be primarily classified into cross-layer
approaches and layered approaches. Cross layer TCP variants
receive feedback information (network state) from the lower
layers for decision making where as layered TCP variants are
not dependent on lower layers. TCP variants could be also
classified according to how they handle various packet losses.
These approaches could be classified based on loss
differentiation, loss prediction or loss avoidance approach. A
detail discussion of TCP variants is given in [7][8].

In recent years, ML is introduced with the computer networks
too. The concept of ML based intelligent network protocol or
application design is being applied for traffic analysis,
network security and protocol optimization [9][10].

ML - Machine Learning is a group of statistical techniques
which let computers learn from the available training data
without being explicitly programmed. The goal is to let
computers build a decision model themselves which will be
keep improving with the experiments. ML focuses on
exploration of training data to derive hidden patterns. These
patterns are used to label unknown data through the decision
model. ML techniques are started being used for many real
world applications in the field of bioinformatics, computer
vision, speech recognition, data analytic etc. From stock
market predictions to the weather forecast, Students'
performance predictions to medical diagnosis, Machine
Learning is every where due to its numerous advantages such
as flexility, accuracy and efficiency. Offline learning such as
Supervised learning processes the training data to build the
model which is used for decision making for future data.
Online learning such as Reinforcement learning learns
directly via interaction with the environment. The learning
happens on trial basis without any prior model building
phase[11][12].

TCP with Machine Learning - Advances and Opportunities

Hardik K. Molia1,2, Dr. Amit D. Kothari1
1Gujarat Technological University – Ahmedabad, Gujarat, INDIA

2Government Engineering College – Rajkot, Gujarat, INDIA, hardik.molia@gmail.com

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse132862019.pdf

https://doi.org/10.30534/ijatcse/2019/132862019

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3527

 This paper discusses how ML techniques are incorporated for
TCP performance improvement. Section 2 and 3 discusses
online learning based and offline learning based TCP variants.
Section 4 compares these TCP variants. The paper concludes
with future directions.

2. TCP WITH ONLINE LEARNING

This section discusses TCP variants with online learning.
These variants try to overcome following limitations of rule
based or TCP variants with offline learning.

1. Inability to adapt to new or unseen network scenario.
2. Inability to learn from the past experiences.

2.1 Learning TCP

 Learning TCP [13] has a learning automaton to set value of
퐶푤푛푑 -Congestion Window dynamically. The automaton
interacts with the environment by selecting an action
probabilistically. Probabilities are maintained for the selection
of actions as per the response received from the environment.
The focus is to select a current action based on past actions
and responses. Analysis of IAT - Inter Arrival Times of ACKs
- Acknowledgements is performed to determine network
condition.

A 푇푖푚푒_푊푖푛푑표푤 is maintained to record 푁 most recent
IATs of ACKs. 푀푒푎푛 - Average and 푆푡푑푑푒푣 - Standard
Deviation of these values are calculated. A value of IAT is
bounded in the range [푀푒푎푛 − 푆푡푑푑푒푣 , 푀푒푎푛 + 푆푡푑푑푒푣]
where it is rounded to nearest value to minimize effect of very
low (or high) IAT. The network state is defined as
푇푖푚푒_푅푎푡푖표 and 훾.

푇푖푚푒_푅푎푡푖표 = _ (1)

훾 = _ (2)

It is assumed that the maximum IAT is thrice of 푀푒푎푛. So
upper bound of 푇푖푚푒_푅푎푡푖표 is 1 and lower bound of
푇푖푚푒_푅푎푡푖표 is -2. If IAT is small compared to of 푀푒푎푛,
푇푖푚푒_푅푎푡푖표 becomes near to 1 indicating early ACK. An
ACK for which IAT is higher than of thrice of 푀푒푎푛 is
considered as a late ACK. 푇푖푚푒_푅푎푡푖표 is -2 for late ACK. 훾
is normalized network state. Value of 훿 is set to -2. In absence
of heavy network load, early ACKs lead to the value of 훾 to be
closed to 1. Subsequently 퐶푤푛푑 is increased.

The performance index 훽(푛), at time step 푛 is set to either 훾
(Increase state) or to 1− 훾 (Decrease state). The CALA -
Continuous Action Learning Automata algorithm uses 훽(푛)
to update the 휇(푛) - Mean and 푠푖푔푚푎(푛) - Deviation of
update in 퐶푤푛푑. The detail arithmetic is discussed in [13].

2.2 ML Framework for RTT Estimation

 A Machine Learning framework for RTT-Round Trip Time
estimation [14] is proposed using experts framework method.

Each of the experts guesses a value. RTT is derived using
weighted average of these values. Weights are updated based
on the difference between estimated RTT and actual RTT. A
weight decides the confidence for an expert in terms of its
accuracy of prediction. As RTT value is used to calculate
RTO value, the accurate RTT estimation indirectly avoids
unnecessary pauses(long RTO) or frequent retransmissions
(small RTO).

At every trial 푡 , a set of 푁 experts predict their values
푥 ∀푖 ∈ {1, . . . ,푁} with weights 푤 , . The expert’s prediction
푦 is compared with actual value 푦 using a loss function 퐿 to
estimate error. 퐿 , (푥 ,푦) refers to the error at trial 푡 for
expert 푖 with value 푥 .

푦 =
∑ 	 , ∗
∑ 	 ,

 (3)

퐿 , (푥 ,푦) = (푥 − 푦) , for푥 ≥ 푦
2 ∗ 푦 , for푥 < 푦 (4)

The weights are updated with a learning rate 휂, 휂 > 0 .
Weights are also shared among experts for the prediction
improvement with a weight sharing rate 훼, 0 ≤ 훼 ≤ 1.

푤 , = 푤 , ∗ 푒 ∗ , (,) (5)

푝표표푙 = ∑ 	훼 ∗ 푤 , (6)

푤 , = (1− 훼) ∗ 푤 , + ∗ 푝표표푙 (7)

Values for the three parameters 푁 - Number of experts,휂 -
Learning rate and 훼 - Weight sharing rate are set after
experiments with several combinations. These values are set
as 푁 = 100, 휂 = 2 and 훼 = 0.8.The discussion is given in
[14].

2.3 Intelligent TCP

 i-TCP - Intelligent TCP [15] is a NN-Neural Network based
end to end congestion control solution for adhoc multihop
wireless mesh networks. iTCP tries to improve congestion
control for non deterministic and lossy wireless environment.
A reinforcement learning based multi layer, feed forward and
zero bias NN is designed to set 퐶푤푛푑 in the form of increase,
decrease or remain unchanged update.

A. Neural Network Design
 The NN has one input layer, two hidden layers and one output
layer. The input layer has three neurons corresponding to
three inputs: 푡_표푢푡 -Number of consecutive timeouts,
푑푎푐푘-Number of duplicate ACKs and current 퐶푤푛푑 . The
first hidden layer has three neurons recommending strength to
change 퐶푤푛푑 in the form of 푖푛푐푟-Increase, 푑푒푐푟-Decrease
and 푠푎푚푒 -No change. The second hidden layer has two
neurons: 푑푐푠푛 - determines the type of update with highest
relative strength based on the outputs of neurons of first
hidden layer. 푐ℎ푛푔 -regulates the strongest update with

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3528

reference of the output of 푑푐푠푛, output of all neurons of first
hidden layer and current 푐푤푛푑. The output layer has a neuron
푟푒푠 to set 퐶푤푛푑 based on its current value and output of
second hidden layer.

Reinforcement learning based adjustment of weights is
performed. Dynamic weights are used for the neurons
processing network feedback (Neurons 푡_표푢푡 and 푑푎푐푘).
Weights for rest of the neurons are static. A detail discussion
of weights adjustment and activation functions is given in
[15]. The simulation is performed with NS2 and a real testbed.

2.4 TCP – PCC

 PCC - Performance Oriented Congestion Control [16] is a
new architecture to understand what rate control actions can
improve the performance. PCC sets a transmission rate and
observes the results to calculate value for a utility function
with an objective like high throughput and low loss rate. PCC
is flexible as we can set different objectives by selecting
utility function accordingly.

PCC executes a set of micro experiments. A micro experiment
shows sending at rate 푟, produces the utility 휇. PCC selects
the rate which leads to the highest utility. The time is divided
into MI-Monitor Intervals of one or two RTTs. For a MI, PCC
sends data at the rate 푟 and observes SACK, throughput, loss
rate and latency to calculate value 휇 of a utility function. One
possible utility function is 휇 = 푇 − 퐿 (푇 is Throughput and 퐿
is Loss rate). PCC has an online learning algorithm similar to
of gradient ascent. PCC starts with a rate 푟 and tests rates
(1 + 휖) ∗ 푟 (higher) and (1 − 휖) ∗ 푟 (lower) to select next
rate, whichever gives higher utility. It continues till the utility
is increasing. Once the utility is decreased, it returns to the
state from where it continues testing both higher and lower
rates to select best to continue with. The utility function is set
with the goal of high throughput and low loss as,

푈 (푥) = 푇 ∗ 푆푖푔푚표푖푑 (퐿 − 0.05) − 푥 ∗ 퐿 (8)

푥 ,퐿 and 푇 = 푥 ∗ (1 − 퐿) are sending rate, loss rate and
throughput of 푖 sender respectively. The sigmoid function is
defined as,

푆푖푔푚표푖푑 (푦) = ∗ (9)

 The detail discussion on selection of value of 훼 and
appropriateness of utility function is discussed in [16]. PCC’s
control algorithm has three states: Starting state, Decision
making state and Rate adjusting state.

A. Starting State
 PCC starts with 2 ∗ 푀푆푆/푅푇푇 and doubles rate every
MI-Monitor Interval. Instead of exit from the starting state on
a packet loss, it continues till utility decreases. Once the utility
is decreased, it returns to the rate which had higher utility and
switches to the Decision making state.

B. Decision Making State
 PCC executes multiple RCTs - Randomized Controlled
Trials to determine direction and amount of change in rate.
Four consecutive MIs are divided into two pairs, each of
having two MIs. For each pair, PCC tries higher rate
(1 + 휖) ∗ 푟 and lower rate (1− 휖) ∗ 푟 to get utility values 푈
and 푈 respectively. For each pair 푖 ∈ 1,2, utility values 푈
and 푈 are compared.

1. If 푈 > 푈 and 푈 > 푈 then 푟 = (1 + 휖) ∗ 푟.
2. If 푈 < 푈 and 푈 < 푈 then 푟 = (1− 휖) ∗ 푟.
3. If 푈 > 푈 and 푈 < 푈 then no change in 푟.
4. If 푈 < 푈 and 푈 > 푈 then no change in 푟.

 On no change of rate event, PCC continues in decision
making state with increase in experiment granularity 휖 .
휖 = 휖 + 휖 . The initial value of 휖 is 0.01. The minimum
휖 is 0.01 and 휖 is 0.05.

C. Rate Adjusting State
 The 푛 rate can be set as,

푟 = 푟 ∗ (1 + 푛 ∗ 휖 ∗ 푑푖푟) (10)

푑푖푟 = ± is the moving direction. If utility is decreased
(푈 < 푈), rate is set to 푟 and PCC switches to Decision
making state.

Performance of PCC has been evaluated with 8 real world
challenging network scenarios such as Inter data center
environment, satellite links, unreliable lossy links etc. The
detail discussion is given in [16].

2.5 Q-Learning TCP

 Q-Learning TCP [17] deals with TCP’s fairness issue of
favoritism of flows with small number of hops as compared to
of flows with large number of hops. It is a cross layer,
reinforcement learning based distributed network monitoring
solution for fair resource allocation for wireless mesh
networks and wireless multi hop networks. Each TCP sender
represents the network as a MDP-Markov Decision Process
and applies Q-Learning to maintain transition
probabilities.Q-learning is a reinforcement learning algorithm
where an agent learns via interaction with the environment. In
this approach, TCP sender is the agent and network is the
environment. The interaction helps the agent to build
states-actions mapping called policies. The time is divided
into decision epochs. In every epoch, TCP sender receives
network statistics in the form of state space variables.

A. States
 The state space is in the form of Fairness Index and
Aggressiveness Index. TCP sender uses Jain’s fairness index.
The Jain’s fairness index at node 푘 at decision ephoch 푡 is,

퐽 (푥 ,푥 , ,푥) = (∑)

∗∑ 	
 (11)

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3529

 Where 푛 is the number of flows originated or forwarded from
node 푘 and 푥 is data rate of flow 푖. The fairness index is a
continuous number between 0 and 1. The index as 0 and 1
represents worst and best conditions respectively. To
represent fairness index in the form of discrete state space, the
[0,1] interval is divided into 푝 sub intervals
[0,푓],(푓 ,푓],...,(푓 ,1].

The Aggressiveness Index of 푖 TCP sender is measured as,

퐺(푖) = . 	 	 	 	 	
. 	 	 	 	 	

 (12)

To represent aggressiveness index in the form of discrete state
space, the [0,1] interval is divided into 푞 sub intervals
[0,푔],(푔 ,푔],...,(푔 ,1].

Selection of values for 푝 and 푞 is a critical task as choosing
small values shrink the state space and limit the convergence
rate. Through extensive simulations and experiments these
values are set as, 3 ≤ 푝,푞 ≤ 4. Thus the state space is of size
푝 ∗ 푞 as,

푆 = {(푓 ,푔)|푓 ∈ {0,푓 , . . .푓 }and푔 ∈ {0,푔 , . . .푔 푞}} (13)

B. Actions
 Q-learning TCP sets the 퐶푤푛푑 - Maximum value for
Congestion Window to achieve fairness without interfering in
the congestion control algorithm. The action set is of Increase,
Decrease, Stay operations. The increase and decrease factor is
set to 50% of the current 퐶푤푛푑 .

The detail of integration of Q-learning in TCP and reward
function is given in [17]. The approach is evaluated with large
number of simulations and real test bed experiments.

2.6 Xavier TCP

 Xavier TCP [18] is a reinforcement learning based adaptable
congestion control solution. The congestion control problem
is described as a MDP and Q-learning technique is used to
form the policies.

A. States
 The state space has two variables. 퐸푊푀퐴_푅푇푇 -
Exponential Weighted Moving Average of RTT is a proxy for
delay. 푅푇푇_푅퐴푇퐼푂 is a proxy for congestion. Both of these
variables are updated on arrival of an ACK.

퐸푊푀퐴_푅푇푇 = (0.8 ∗ 퐸푊푀퐴_푅푇푇) + (0.2 ∗ 푅푇푇)
 (14)

푅푇푇_푅퐴푇퐼푂 = 푅푇푇 /푅푇푇 (15)

B. Actions
 Xavier selects an action out of four actions on arrival of a non
duplicate ACK.

1.Exponential Growth: 퐶푤푛푑 = 퐶푤푛푑 + 1
2.Linear Growth: 퐶푤푛푑 = 퐶푤푛푑 +

3.Linear Decrease: 퐶푤푛푑 = 퐶푤푛푑 −
4.No Change: 퐶푤푛푑 = 퐶푤푛푑

The reward function is set with reference of the change in
EWMA_RTT over time. The detail discussion is given in
[18]. The simulation has been done with NS2.

2.7 Learning based and Data driven TCP

 Learning based and Data driven TCP [19] is a Q-learning
based solution to set 퐶푤푛푑. It is shown that how function
approximation can reduce the memory requirement of a
learning protocol without compromising with the
performance.

A. States
 The state space has four variables. Each of these variables is
discretized into 10 intervals.

1. Moving average of inter arrival times between new ACKs.
2. Moving average of inter arrival times between sent packets.
3. Ratio between current RTT and best RTT so far.
4. Slowstart Threshold.

B. Actions
 There are five possible actions to define change in 퐶푤푛푑 in
terms of number of bytes.

1.Reduce by -1.
2.No change.
3.Increase by 5.
4.Increase by 10.
5.Increase by 15.

 A state-action space with continuous variables requires a
large memory to store Q-table. This problem can be reduced
by discretization of continuous variables. Further for the
reduction of memory requirement, function approximation
technique is used to store approximation of the Q-table which
requires less memory without compromising with the
performance. Three approaches: TCP learning without
function approximation, TCP learning with function
approximation (CMAC and Fuzzy) are proposed for memory
constraint IoT based application. The detail algorithm and
selection of function approximation technique are discussed
in [19]. The simulation has been performed with NS3.

2.8 TCP G-Vegas

 TCP G-Vegas[20] enhances TCP Vegas[21] with grey
prediction. Inaccurate bandwidth estimation due to node
mobility leads to performance degradation of TCP Vegas in
wireless multihop adhoc networks with mobility. G-Vegas
has two parts: Congestion control is enhanced with expected
throughput, grey prediction and residual modification model.
Adaptive 퐶푤푛푑 is achieved with quantification and

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3530

reinforcement learning model. The detail arithmetic is given
in [20]. G-Vegas is implemented with NS2 and evaluated for
various scenarios such as chain topology, reference point
group mobility model and wireless mobile adhoc networks.

2.9 Neural Network Based Reliable Transport Layer
Protocol

 A neural network based reliable transport layer protocol for
MANET [22] is proposed to recognize and capture mobility
patterns of nodes to differentiate packet losses. This solution
tries to avoid unnecessary timeouts and 퐶푤푛푑 reduction in
presence of link failures due to mobility.

Each node maintains a 푀_푊푖푛 - Mobility Window to capture
mobility pattern. 푀_푊푖푛 works as a left shift register and gets
updated every Hello interval. 1 is inserted if node’s entry is
present in neighbor table otherwise 0 is inserted. A node with
high mobility has more number of 1’s in its 푀_푊푖푛 leading to
the 푊_푊푖푛 - Average Weighted Mean of 푀_푊푖푛 closer to 1.
푊_푊푖푛 of node 푛 at time 푡 is calculated as,

푊_푊푖푛(,) = 훼 ∗푀_푊푖푛 + (1− 훼) ∗ 푊_푊푖푛(,) (16)

A. Neural Network Design
 A single layer, feed forward, biased and reinforcement
learning based neural network is designed to compute 퐸퐶푤푛푑
- Estimated Congestion Window. 퐸퐶푤푛푑 is in the form of
increase, decrease or no change action with reference to the
current 퐶푤푛푑. The inputs to the neural network are,

1.퐸푟푟표푟_푅푎푡푒 - Rate of error due to congestion or link
failure.
2.퐶_푀_푊푖푛 - Cumulative moving average of 푀_푊푖푛 from
the path from source to destination.
3.Current value of 퐶푤푛푑.

퐶_푀_푊푖푛 closer to 0 and 1 represent packet loss due to
congestion and link failure respectively. The input layer has
three neurons corresponding to three inputs: 퐸푟푟표푟_푅푎푡푒 ,
퐶_푀_푊푖푛 and 퐶푤푛푑. The hidden layer has three neurons to
define strength of recommendation for each of the three
updates: Increase, Decrease and no change. The output layer
has one neuron to define 퐸퐶푤푛푑. The detail discussion of
weights adjustment and activation functions is given in [22].
Simulation has been performed with Qualnet and neural
network is validated with MATLAB.

2.10 RL-TCP

RL-TCP [23] is a reinforcement learning based TCP for wired
networks with dynamic environment. RL-TCP has three
components: sensing engine, learner and actuator. The
sensing engine receives ACKs.

A. States
 The inputs to the learner are,
 1. EWMA of ACK inter arrival time.
 2. EWMA of packet inter sending time.

3. Ratio of current RTT and minimum RTT.
4. Slowstart Threshold.
5. Current value of 퐶푤푛푑.

B. Actions
 The actuator has an action space of four actions to update
value of 퐶푤푛푑. 퐶푤푛푑 = 퐶푤푛푑 + 푥.

1. Decrease by -1.
2. No change.
3. Increase by +1.
4. Increase by +3.

 The detail discussion on SARSA based Q-function design
and evaluation is given in [23]. The simulation has been
performed with NS2.

2.11 Q-TCP

Q-TCP [24] - Q-Learning based TCP lets the TCP sender
learns the optimal congestion control using reinforcement
learning. Q-learning is used to generalize TCP under wide
range of network scenarios. Kanerva coding function
approximation is used for the reduction of complexity and
state space size.

A. States
 Q-TCP’s state space has three variables.
1. 푎푣푔_푠푒푛푑 - Average interval between sending two
packets.
2. 푎푣푔_푎푐푘 - Average interval between receiving two
consecutive ACKs.
3. 푎푣푔_푟푡푡 - Average RTT.

The logic is that in absence of congestion, 푎푣푔_푠푒푛푑 and
푎푣푔_푎푐푘 should be same. If 푎푣푔_푠푒푛푑 < 푎푣푔_푎푐푘 ,
possibility of congestion can be considered.

B. Actions
 The action space has three actions to update 퐶푤푛푑 in terms
of number of bytes.
 1.Decrease by -1.
 2.No change.
 3.Increase by 10.

 The detail discussion on using Q-learning, reward function
and kanerva coding based function approximation is given in
[24]. The simulation has been done with NS3.

3 TCP WITH OFFLINE LEARNING
 This section discusses TCP variants with offline learning.

3.1 Bayesian Packet Loss Detection

Bayesian Packet Loss Detection for TCP [25] differentiates
congestion loss and packet reordering event. Packet loss
detection through time out is time consuming. Fast

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3531

retransmission is suitable to detect small number of lost
packets. Packet reordering event may trigger fast
retransmission unnecessarily. It is necessary to detect an event
and infer the reason behind it. Two probabilities 푃(푦|휃 =
푙표푠푠) and 푃(푦|휃 = 푟푒표푟푑푒푟) are defined corresponding to
lost packet and reordered packet events where 푦 refers to
RTT- Round Trip Time value. Bayesian framework based
inference mechanism analyzes distribution of RTT values to
identify cause of DACK-Duplicate ACKs. The bayes detector
find probability of packet loss 푃 . Probability of packet
reorder 푃 will be 1− 푃 . Traces of TCP connections
provided by NLANR -National Laboratory for Advanced
Network Research and collected at Boston University are
used as dataset. The detail arithmetic of probability
distribution functions for bayes detector is given in [25].

3.2 TCP with Packet Loss Classifier

 A Packet Loss Classifier, TCP + Classifier [26] differentiates
congestion loss and loss due to a link error on arrival of three
DACKs. Congestion control is not activated if cause of a loss
is classified as link errors. A decision tree based classifier
processes the information of packets which caused three
DACKs event and packets precede it. Average, minimum,
maximum and standard deviation of one way delay and inter
arrival time are maintained for most recent two RTTs. The
input parameters are:

1. 퐿 ,퐿 ,퐿 refer to the list of 3 packets which generated
DACKs, packets received in previous RTT and packets
received in previous of previous RTT respectively.
2. 퐵퐿 and 퐵퐿 refers to packet received before loss and its
queuing delay respectively.
3. 퐿 and 퐿 refers to inter arrival times and queuing delays
of packets 퐿 .
 A function 퐹푐푡 is defined as,

퐹푐푡(푋, 퐿) = () ()
	 ()

 (17)

The decision tree is a set of tests to classify a loss. A few
conditions are discussed here.

If 푀푎푥푖푚푢푚(퐿)/퐴푣푒푟푎푔푒(퐿) < 1, loss is more likely to
be due to congestion. This condition describes that the packets
which causes DACKs (after loss) are received in more
confined way as compared to of packets prior to a loss.
Further conditions are checked to conclude cause of a loss.

If 퐵퐿 /푀푖푛푖푚푢푚(퐿) < 1, loss is more likely to be due to
link error. This condition describes a situation where a packet
(after loss) has higher queuing delay as compared to of a lost
packet’s queuing delay.

퐹푐푡 based rules are used to find how far the lists of packets are
from each other in terms of inter arrival times. For example, if
the average of the inter arrival times of packets after a loss is
very high as compared to of packets preceded a loss,
congestion loss is considered.

The dataset is composed of losses collected by simulation of
large number of random networks with NS2. The detail
information of dataset and classifier is given in [26].

3.3 TCP ex Machina

TCP ex Machina [27] introduces the concept of computer
generated congestion control with its program named as
Remy. This solution discovers congestion control rules from
the prior network assumptions, traffic model and objective.
The objective could be to achieve high throughput and low
queuing delay. Remy takes these models as input to generate
most appropriate congestion control algorithm Remy-CC (for
TCP sender) which will maximize the total expected value of
the objective function. As this process is being done prior to
the implementation with an actual network, it is considered as
an offline optimization solution. The prior network
assumptions also called design range includes information of
speeds of bottleneck links, prorogation delays of paths, queue
sizes, degree of multiplexing etc. Traffic model specifies the
load as a stochastic process. Alpha fairness metric evaluates
the throughput on shared links.

RemyCC Memory records sender state information with three
variables which are updated every ACK. These variables are
used as congestion signals.

1. 푎푐푘_푒푤푚푎 is EWMA - Exponentially Weighted Moving
Average of inter arrival times of ACKs.
2. 푠푒푛푑_푒푤푚푎 is EWMA of time between TCP sender
timestamps reflected in ACKs.
3. 푟푡푡_푟푎푡푖표 is the ratio of current RTT and minimum RTT
seen so far.

 RemyCC defines the mapping between state and action with
a look up table. On ACK, memory is updated and a suitable
action is taken. The action has three components.

 1.A multiple 푚 to the current 퐶푤푛푑. (푚 ≥ 0).
 2.An increment 푏 to the current 퐶푤푛푑. 푏 can be negative.
 3.A lower bound 푟 to set time interval between successive
sends. (푟 > 0).

 RemyCC defines a set of rules to map three dimensional
memory with three dimensional action. The structure of rules
is:
(푎푐푘_푒푤푚푎, 푠푒푛푑_푒푤푚푎, 푟푡푡_푟푎푡푖표) ⇒ (푚,푏, 푟) (18)

Remy uses a large number of randomly generated network
configurations for evaluation. At the end of the simulation,
objective function of every sender is summed to determine
overall merit of goodness for a RemyCC. The detail of
Remy’s design procedure and simulation with NS2 is given in
[27].

3.4 LP-TCP

 LP-TCP [23] Loss Predictor based TCP CC predicts the
probability (loss probability) of how likely a packet will be

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3532

lost if sent. The loss predictor is designed with random forests
technique to derive loss probability. A network state is
updated every ACK with following parameters.

1.퐶푤푛푑 value and current packet in 퐶푤푛푑.
2.EWMA, TS-Time Series and Minimum of ACK inter
arrival times.
3.EWMA, TS and Minimum of packet inter sending times.
4.TS and minimum of RTT.
5.TS of ratios of ACK inter arrival times.
6.TS of ratios of packet inter sending times.
7.TS of ratios of RTTs.

 Time series of a parameter includes 8 most recent samples. If
the loss probability is higher than of a decision threshold 푡ℎ, a
packet send is postponed. To derive value of 푡ℎ accurately,
throughput delay tradeoff metric 푀 is defined. 푡푝 is
throughput and 푑 is delay set to 푅푇푇 − 푅푇푇 .

푀 = 푙표푔(퐸(푡푝)) − 0.1 ∗ 푙표푔(퐸(푑)) (19)

Threshold 푡ℎ is selected which maximizes value of 푀 . The
implementation is done with NS2. The detail of threshold and
experimental setup is given in [23].

4. COMPARISION
 The performance of a TCP variant depends on the type of
network it is being implemented for. As TCP's inherent
architecture is more suitable for the wired networks, it is
required to analyse appropriateness and performance of a TCP
variant in wireless environment. Further to the traditional
wireless networks (infrastructure based), wireless adhoc
networks such as MANETs (infrastructure less with mobility
of nodes) add more challenges. This section discusses how
suitable various ML based TCP variants are to be deployed for
MANETs. Table 1 discusses TCP variants with online
learning. Table 2 discusses TCP variants with offline learning.

Applying ML-Machine Learning with a network is always
challenging. Selection of a ML type needs to be done with the
consideration of its appropriateness and scope of learning in
our application. It is also challenging to select the most
suitable ML technique of a selected ML type. This needs to be
done based on the purpose of learning and resource
constraints of our application.

5. FUTURE DIRECTIONS
 ML-Machine Learning based network protocol design is
still in its initial phase of implementation. Most of the
proposed solutions are not widely implemented in real world
networks too. The most of the ML based TCP variants focus
on setting value of transmission rate (Cwnd). TCP's loss
differentiation limitation could be solved by using ML. The
intra flow contention issue could be solved by ML based ACK
thinning schemes. TCP's security and QoS based parameters
could also be set using ML. The present challenge is to select
a ML algorithm which is best suited for TCP. At a network
protocol level, either ML could be used to set values of

various parameters or to design a protocol itself. There is still
a lot to research in the direction of automatic protocol design
to produce a generalized and adaptable solution for dynamic
networks. A systematic analysis of performance of TCP with
various ML algorithms may help researchers for intelligent
TCP design.

REFERENCES

1. Behrouz Forouzan. Tcp/ip protocol suite.
McGraw-Hill, 2009.

2. W. Richard Stevens. Tcp/ip illustrated, vol. 1: The
protocols. Addison-Wesley Professional Computing
Series, 2000.

3. B. Qureshi, M. Othman, and N. A. W. Hamid. Progress
in various tcp variants. 2nd IEEE International
Conference on Computer, Control and Communication,
pages 1–6, 2009.

4. Noor Mast and Thomas J Owens. A survey of
performance enhancement of transmission control
protocol (tcp) in wireless adhoc networks. EURASIP
Journal on Wireless Communications and
Networking-Springer, 2011.

5. Ammar Mohammed Al-Jubari, Mohamed
Othman,Borhanuddin Mohd Ali, and Nor Asilah Wati
Abdul Hamid. Tcp performance in multi-hop wireless
ad hoc networks challenges and solution. EURASIP
Journal on Wireless Communications and
Networking-Springer, 2011.
https://doi.org/10.1186/1687-1499-2011-198

6. Vassilis Tsaoussidis and Ibrahim Matta. Open issues on
tcp for mobile computing. Journal on Wireless
Communications and Mobile Computing, 2:3–20, 2002.

7. Dimitris Kanellopoulos. Congestion control for
manets:An overview. ICT Express - Elsevier, 2018.

8. Hardik K. Molia and Amit D. Kothari. Tcp variants for
mobile adhoc networks: Challenges and solutions.
Wireless Personal Communications - Springer,
100:1791– 1836, June 2018.

9. M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang.
Machine learning for networking: Workflow,
advances and opportunities. IEEE Network,
32(2):92–99, 2018.

10. Raouf Boutaba, Mohammad A. Salahuddin, Noura
Limam, Sara Ayoubi, Nashid Shahriar, Felipe
EstradaSolano, and Oscar M. Caicedo. A
comprehensive survey on machine learning for
networking: evolution, applications and research
opportunities. Journal of Internet Services and
Applications - Springer, 2018.
https://doi.org/10.1186/s13174-018-0087-2

11. S. Wang, W. Chaovalitwongse, and R. Babuska.
Machine learning algorithms in bipedal robot
control. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews),
42(5):728–743, 2012.

12. Jiawei Han, Micheline Kamber, and Jian Pei. Data
mining: Concepts and techniques. Morgan Kaufmann
Publishers Inc., 2011.

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3533

13. B. Venkata Ramana and C. Siva Ram Murthy.
Learning-tcp: A novel learning automata based
congestion window updating mechanism for ad hoc
wireless networks. High Performance Computing
HiPC 2005.Lecture Notes in Computer
Science-Springer, 2005.

14. Bruno Astuto Arouche Nunes, Kerry Veenstra,
WilliamBallenthin, Stephanie Lukin, and Katia
Obraczka. A machine learning framework for tcp
round-trip time estimation. EURASIP Journal on
Wireless Communications and Networking-Springer,
2014.

15. A. B. M. Alim Al Islam and Vijay Raghunathan. itcp:
an intelligent tcp with neural network based
end-to-end congestion control for ad-hoc multi-hop
wireless mesh networks. Wireless Networks-Springer,
21:581–610, 2015.

16. Mo Dong, Qingxi Li, Doron Zarchy, Brighten
Godfrey,and Michael Schapira. Pcc re-architecting
congestion control for consistent high performance.
Computing Research Repository Proceedings of the
12th USENIX Symposium on Networked Systems Design
and Implementation, abs/1409.7092, 2014.

17. Nasim Arianpoo and Victor C.M. Leung. How network
monitoring and reinforcement learning can improve
tcp fairness in wireless multi-hop networks.
EURASIP Journal on Wireless Communications and
Networking- Springer, 2016.

18. Agrawal Akshay. Xavier: A reinforcement-learning
approach to tcp congestion control. Technical Report
- Stanford University, 2016.

19. W. Li, F. Zhou, W. Meleis, and K. Chowdhury.
Learning based and data-driven tcp design for
memory constrained iot. International Conference on
Distributed Computing in Sensor Systems
(DCOSS)-IEEE Explore, pages 199– 205, May 2016.

20. Hong Jiang, Ying Luo, QiuYun Zhang, MingYong Yin,
and Chun Wu. Tcp-gvegas with prediction and
adapta- tion in multi-hop ad hoc networks. Wireless
Networks- Springer, 23:15351548, July 2017.
https://doi.org/10.1007/s11276-016-1242-y

21. Lawrence S. Brakmo, Sean W. OMalley, and Larry L.
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. SIGCOMM ’94 the
conference on Communications architectures, protocols
and applications, pages 24–35, 1994.

22. P. Kumar, S. Tripathi, and P. Pal. Neural network
based reliable transport layer protocol for manet.
4th International Conference on Recent Advances in
Information Technology IIT(ISM), Dhanbad-IEEE
Explore, pages 1– 6, March 2018.

23. Yiming Kong, Hui Zang, and Xiaoli Ma. Improving tcp
congestion control with machine intelligence.
Proceedings of the 2018 Workshop on Network Meets
AI & ML - NetAI’18, pages 60–66, 2018.

24. W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis.
Qtcp: Adaptive congestion control with
reinforcement learning. IEEE Transactions on
Network Science and Engineering, 2018.

25. N. Fonseca and M. Crovella. Bayesian packet loss
detection for tcp. IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications
Societies., 3:1826–1837, 2005.

26. Ibtissam El Khayat, Pierre Geurts, and Guy Leduc.
Enhancement of tcp over wired/wireless networks
with packet loss classifiers inferred by supervised
learning. Wireless Networks-Springer, 16:273–290,
2010.

27. Keith Winstein and Hari Balakrishnan.Tcp ex achina:
Computer-generated congestion control. Proceedings
of the ACM SIGCOMM 2013 Conference, pages
123–134,2013.

Table 1 Online Learning based TCP Variants
Sr TCP Variant Features Comments
1 Learning TCP [13] Network state is decided based on the

observation of IAT- Inter Arrival Time between
two successive TCP ACKs. Performance Index is
calculated based the analysis of series of IAT
values. Continuous Action Updating Algorithm
changes Cwnd probabilistically based on the
Performance Index.

This approach is complex for MANETs. Only
Inter Arrival Time based analysis is inefficient in
MANETs.

2 ML Framework for RTT
Estimation [14]

Experts framework using fixed share experts
algorithm is introduced for RTT estimation.
Weights are updated based on difference between
estimated RTT and actual RTT.

RTT estimation is not accurate is MANETs. The
relationship of Machine Learning based RTT
with RTO can be de- rived.

3 Intelligent TCP [15] A multi-layer, feed forward and reinforcement
learning based Neural Network is introduced to
estimate Cwnd. Simple inputs and activation
functions are used. RTT is not used as input due
to inefficient estimation.

Only number of consecutive RTO and DACKs
are used for reinforcement learning. More
parameters could be used to improve accuracy.
Mobility based input could be introduced to
make it suitable for MANETs.

4 TCP - PCC [16]
Performance oriented
Congestion Control

It is based on trials with different sending rates to
find the best rate according to the feedback utility
function.

It can be implemented only with TCP variants
supporting SACK.

Hardik K. Molia et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3526 – 3534

3534

Sr TCP Variant Features Comments
5 Q-Learning TCP [17] It is reinforcement learning based, cross-layer,

distributed solution for TCP fair- ness. Fairness
index and Aggressiveness index states are
introduced to set Maxi- mum Cwnd size
dynamically.

Model could be used to control Cwnd too.To
achieve fairness, a node may need to
compromise with throughput. Other TCP related
issues could be addressed along with this
solution.

6 Xavier TCP [18] Objective is to achieve high throughput and low
delay. It is a generalize approach across varying
network topologies. It has simple inputs and
algorithm based on analysis of RTT values.

Reward function can be designed based on other
inputs related with throughput. Non linear
function approximation can be used to handle
other issues like route failures, channel issues.

7 Learning-based and
Data-driven TCP [19]

Q-Learning based TCP is proposed todetermine
cwnd based on past network state. Two
variations based on Cerebellar Model
Articulation Controller and Fuzzy Kanerva
based function approximation are proposed to
reduce memory requirement in building the
exploration space.

This variant is proposed for IoT applications. It
may not be suitable directly for MANET due to
its complexity.

8 TCP - GVegas [20] The prediction of future throughput based on
grey prediction is used to promote the online
control. The optimal exploration method based
on Q-Learning and RTT quantizer are applied to
search for the more reasonable changing size of
congestion window.

It is Specific to TCP Vegas. It is a
computationally complex approach.

9 Neural Network based
Reliable Transport Layer
Protocol [22]

It recognizes and captures the mobility behavior
of nodes. The captured mobility behavior is used
to identify the cause of packet loss. Overcome the
issue of band- width under utilization due to link
failure caused by dynamic mobility behavior.

It has no support for identification of packet loss
due to channel issues. Mobility behavior analysis
could be done in simple way to be suitable for
resource restricted MANETs.

10 Rl-TCP [23]
Reinforcement Learning based
TCP

The input parameters are easy to calculate. It
continuously learns and adapts in a dynamic
network environment.

This variant is proposed for wired networks. It is
required to check its suitability with MANETs.

11 Q-TCP [24] Function approximation based on Kanerva
coding is used to reduce number of states for
making Q-learning tractable. Dynamic
Generalization Kanerva Coding Algorithm is
proposed for performance improvement.

This variant is proposed for wired networks. It
may not be suitable directly for MANET due to
its complexity.

Table 2 Offline Learning based TCP Variants
Sr TCP Variant Features Comments
1 Bayesian Packet Loss

Detection [25]
The limitations of Timeout and Duplicate ACK
based loss detection are discussed. RTT based
Bayesian network is designed to find cause of a
Duplicate ACK: Packet loss Vs Packet Reorder
Event.

RTT estimation is not accurate in MANETs.
Other parameters should be considered with
RTT.

2 TCP with Packet Loss
Classifier [26]

Supervised learning based classification (decision
tree) model to differentiate a loss into channel
loss or congestion loss is pro- posed.

Supervised learning based model may not be
suitable for all scenarios of MANETs.

3 TCP exMachina [27] Analysis of network assumptions and traffic
detail in offline mode is performed to build a
Computer Generated Congestion Control
algorithm. No learning is required at run time.
Packet loss and RTT are not directly used for
congestion control.

The learning phase is very time consuming.
Designed for specific networks. Performance may
degrades if network conditions change.

4 LP - TCP [23] Loss Predictor
based TCP

The main purpose is to find how likely packet
will be lost if sent.

Due to supervised learning, When the topology
and parameters of a network change, Loss
Predictor needs to be relearned. This variant is
proposed for wired networks. It is required to
check its suitability with MANETs.

