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ABSTRACT 
This paper introduces a novel nature inspired 
technique for an unequally spaced linear antenna 
array synthesis. The Gaussian Mutated Cat Swarm 
Optimization (GMCSO) algorithm is applied to 
optimize the location of the antenna elements to 
suppress the degree of peak side lobe (PSLL) and to 
achieve nulls in desired directions is proposed in this 
paper. A constraint-based static penalty function is 
proposed during array optimization.  The static 
penalty function is capable of putting selective 
pressure on the PSLL, the first null beam width 
(FNBW) or the exact null positioning as required by 
the application in hand which gives the synthesis 
process a high degree of flexibility. Various design 
examples are considered and the obtained results are 
validated by comparing with the literature. Numerical 
results show that the proposed method outperforms 
various algorithms in terms of significant reduction in 
the PSLL while maintaining strong nulls in desired 
directions. The flexibility and ease of implementing 
the GMCSO algorithm in handling the constraints 
using static penalty function is evident, showing the 
utility of the constraint-based method in 
electromagnetic optimization problems. 
Key words: Unequally spaced linear antenna array, 
Gaussian Mutated Cat Swarm Optimization 
(GMCSO), Peak side lobe level(PSLL), First null 
beam width (FNBW).  
 
1. INTRODUCTION 
 
Antenna arrays [2]-[6] are commonly used in 
wireless, mobile, radar and satellite communications 
systems. By enhancing directivity, improving signal 
quality, expanding network coverage and increasing 

spectrum capacity, they help to improve system 
performance. The communication system's efficiency 
significantly depends on the efficient design of 
antenna arrays. 
To obtain high directivity, systems with narrow first 
null beam width (FNBW) are required. Antenna array 
systems with narrow first null beam width(FNBW) 
are required to design to obtain high directivity. On 
the other hand, systems need to maintain low 
sidelobe power in order to avoid interference with 
communication system operating in the same 
frequency band. The above performance metric terms 
PSLL and FNBW are always in contrast to each other 
as arrays with narrow beam width usually do not 
produce lower sidelobe rates and vice versa ie. the 
output cannot be substantially enhanced for one 
aspect without sacrificing the other. In several 
applications gain and beam width must be sacrificed 
to achieve lower side lobe level. Also, need to place 
nulls in undesired directions due to increase in EM 
emission. Thus the antenna arrays, with low side lobe 
level must be designed while retaining fixed beam 
width and positioning nulls in undesired directions. 
The antenna array's radiation pattern depends on the 
configuration of the array, the distance between the 
elements, individual elements' amplitude and phase 
excitations. For linear array geometry, suppressing 
PSLL and positioning nulls in defined directions can 
be accomplished in two ways either by optimizing 
the spacing between the positions of the elements 
while maintaining uniform excitations, or by using 
non-uniform excitations of the elements by using 
periodic antenna element placement. 
For the past 5 decades, the synthesis of linear antenna 
arrays has been extensively studied. Evolutionary 
algorithms such as Genetic algorithm (GA)[7]-[13], 
Simulated annealing (SA)[14], Particle swarm 
optimization (PSO)[15]-[27], Differential evolution 
(DE)[28]-[30], Ant colony optimization (ACO)[31]-
[33], Invasive weed optimization (IWO)[34]-[37]  
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and Cat swarm optimisation (CSO)[38][39]  have 
been applied successfully. All the above-mentioned 
evolutionary algorithms have shown the potential in 
electromagnetic optimisation problems in achieving 
the better solution. 
This article discusses a modified version of the CSO 
(Cat swarm Optimization) algorithm [38][39]. CSO is 
newly proposed optimization technique by Chu and 
Tsai in 2006[38]. It was developed by observing the 
natural behavior of cat. It has been applied to several 
engineering problems and shown an alternative to 
traditional algorithms including GA & PSO. But, 
CSO suffers from premature convergence and low 
convergence rate. 
In order to overcome the aforementioned drawbacks, 
we have proposed a novel modified CSO named as 
Gaussian Mutated CSO that features search 
capabilities and fast convergence. The same is 
demonstrated through numerical illustration in 
section (5). The present work also incorporates 
constraint management through the use of static 
penalty function [7] while formulation of objective 
functions. The use of static penalty feature allows the 
designer to set desired PSLL, FNBW and null depth 
values. Several design examples are considered in 
this communication to demonstrate how the GMCSO 
with static penalty function is useful in controlling 
the shape of the radiation pattern. 
Section 2 provides brief overview of the linear 
antenna array. Section 3 discusses the modified CSO. 
Section 4 addresses the problem formulation with 
penalty function. 
 
2. LINEAR ANTENNA ARRAY 
The geometry of uniformly excited M element linear 
antenna array is placed along x-axis. Figure 1 and 
Figure 2 shows the linear antenna array for 2N and 
2N+1 elements respectively. In the azimuth 
plane[17,22] even(M = 2N) and odd(M = 2N + 1) 
element array factor can be expressed as, the antenna 
array factor (AF) can be expressed as  
 

 

 

 

 

Figure 1: Geometry of linear antenna array with M=2N 
elements. 

 

 

 

 

 

 

Figure 2:Geometry of linear antenna array with M=2N+1 
elements. 

퐴퐹(푋,휃) = 2∑ cos[푘푋 cos(휃)] ; 					푀 = 2푁 (1) 

퐴퐹(푋,휃) = 1 + 2∑ cos[푘푋 cos(휃)] ; 										푀 =
2푁 + 1     (2) 

where휃 is the azimuth angle, 푋  is the position of nth 
element,푘 = 2휋/휆 is the wave number and  휆 
represents wavelength. For the odd element array, 
there is an element at the origin. 
 
3.CSO WITH GAUSSIAN 
MUTATIONSTRATEGY 
This Modified CSO is designed by defining particular 
features of the conduct of a cat. We have two 
operating modes in cat swarm optimization which are 
seeking mode and the tracing mode. Depending on 
the mixture ratio (MR) method, cats are allocated in 
these two modes.  
3.1 Seeking mode (SM) 
The cat is prepared to move to the next place when in 
seeking mode(SM), while being alert in the resting 
place. From the rest place, the motion is so slow that 
can be calculated by observing the neighboring 
region. 
A few important aspects of this mode are: 
Seeking range of the selected dimension (SRD): The 
amount of range available for a selected dimension is 
specified by SRD.(mutative ratio for the specified 
dimension). 
Counts of dimensions to change (CDC): The number 
of dimensions to be mutated is specified by CDC. 
Seeking memory pool (SMP): The number of copies 
of cats to be produced for mutation is specified by 
SMP. 
The steps involved in the seeking mode are as 
follows: 
(1) Based on SMP, create ‘K’ copies of ith cat.  
(2) (K-1) copies will undergo for mutation process.  
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According to CDC and SRD, all the dimensions are 
randomly mutated by adding or subtracting SRD 
to the parent position.  

(3) Evaluate the fitness values of newly updated 
copies. 

(4) Pick the best copy among K copies and replace 
with the position of ith cat. 

 
3.2 Tracing mode (TM) 
In the Tracing mode, cats change their positions very 
quickly by tracing the targets. Change in the cat's 
situation is represented mathematically by the busy 
hunt. The steps in this mode are as follows:  
(1) The position and velocity of the ith cat is defined 
in the D-dimensional real valued solution space as 
 	푋 = 푋 	푤ℎ푒푟푒	푗 = 1 … . .퐷                (3) 

 	푉 = 푉 	푤ℎ푒푟푒	푗 = 1 … . .퐷	                (4) 

(2) Update the position and velocity of ith cat for 
every dimension as below 

 	푉 , = 휔.푉 , + 퐶. 푟. (푋 − 푋 , )(5) 

 	푋 , = 푋 , + 푉 ,   (6) 

Where g is the number of the generation, i is the 
index of a cat in a swarm, j is the index of the cat's 
position, 푉 , is the velocity of the ith particle, C is the 
acceleration coefficient, 	푟휖[0,1]  is the random 
number, x is the inertia weight and the best location 
of the cat is given by Xgbest.  

(3) After that the tracing mode cats' fitness is 
assessed. If the required solution is not obtained on 
the  basis of the flags, upon completion of the SM 
and TM parallel phase, the updated cats will be 
moved to their modes and this process is repeated 
until the required solution is achieved. But in Seeking 
Mode process, arbitrary seeking around the parent cat 
is being led by the random mutation process. Due to 
inefficient pursuit of the cat's place in the 
neighborhood, this mutation strategy leads to 
premature convergence. 

3.3 Gaussian Mutated CSO 
The Cat Swarm Optimization mechanism has been 
followed and implemented by using position updated 
equation and the same is demonstrated as below 

 
Figure 3: Gaussian density function with various standard 

deviations 
 
Figure 3 depicts the Gaussian distribution curves for 
various standard deviations. From Figure 3, The 
Gaussian distribution density function with standard 
deviation (휎) and mean (휇) is mentioned as  
   

 푓 (푥; 	휇, 휎) = 푒
( )

          (7) 

By following the Gaussian law (Eq. (5), the Gaussian 
random number (G) is given as  

 퐺(휇, 	휎 ) = 휇 + 휎퐺(0, 1)  (8) 
Where G(0, 1) is the Gaussian random number 
usually distributed with zero mean and standard 
deviation of 1. It can be observed from Figure 3 that, 
compared to other standard deviation values the 
standard deviation value of 1 is producing both larger 
and smaller mutation values. 
According to the below formula Gaussian mutation 
generates a mutant individual (푥 ) 

 	푥 = 푥 + 푁(0,휎 )  (9) 
     = 푥 +

휎 ∗ 푁(0, 1)(10) 
where the unmutated individual is given by 푥 	. Also, 
σ is considered to be the mutated value of the chosen 
dimension. Therefore, the position of each dimension 
of 푖  cat is updated as 

 푥 = 푥 + 푆푅퐷 ∗ 푥 ∗ 푁(0, 1)  (11) 
 
4. FORMULATION OF THE FITNESS 
FUNCTION USING STATIC PENALTY 
The main objective is to suppress PSLL by 
maintaining FNBW as the non-optimized antenna 
array. Here, two constraints low PSLL, low FNBW 
have to be satisfied during optimization. But PSLL 
and FNBW both are contrast to each other. 
In literature, the objective function to suppress PSLL 
is formulated as 

F(X) = max | ( , )|
| |   (12) 



Prasanna Kumar K l et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(5),  September - October  2020, 7823 –  7831 

7826 
 

where푋 = (푋 ,푋 , … …푋 	), is the element position 
vector,  휃   is defined as the angular region excluding 
the main lobe. The main peak of the pattern is 퐴퐹 . 
But, the above objective function will find a feasible 
solution in the direction where value of PSLL 
dominates. It leads to increase in value of FNBW. So, 
in order to satisfy these two objectives and to find the 
feasible solutions, we have proposed static penalty 
function in the formation of objective function. 
The main aim is to achieve desired PSLL while 
maintaining the FNBW of the periodic array(15% 
variation acceptable) by optimizing antenna element 
positions. The objective function is formulated as 
퐹(푥⃗) =
|퐹푁퐵푊 − 퐹푁퐵푊 | + (푅 × 푚푎푥[|푃푆퐿퐿 −
푃푆퐿퐿 |] )          (13) 
where푥⃗ is the element position vector; 휃  is the 
angular region excluding the main lobe; 
퐹푁퐵푊 &퐹푁퐵푊  are the optimized FNBW and 
desired FNBW respectively; 

푃푆퐿퐿 = 푚푎푥 퐴퐹 ⃗ (휃 ) &푃푆퐿퐿  are the 
optimized PSLL and desired PSLL respectively;   

푅 is penalty coefficient and it will allow algorithm to 
put more selective pressure to achieve lower PSLL’s. 
The more the value of 푅 	,the more selective pressure 
on the algorithm to achieve lower PSLL’s. As 
suggested in the literature[37], we have chosen 푅 as 
10 . 
 
5. DESIGN EXAMPLES 
GMCSO is applied to synthesize the linear antenna 
array to achieve minimum PSLL and narrow FNBW. 
The parameters involved in GMCSO are listed in 
Table 1. These parameters have set after sensitivity 
analysis. The algorithms are executed for 20 
independent runs. The median values are recorded for 
comparisons with literature. Total 1801 angles are 
considered in azimuth plane while optimization for 
better accuracy. All the computations are performed 
using MATLAB on a PC operating at 2.5GHz with 
8GB of RAM. Various linear antenna designs are 
considered for synthesis. These design examples are 
popular in array synthesis optimization.  

 
Table 1: Parameter setup for GMCSO and PSO. 

GMCSO PSO 
Parameter Value Parameter Value 
Initial Cats 50 Swarm size 20 

SRD 0.3(30%) 푐  2 
CDC 80% 푐  2 
SMP 5 휔 Linearly varies from 0.9-0.4 
MR 0.8 푣  4 
푟 [0,1] 푣  -4 

휔 Linearly reduces 
from 0.9 to 0.2 

푐  2 
 
5.1 A 37 Element Linear Array 
A 37 element array with nulls is synthesized for 
achieving minimum side lobe levels. Table 2 shows 
the optimized element positions. The element 
positions are normalized with respect to 휆. A 
comparison of the PSLL, FNBW obtained using 
Improved Genetic algorithm(IGA), Two-Step 
Approach(TSA), Grey Wolf Optimizer(GWO)[42]-
[44] and GMCSO algorithms are shown in Table 3. 

The best PSLL for 37 element linear array in 10 runs 
was found to be -22.4 for IGA[13], -22.683 for 
TSA[41], -22.784 for GWO[43] and -23.9967 for 
GMCSO. The array pattern obtained using the 
modified CSO algorithm along with uniformly 
illuminated periodic array is shown in Figure 4. 
Convergence characteristics in terms of the fitness 
value versus the number of generations using 
GMCSO algorithms is shown in Figure 5. 
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Table 2: Geometry for the best array obtained for 37 elements. 
Element(n)  Position(푥 /휆)   Element(n)  Position(푥 /휆) 
 1  0.334504804    10  3.839952179 
 2  0.782639418    11  4.404425624 
 3  1.065035996    12  4.845993161  
 4  1.472250176    13  5.473465046 
 5  1.910376128    14  5.985467936 
 6  2.223936644    15  6.660870593 
 7  2.717695083    16  7.446590914 
 8  2.99951839    17  8.282729289 
 9  3.589495609    18  8.996489914 
              
Table 3: Comparative results for 37 element linear aperiodic array synthesis. 
 

S No 
No. of elements 

in an Array Algorithm PSLL 
Aperiodic 
FNBW in 
degrees 

UIPA 
FNBW 

1 37 

IGA[13] -22.4 

4.25 3.5 TSA[41] -22.683 
GWO[43] -22.784 
GMCSO -23.9967 

 

 
Figure 4: The normalized array pattern of 37 element 

Linear array obtained by GMCSO. 

Figure 5: Convergence plot of the fitness value of the 37 
element array using GMCSO 

5.2 A 32 Element Linear Array with Null 
Conditions 
A 32 element array with nulls is synthesized for 
achieving minimum side lobe levels. Table 4 shows 
the optimized element positions. The element 
positions are normalized with respect to λ. A 
comparison of the PSLL, FNBW obtained using 
PSO, IWO, Modified IWO and GMCSO algorithms 
is shown in Table 5. The best PSLL for 32 element 
linear array in 10 runs was found to be -18.08 for 
PSO[37], -17.14  for IWO[37], -19.22 for modified 
IWO[37] and -23.8099 for GMCSO. The array 
pattern obtained using the modified CSO algorithm 
along with uniformly illuminated periodic array is 
shown in Figure 6. Convergence characteristics in 
terms of the fitness value versus the number 
ofgenerations using GMCSO algorithm is shown in 
Figure 7. The PSLL was observed to be lowered by 
4-6 dB. The GMCSO also achieved a null depth of -
60.02 and is positioned at 99 . 
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Table 4: Geometry for the best array obtained for 32 elements. 

Element(n)  Position(푥 /휆)   Element(n)  Position(푥 /휆) 
 1  0.373160348    9  3.312378192  
 2  0.650282601    10  3.790054007 
 3  1.104298334    11  4.33037935  
 4  1.417979828    12  4.837102277 
 5  1.716799308    13  5.387133767 
 6  2.181670251    14  6.093430524 
 7  2.466180314    15  6.936578035 
 8  2.971892535    16  7.691752983 
              
Table 5: Comparative results for 32 element linear aperiodic array synthesis with single null. 

S No 
No. of 

elements in an 
Array 

Algorithm PSLL Null depth in dB at 
99  

Aperiodic FNBW 
in degrees 

1 32 

PSO[37] -18.08 -87.02 8.50 
IWO[37] -17.14 -86.96 8.00 

Modified IWO[37] -19.22 -85.72 8.50 
GMCSO -23.8099 -60.02 8.50 

 

 
Figure 6: The normalized array pattern of 32 element 

Linear array obtained by GMCSO. 

 
Figure 7: Convergence plot of the fitness value of the 32 

element array using GMCSO 
 

6. CONCLUSION 
In this article, we have proposed a novel Gaussian 
Mutated Cat Swarm Optimization(GMCSO) to 
pattern synthesis of linear antenna array. GMCSO is 
applied to optimize the positions of antenna elements 
to suppress the PSLL and to place the nulls in desired 
directions. In order to satisfy multiple objectives 
simultaneously, we have proposed static penalty 
based objective function approach during 
optimization process. Various standard linear antenna 
arrays have been optimized and numerical results 
illustrates that GMCSO outperforms traditional and 
modified algorithms available in literature. For 32 
element linear array, GMCSO achieves PSLL of  -
23.8099dB and null depth of -60.02 whereas PSO, 
IWO, MIWO achieves PSLL of  -18.08dB, -17.14dB, 
-19.22dB respectively. In this article, we have 
confined to linear antenna synthesis but GMCSO can 
be applied to other electromagnetic problems because 
of its exploration capabilities. 
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