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 
ABSTRACT 
 
Nowadays, quantum computers have been proven to solve the 
complex problem more efficient and process data more 
security than classical computer. However, the effect of 
noises and unwanted environments make the needs of 
quantum error correction code to build the practical quantum 
information system. Since the quantum computation 
algorithms need to be verified in classical computer before 
implement in quantum computers, the novel framework for 
verification in classical computer has been become essentially 
and importantly. In this discussion, a novel framework for 
quantum information system simulation is proposed which is 
based on MATLAB environment. First, we analysis the basic 
notation and elementary elements of a quantum system via 
mathematical model. Then, we introduce the basic elements 
of Pauli channel model, and two basic quantum error 
correction codes to stabilize the quantum channel. Hence, the 
proposed system to simulate the quantum three-repetition 
codes and quantum Shor codes are discussed. 
 
Key words: Quantum computation, Quantum circuit model, 
Quantum error correction codes, Shor codes. 
 
1. INTRODUCTION 
 

An effort to make a generalization of classical computer 
proposes a new type of computer named quantum computer 
which are based on quantum mechanism. The computation 
algorithms based on quantum computer have proved the 
efficient on processing data more security and solving 
complex problem more efficient time [1]. For example, one of 
the first quantum algorithm to factor an integer into its primers 
is invented by Shor[2], which runs on polynomial time. 
Moreover, Grover [3] proposed a searching algorithm named 
Grover search, which is applied on many reality researches on 
large database system. Since then, quantum computers are 
attracted by many researchers all over the world [4-6, 16-20]. 

However, as an efficient computation system, quantum 
computers have faced the imperfectly applied of quantum 
channel noise, decoherence which affect the practical design 
of quantum computers. To overcome such those, an emerging 
 

 

technique from classical error correction codes is used to 
protect quantum computers, which is called quantum error 
correction codes (QECC). Since the first discussion of 
quantum code is invented by Shor [7], the theory of QECC is 
generalization to be expressed as the quantum stabilizer code 
[8]. Then, there are many proposed quantum codes for various 
purposes of practical design [9-11]. 

Before implementing the error correcting codes on 
quantum computer, the necessary step is to simulate them on 
the classical computer. There are many possible quantum 
computation models such as quantum circuits model, 
quantum adiabatic computation, Zidan’s model [12-15], they 
are proven to have those effective on simulation of quantum 
algorithm, quantum protocol, quantum communication. To 
verify quantum error correction code, quantum circuit model 
is a suitable choice since it also based on mathematic model of 
Hilbert space like QECC. Hence, in this work we propose the 
framework based on MATLAB environment to simulate and 
analysis two basic QECC codes. 
    The paper is organized as follows. In Section 2, we review 
about the qubits, elementary operations of qubits, and 
quantum operations. The quantum error correction and the 
solution to simulate in MATLAB are discussed in Section 3. 
Finally, the conclusion is listed in Section 4. 
 
2. ELEMENTARY OPERATIONS OF QUANTUM 
INFORMATION SYSTEM 

 
Quantum theory uses qubit to represent information, the 

quantum systems with two levels such as: two polarization 
states of photons, two energy levels of atoms, etc. A qubit 
|߰⟩ = ܽ|0⟩ + ܾ|1⟩ is considered to be found in the both basis 
states |0⟩ and |1⟩ where the probability value we saw that 
qubit at state |0⟩   is |ܽ|ଶ  and at state |1⟩  is |ܾ|ଶ . It is 
superposition concept of a qubit, which is one of a main 
property of quantum information since the amount of 
information which presented in qubits are no limitation. A 
qubit can be displayed in matrix form as, 

|Ψ⟩ = ቂܾܽቃ = ܽ ቂ10ቃ + ܾ ቂ01ቃ = ܽ|0⟩ + ܾ|1⟩.																								(1) 
According to norm condition for a qubit on the Bloch sphere 
space, the complex numbers a and b satisfy the equation 
|ܽ|ଶ + |ܾ|ଶ = 1. A n qubits system is constructed by multiple 
tensor products of some other qubits, it is given as follows, 
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|ϕ⟩ = ෍ ܽ௜|݅⟩
ଶ೙ିଵ

௜ୀ଴

= ෍ ܽ௜భ௜మ…௜೙|݅ଵ⟩|݅ଶ⟩… |݅௡⟩
௜ೖୀ{଴,ଵ}

.														(2) 

where ݅ = ∑ 2௝ ௝݅௡ିଵ
௝ୀ଴ . 

 

 
Figure 1:Basic quantum gates with matrices presentation. 

 
There are many quantum computation models can be used. 
Among them, quantum circuit model is related to 
mathematical model and it is suitable for simulation in 
MATLAB environment. In quantum circuit model, quantum 
information is presented by matrices and quantum operations 
are applied to qubit by quantum gates. Mathematically, we 
simulate the quantum gate via the matrix representation. Note 
that the condition for any quantum gate is revertible and the 
invert gate that move ܃|߰⟩ back to |߰⟩ satisfy ି܃ଵ =  ற, so܃
U is unitary matrix. Fig. 1 shows the most important quantum 
gates with these matrices form. Pauli channel of quantum 
system consists of four basic elements, namely X, Z, Y, andI 
(identity matrix). Any operation and errors acting on qubit can 
be represented as the combination of them. Hence, we have 
three types of errors which can effect on a qubit, they are bit 
flip, phase flip, and their combination. In general, the error 
operators that effect on  n qubits have the form: 

1 2 ... nE e e e    where { , , , }ie  I X Y Z . 
 
3. THE PROPOSED SYSTEM MODEL AND SIMULATION 
OF BASIC QUANTUM CODES 

A. Overview system 
MATLAB program is a computing environment that based on 
the operation with matrices. Hence, it is useful tool in 
simulating the matrix formalism of quantum process. Since 
one qubit can be modelled by mathematical form by matrices 
of 2-dimensional Hilbert space 

|Ψ⟩ = ቂܾܽቃ .																																																																														(3) 

the general quantum state of quantum system of n qubits can 
be given by n times tensor product via kron function of 
MATLAB program. In addition, any circuit is given as the 
series of unitary transformation applied to initial quantum 
state. These transformations can be represented by matrices 
form. As calculating by true table, we proposed two new 
matrices from original CNOT gate via Fig. 2 and Fig. 3. 

 

 
Figure 2: Type 1 modified CNOT gate. 

 
Figure 3:Type 2 modified CNOT gate. 

 

Figure 4:Quantum circuit for X-error 3- repetition code. 

 

Figure 5:Quantum circuit for Z-error 3- repetition code. 

B. Three Qubits Quantum Repetition Code 
The simplest and the QECC is three qubits repetition code that 
can correct only one type error, namely bit flip or phase flip. 
The QECC can be simulated by quantum circuit model; they 
are showing in the Fig. 4, 5 for three qubits repetition code. 
The difference between those two quantum circuits based on 
the one type of Clifford gates: X=HZH and Z=HXH. 

The MATLAB programs of quantum circuits in Fig. 4, 5 
are described as follows. First, we create the initial message of 
one qubit to be protected. The quantum circuit starts with the 
initial information, we extend it to the 3-qubits system via 
helps of ancilla 2 qubits of zeros, after transformation by 
encode step, the logical states or encoded qubits are created. 
Here, two basis states of codewords for 3-qubit are defined as 
follows, 
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|૙௅⟩ = |000⟩, |૚௅⟩ = |111⟩.																																																			(4) 

Then, the quantum gates as previous mentioned must to be 
declared. Here, the quantum gates X, Z, and two new types of 
CNOT gates are used. The kron function was used to extend 
one qubit to many qubits system.  

C. Shor code 
To extend the first full quantum code, Shor code for 9 qubits is 
created by Shor, which use both bit-flip correction and 
phase-flip correction and can correct bit-flip, phase-flip, and 
their combination. To do so, for one qubit is protected against 
phase-flip we need extend it to codeword of three qubits. 
Then, each qubits of that three-qubits need to extend to 
three-qubits to protect against bit-flip error. Hence, the 
quantum circuit starts with the initial information, we extend 
it to the 9- 

qubits via helps of ancilla 8 qubits of zeros, after 
transformation by encode step, the logical states or encoded 

qubits are created. Here, two basis states of codewords 
9-qubits repetition as well as 

|૙௅⟩ =
1
√8

(|000⟩ + |111⟩)⨂(|000⟩ + |111⟩)⨂(|000⟩

+ |111⟩),	 

|૚௅⟩ =
1
√8

(|000⟩ − |111⟩)⨂(|000⟩ − |111⟩)⨂(|000⟩

− |111⟩). 

Using matrices transformation, the states after applying 
error and decoding can be found. The final states show us the 
correction state can be recovered the syndrome |S௘⟩tell us 
which error has applied to logical states. The full quantum 
circuit for Shor code is given in Fig. 7. And the MATLAB 
program for Shor code is described in Fig. 8. 

 

%Creat GATE: 
%gate2CN=[ ---]; 
%gate2CT=[ ---]; 
 
%Creat ERRORS: 
Xgate=[ 0 1; 
        1 0];     
Error0=eye(2^3); 
Error1=kron(Xgate,eye(2)); 
Error1=kron(Error1,eye(2)); 
Error2=kron(eye(2),Xgate); 
Error2=kron(Error2,eye(2)); 
Error3=kron(eye(2),eye(2)); 
Error3=kron(Error3,Xgate); 
%----------------------- 
%Setup qubit input: 
message=[3/5;4/5]; 
q_zero=qubit0(1); 
q_one=qubit1(1); 
q1=message(1,1)*q_zero+message(2,1)*q_one; 
q2=qubit0(2); 
%----------------------- 
%Init 
Phi1=kron(q1,q2); 
Phi2=gate2CN*Phi1; 
%Applying Error 
Phi3=Error3*Phi2; 
%Decode 
Phi4=gate2CN*Phi3; 
Phi5=gate2CT*Phi4; 
%------------- 
final=[]; 
final=[final;Phi5(i,n)]; 
fprintf('Finished!\n'); 
 

%Creat GATE: 
%gate2CN=[ ---]; 
%gate2CT=[ ---]; 
H=hadamard(3); 
%Creat ERRORS: 
Zgate=[ 1 0; 
        0 -1];     
Error0=eye(2^3);    
Error1=kron(Zgate,eye(2)); 
Error1=kron(Error1,eye(2)); 
Error2=kron(eye(2),Zgate); 
Error2=kron(Error2,eye(2)); 
Error3=kron(eye(2),eye(2)); 
Error3=kron(Error3,Zgate); 
%----------------------- 
%Setup qubit input: 
q_zero=qubit0(1); 
q_one=qubit1(1); 
q1=(3/5)*q_zero+(4/5)*q_one; 
q2=qubit0(2); 
%----------------------- 
%Init 
Phi1=kron(q1,q2); 
Phi2=gate2CN*Phi1; 
Phi3=H*Phi2; 
%Applying Error 
Phi4=Error3*Phi3; 
%------------- 
Phi5=H*Phi4; 
%Decode 
Phi6=gate2CN*Phi5; 
Phi7=gate2CT*Phi6; 
%------------- 
final=[]; 
final=[final;Phi7(i,n)]; 
fprintf('Finished!\n'); 

 

Figure 6:MATLAB program for quantum 3- repetition code. 
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Figure 7:Quantum circuit for Shor code. 

%Creat GATE: 
%gate2CN=[ ---];gate2CT=[ ---]; 
%----------------------- 
gate1=kron(gateCNE(4),identify(2^5)); 
gate2=kron(gateCNE(7),identify(2^2)); 
H=hadamard(1);tem1=kron(H,identify(2^2)); 
tem2=kron(tem1,tem1);gate3=kron(tem2,tem1); 
tem1=kron(gate2CN,gate2CN);gate4=kron(tem1,gate2CN); 
gate5=gate4;tem=kron(gate2CT,gate2CT); 
gate6=kron(tem,gate2CT);gate7=gate3;gate8=gate2; 
gate9=gate1;gate10=kron(gate2CTE,eye(2^2)); 
%----------------------- 
%Creat ERRORS: 
Ygate=[0 -i; 
       i 0]; 
Error0=eye(2^9); 
Error1=kron(-i*Ygate,eye(2^8));tem=kron(eye(2^1),-i*Ygate); 
Error2=kron(tem,eye(2^7));tem=kron(eye(2^2),-i*Ygate); 
Error3=kron(tem,eye(2^6));tem=kron(eye(2^3),-i*Ygate); 
Error4=kron(tem,eye(2^5));tem=kron(eye(2^4),-i*Ygate); 
Error5=kron(tem,eye(2^4));tem=kron(eye(2^5),-i*Ygate); 
Error6=kron(tem,eye(2^3)); tem=kron(eye(2^6),-i*Ygate); 
Error7=kron(tem,eye(2^2));tem=kron(eye(2^7),-i*Ygate); 
Error8=kron(tem,eye(2^1)); 
Error9=kron(eye(2^8),-i*Ygate); 

%Setup qubit input: 
q_zero=qubit0(1); 
q_one=qubit1(1); 
q1=(3/5)*q_zero+(4/5)*q_one; 
q2=qubit0(8); 
%----------------------- 
%Init 
Phi1=kron(q1,q2); 
Phi2=gate1*Phi1; 
Phi3=gate2*Phi2; 
Phi4=gate3*Phi3; 
Phi5=gate4*Phi4; 
%Applying Error 
Phi6=Error0*Phi5; 
%----------------------- 
Phi7=gate5*Phi6; 
Phi8=gate6*Phi7; 
Phi9=gate7*Phi8; 
Phi10=gate8*Phi9; 
Phi11=gate9*Phi10; 
Phi12=gate10*Phi11; 
%----------------------- 
final=[]; 
final=[final;Phi12(i,n)]; 
fprintf('Finished!\n'); 

 

Figure 8:MATLAB program for Shor code. 

4. CONCLUSION 
 
The paper presents basic information on quantum error 
correction, using MATLAB environment the three-qubits 
repetition and nine-qubits Shor code have been proved to 
correct. Such simulation of simplest QECC help us better 
understanding of design and quantum error correction and 
quantum mechanism for further.  

The outstanding result prove that the proposed framework 
is novel for further researches simulation of quantum 
information system. In the future, we plan to use this 

framework for simulation of quantum stabilizer codes. The 
application of quantum stabilizer codes on quantum 
algorithm, quantum communication can be achieved by 
proposed protocol. 
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