
Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3504

ABSTRACT

There is utmost pressure on software development industry to
build quality software’s as we have become highly dependent
on software’s directly or indirectly. Software development has
many phases like testing which requires the maximum time as
well as resources like human efforts and investment. The time
required for completion of software testing is more than the
time required to complete all remaining phases of software
development. The quality of software heavily depends on
quality of software testing process. Therefore, Software
testing can be considered as necessary evil for verifying the
software quality. This paper discusses some of the most
critical aspects and principles of software development and
testing.

Key words: Software Engineering, Software Testing
Principles, Software Testing, Software Development.

1. INTRODUCTION

“It is the study and an application of engineering to
the design, development, and maintenance of software”.
Fairly defined software engineering as “Software engineering
is the technological and managerial discipline concerned
with the systematic production and maintenance of software
products that are developed and modified on time and within
cost estimates” [1]. IEEE defined software engineering as
“Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software” [2]. Baur defined
Software Engineering as “The establishment and use of
sound engineering principles in order to obtain economically

software that is reliable and works efficiently on real
machines” [3]. The essential objective of software
engineering process is to develop and timely deliver a quality
product that can satisfy customers. It aims to accomplish this
objective by using an “engineering approach” [21].
Engineering includes a set of key rules that ought to be
followed to build a quality product.

2. SOFTWARE DEVELOPMENT LIFE CYCLE

“Software Process is a coherent set of activities for
specifying, designing, implementing and testing software
systems” [4]. SDLC outlines a detailed and thorough plan to
build, test, maintain and modify any software product.

Requirement Analysis: The most substantial and important
phase of “Software Development Life Cycle (SDLC)” is
requirement analysis [5]. This phase focuses on capturing the
requirements of end-user in unbiased manner. User
requirements can be of two types: “functional requirements”
and “non- functional requirements”. “A non-functional
requirement is a requirement that specifies criteria that can
be used to judge the operation of a system, rather than
specific behaviors. This should be contrasted with functional
requirements that define specific behavior or functions” [6].
Sometimes, end user is unable to clearly elicit their
requirements or an analyst face problem in understanding
user requirements. Therefore, requirement elicitation
techniques can be utilized by the requirement analysts to
reveal and capture the user requirements [7]. The huge
criticality of capturing user requirements lies in the fact that
any mistake in capturing user requirements can cause
tremendous loss to the software organization leading to
un-necessary wastage of cost, time and efforts as shown in
figure 1.

Exploring the Essentials and Principles of Software Development

Sandeep Dalal1, Kamna Solanki2, Sudhir3, Diksha4
1,2Assistant Professor, Maharshi Dayanand University, Rohtak, India

Sandeepdalal.80@gmail.com, Kamna.mdurohtak@gmail.com
2,3Research Scholar, Maharshi Dayanand University, Rohtak, India

Sudhir.gehlawat@gmail.com, Dikshanandal3012@gmail.com

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse129862019.pdf

https://doi.org/10.30534/ijatcse/2019/129862019

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3505

Therefore, a requirement analyst must pay attention to clearly
and unambiguously capture the requirements. The
information gathered in this phase provides base to the
subsequent steps in software development. Risk assessment
and planning related to various types of software feasibility
like operational, economic, social, technical feasibility is also
carried out in this phase.

Figure 1: Significance of Requirement Analysis Phase

Requirements captured are documented in Software
Requirement Specification (SRS) document. SRS consists of
all “functional and non-functional” user requirements within
the scope of the software. SRS serves the purpose of final
agreement between software organization, stakeholders and
end user. SRS is finalized when all the stakeholders agree to
the terms and conditions of SRS [8].

Software Design: An architectural design for the software is
planned depending on the user’s requirements mentioned in
SRS. “Software design is a process to transform user
requirements into some suitable form, which helps the
programmer in software coding and implementation” [9]. A
high-level software design specifies the layout of modules,
their interactions and interfaces, overall structure of the
software. A low-level software design specifies the finer
details of modules of the software product like data flow
representation, data structures, intra-module utilities and
communication strategies. The final design is documented as
a Design Document Specification (DDS).
All the finer details related to inner and interface design of
every module must be described precisely in the DDS
architecture.

Coding: The software programmer or developer writes the
actual code using some high-level programming language in

this phase. A software code is always written as per the
software design to build a software that satisfy the user
requirements documented in SRS. The optimal programming
language is chosen by the developers based upon the type of
user requirements as every language has its own
technological strengths and limitations [5] [6].

Software Testing: Software testing can also be stated as
verification and validation. Software testing is carried out
after coding to find the faults/defects in the software code.
Testing remains most time consuming, costly and most
significant phase among all the phases. Software testing can
be carried out in static or dynamic manner. Static software
testing is performed iteratively at the end of every phase in
terms of reviews, inspections, walk-throughs. The center
objective of static testing is to grab any kind of error which
may have penetrated in the software at the earliest. Static
testing or verification deals with the question: “Are the
building the product, right?” It confirms that the software
programmers pick right strategy and processes to develop the
software product [7] [8].

Dynamic testing deals with actual execution of test cases on
software code to discover software bugs (or failures).
Execution of t est cases during dynamic testing triggers the
software faults/defects to detect software failures (or bugs). A
software failure is nothing, but a fault that gets activated when
test cases are executed. A fault or human error is the root
cause of a software failure. Dynamic testing or validation
deals with the question: “Are we building the right product?”
It confirms that the developed software product is right and
fulfills the requirements mentioned in SRS as shown in figure
2.

Dynamic testing scans and scrutinize the code by executing
test cases, while static testing scans every phase of software
development without actually executing software code. The
focus of static testing is on revealing software and the focus of
dynamic testing is on finding failures (or bugs). Henceforth,
testers carry out testing keeping a negative psychology to find
maximum faults and bugs. “Software verification and
validation use both static and dynamic techniques for
ensuring that the resulting software meets all the customer’s
requirement specifications in SRS” [7].

Debugging starts subsequent to software testing. Debugging
deals with fixing the bugs uncovered during testing [11].
Bugs or failures revealed during testing are reported to the

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3506

developers/programmers and he developers fixes the bugs by
making changes in the software code.

Deployment and Maintenance: Soon after the completion of
software testing and debugging, a software becomes ready for
installation and implementation and it is released formally.
After the release of software, maintenance is required
iteratively for enhancing the functionalities, technological
updates, managing compatibility issues or bug fixing [10].
Three types of maintenance can be defined as:

o Corrective: To rectify and fix the older or new bugs.
o Adaptive: To make technological advancements and

compatibility adaptations
o Perfective: Adding the latest features and functionalities to the

software.

Figure 2: Verification and Validation Process [17]

3. SOFTWARE TESTING

This section describes the software testing process, principles,
types and levels in detail. Testing is structured towards
evaluating a software system with the intention of finding
maximum no. of failures or bugs. In other words, testing deals
with executing a software program to detect any quality gaps,
errors or missing requirements as compared to the actual
desire or requirements. Testing performs the verification and
validation of a software product to ensure its accuracy and
correctness [4].
IEEE described testing as “The process of operating a system
or component under specified conditions, observing or
recording the results, and making an evaluation of some
aspect of the system or component” [2] and “A process of
analysing a software item to detect the differences between

existing and required conditions (defects/errors/bugs) and to
evaluate the features of the software item” [2].

3.1 Software Testing: Concepts and Terminologies

Test Cases and Test Suite: “A test case is a document, which
has a set of test data, preconditions, expected results and post
conditions, developed for a particular test scenario in order to
verify compliance against a specific requirement” [2]. A test
case typically answers the question “What I am going to test?”
A test case basically checks for any discrepancy between the
observed and expected output by entering a set of input values
(test data) under some pre-specified conditions. If the
expected and observed output are same, then the test case is
considered as “pass”, otherwise a test case is considered as
“fail”. Every test case written by the testing team serves a
unique purpose of finding some defects or faults. Writing
relevant, useful and effective test cases is as important as
software testing process itself. The test cases must have
following characteristics [5]:

 Test cases must be written to ensure that it provides a

sufficient coverage to all the functionalities.
 Test cases must ensure coverage of all possible negative

inputs from valid and invalid domains and ranges.
 Test cases must be refined, updated and modified

iteratively and continuously.
 Test cases must be stored for future use.

A test suite is a collection of similar test cases. It is sometimes
known as “Validation Suite”. A test suite provides an
organized way to manage individual test cases. (“If an
individual file on disk is considered as a test case, then a
folder having many similar files can be considered as a test
suite”.)

3.2 Software Testing Life Cycle

The software testing life cycle can be defined in the following
steps:

1) Review Requirements: A software testing life cycle begins
with reviewing the user requirements to ensure that any sort
of amendments or discrepancy in user requirements can be
captured as depicted in figure 3.

2) Define Test Strategy: Second step deals with defining a test
plan or test strategy. A test plan is a document or artifact
describing the plan or strategy to effectively test a software? A
test plan answers the question: “How it should be tested?”

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3507

A test plan designs the layout of testing strategy, resources
required for testing, testing objectives, estimation of test
schedule, test adequacy criteria and deliverables during
testing. A test plan is basically a blueprint for carrying out
software testing as described in figure 4. Every finer and
minute details of test plan is well controlled and managed by
test manager [6] [7].

3) Develop Test Specifications: This step carries out the test
plan execution in detail. Test cases are written and test
environment for execution of test cases is designed. Test data
for test cases is prepared carefully to fulfill the objectives of
software testing.

4) Execute Tests: This step deals with actual execution of test
cases. A test case when executed results in either “pass” or
“fail”. The failed test cases show the presence of defects and
are reported to the developers for fixing.

Figure 3: Software Testing Cycle

Figure 4: Software Test Plan

3.3 Types of Software Testing Techniques

“Static Testing Techniques”:
Static testing (“Non-execution-based testing”) techniques are
primarily used to verify the software program without actually
executing the software program. “Static techniques are

concerned with the analysis and checking of system
representations such as the requirements documents, design
diagrams and the program source code, either manually or
automatically, without actually executing the code” [10].
Static testing techniques includes program analysis, code
inspection, model checking and symbolic analysis etc.
program documents like SRS, DDS, test reports, test plan
document etc. are analyzed manually by a committee of
reviewers [9] [11].

“Dynamic Testing Techniques”:
Dynamic testing or execution-based techniques actually
executes the software written by the developers using some
test cases or test suites. This is the best approach to produce
quality software. Test cases are designed with utmost care by
the testing team to uncover all possible range of valid and
invalid inputs [12]. “The software modules are tested by
executing test cases using real or simulated inputs, under
both normal and abnormal environment using controlled and
expected conditions to evaluate and analyze how a software
system reacts to various input test data. It is highly
mandatory to test the software in controlled and expected
conditions as a complex, non-deterministic system might
react with different behaviors to a same input, depending on
the system state” [9]. The significance of dynamic testing can
be easily understood as the result of a dynamic testing i.e.
passed or failed test cases, one can measure the quality levels
achieved so far by the software system [11][22].

Dynamic testing techniques are again classified into three
broad categories based on a whether one requires the
information about the source code for test case design or not
as shown in figure 2.6. In case the knowledge of the source
code is not required for test case design, it is known as black
box testing. One needs to have knowledge of source code for
designing test cases; it is known as white box testing [13].
Grey box testing is the combination of white and black box
testing. Grey box testing deals with testing the functionalities
of a software by knowing its internal details. White box
testing has two different starting points for dynamic software
testing: the requirements specification and internal structure
of the software. Black box testing evaluates only the external
view (behaviour) of the software as it concentrates on what the
software does and is not concerned about how software does
it. Black box testing totally focuses on testing requirements
and functionality of the software under test” [8].

One must have deep understanding of requirement
specifications of SRS (Software Requirement Specification

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3508

Document) so as to successfully implement the black box
testing strategy. In addition, one must know the expected
behavior of the system response to a particular input as shown
in figure 5.

White box testing strategy focuses on evaluation of internal
logic and construction of the software code and relies on the
deep information regarding software design and software
code for test case design. “White box testing is also known
as Clear Box testing, Open Box testing, Structural testing,
Transparent Box testing, Code-Based testing, and Glass Box
testing” [11]. “The test cases designed using the white box
testing strategy include coverage of the software code in terms
of branches, paths, statements and internal structure of the
code, etc. White box testing approach examines the logic of
the program or system without bothering about the
requirements of software which software is expected to fulfil”
[4]. The expected results are evaluated on a set of coverage
criteria. “Therefore, one needs to have knowledge of coding
and logic of the software to implement white box testing
strategy” [7].

 Figure 5: Static and Dynamic Software Testing

3.4 Levels of Software Testing

Software testing can be conducted at three levels namely “unit
testing, integration testing and system testing”. Unit testing

deals with testing of individual modules or components
independently to detect coding faults. Integration testing
combines two or more modules and test them jointly to reveal
design faults in interfaces and communication as depicted in
figure 6. System testing tests the integrated system as whole to
validate the software against the requirements specified in
SRS. After completion of system testing, acceptance testing is
carried out in the presence of end user to validate the client
needs and acceptance to functionalities, interfaces etc.
Acceptance testing is generally performed after system
testing.

The complete software system is tested by the end users for
usability and acceptance before the system is actually handed
over to the customers or end users using testing tools[23][24].
It is also called as “beta testing, application testing, and
end-user testing”. Acceptance testing boosts the morale of the
developers regarding the correctness and usability and the
software can be released to end-user after acceptance testing is
passed by the customers or end-user [14].

Figure 6: Levels of Software Testing

3.5 Seven Principles of Software Testing

 Principle 1: “Testing only shows presence of bugs, not

their absence”
Efficient and effective testing of a software can detect the
presence of bugs, but it can never guarantee about the absence
of the bugs. No matter how thorough and rigorous a system is
tested, it can never be promised that a software will be
completely bug-free.

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3509

Figure 7: Principles of Software Testing

 Principle 2: “Exhaustive Testing is Impossible”
Exhaustive testing is a type of testing approach which states
that a software program must be tested for all possible
combinations of test inputs to ensure that a software program
becomes completely bug free. But the limitation of this
approach is that exhaustive testing can be performed only for
very small programs. It is practically impossible to perform
exhaustive testing on a big software system due to cost and
time constraints. Ideally, a software program must be tested
for every possible combination covering all valid and invalid

range of input variables by the software testing team [15].
Hence, complete testing (or exhaustive testing) is just not
possible due to time and resource constraints.

Figure 8: Principles of Software Testing [17]

 Principle 3: “Early Testing”
The third principle states that the cost and efforts to fix a bug
increases multi-fold with delay in capturing a bug. Therefore,
an error committed by human being, or a fault must be
captured as soon as it invades into the system. First, it is 100
times costlier to rectify a defect (fault) after deployment than
during the requirement analysis or design phase. Second, 40
to 50 percent of the testing effort in the project is due to
rework Therefore, Boehm stated that “timeline of capturing
software defects highly influences the total costs of software
projects” [16].

Jones stated that “Defects penetrated during the requirements
phase as the hardest to locate and fix. While the defects
introduced during coding are the most numerous, they are the
easiest to locate and fix. The defects introduced during the
design phase are the gravest. Documentation defects can be
severe, if ignored” [15]. So, poorly designed test cases are
often more of a trouble than help. “It is commonly believed
that the earlier a defect is detected, the cheaper it is to fix it”.

“The cost of fixing the defect depending on the stage it was
found”. Earlier a defect is detected, least costly it is to fix the
bug. Later a defect is detected, costlier it is to fix the bug. For
example, “if a problem in the software requirements is found
only after post-release, then it would cost 10–100 times more
to fix than if it had already been found during the
requirements review phase”.

 Principle 4: “Defect Clustering”
The fourth principle for software testing states that the defects
or faults are not evenly scattered across various modules.
Some modules in the software are suspected to have higher
density of bugs or defects in comparison to other modules.
This rule confirms the results of Pareto rule for software
testing which states that almost 80% of the software bugs (or
failures) originate from 20% software modules. This is known
as 80:20 rule for software testing.

 Principle 5: “Testing is Context Dependent”
This principle for software testing states that different kind of
testing strategies are required for different types of software
applications. There is no golden technique that can work
efficiently for all types of software. Therefore, the testers must
carefully choose a testing plan and strategy depending upon
the types of software under test.

 Principle 6: “Pesticide Paradox”
Every method you use to prevent or find bugs “leaves a
residue of subtler bugs against which those methods are
ineffectual.” This principle states that the test cases must be
updated, refined and modified for improving software test
process. The test cases that are repeated without changes fails
to capture new bugs. Hence, continuous improvements in test
case must be carried out regularly.

Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3504 – 3510

3510

 Principle 7: “Absence of Errors Fallacy”
Software testing is not only about finding and fixing bugs. A
software testing process must ensure that it meets the user
requirements as closely as possible. In case, a software has not
been designed and coded as per user requirements, finding
and fixing bug won’t help [13][14][18][19][20]. Software
testing must assure that the software program/product meets
the commercial and technical requirements and fulfils its
intended purpose.

4. CONCLUSION

The development of software is not only confined to just
writing software code. Basically, software development is a
long process having number of phases and each phase is very
crucial in itself. Software testing is inherently iterative,
expensive, time consuming, utmost complex and most
significant activity of software development. These
characteristics make testing an open research as in-effective
and in-efficient testing may lead to production of poor quality
and un-reliable software. An un-reliable software requires
high maintenance cost and un-necessary repetitions of efforts.
This paper explores the software development efforts and
principles to better understand the conceptual knowledge of
software development and testing.

REFERENCES

1. R. Fairley, Software Engineering Concepts.

McGraw-Hill Publication, 1st Edition, 1985
2. IEEE Standard Glossary of Software Engineering

Terminology , IEEE Press, 1991
3. F. L. Baur “Software Engineering”. Report on a

conference sponsored by the NATO Science Committee,
Garmisch, Germany, 1969.

4. I. Sommerville, Software Engineering. Addison Wesley
Publications, 1995

5. B. Beizer. Software Testing Techniques. Thomson
Computer Press, 2nd Edition, 1990

6. S. Desikan. Software Testing Principles & Practices.
Pearson Education Publication, 2007

7. A. Mathur. Foundation of Software Testing. Pearson
Education Publication, 1st Edition, 2008

8. K. K. Aggarwal, and Y. Singh. Software Engineering.
New Age International Publishers, 2nd Edition.

9. C. Kaner, J. Bach, and B. Pettichord. “Lessons Learned
in Software Testing”. John Wiley & Sons, 2008

10. R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGrawHill Publication, 6th
Edition, 2005

11. M.E. Khan. Different Approaches to White Box
Testing Technique for Finding Errors. International
Journal of Software Engineering and Its Applications,
vol. 5, no. 3, pp. 1-14, 2011

12. A. Malishevsky, G, Rothermel, and S. Elbaum.
Modelling the Cost Benefits Trade-offs for
Regression Testing Techniques. IEEE International

Conference on Software Maintenance, pp. 204-213,
2002

13. H. Mcminn . The State Problem for Evolutionary
Testing. Genetic and Evolutionary Comuting, pp.
2488-2498, 2003.
https://doi.org/10.1007/3-540-45110-2_152

14. R. Mall. Model Based Testing of Object Oriented
Software's. CSI Communications, vol. 31, pp. 16-18,
2008.

15. C. Jones. Software Engineering Best Practices.
McGraw-Hill Publication, 2009.

16. B. W. Boehm. Software Engineering-As It Is IEEE
International Conference on Software Engineering, pp.
11-21, 1979

17. https://www.sketchbubble.com/en/presentation-material
-req-planning.html

18. K. Solanki, Y. Singh and S. Dalal, A Comparative
Evaluation of “m-ACO” Technique for Test Suite
Prioritization”, Indian Journal of science and
technology, Vol. 9, No. 30, pp.1-10, Aug. 2016.
https://doi.org/10.17485/ijst/2016/v9i30/86423

19. K. Solanki, Y. Singh, and S. Dalal, “Test case
prioritization: an approach based on modified ant
colony optimization (m-ACO)”, International
Conference on Computer, Communication and Control
(IC4), IEEE, pp. 1-6, Sept. 2015.
https://doi.org/10.1109/IC4.2015.7375627

20. O. Dahiya and K. Solanki, A systematic literature
study of regression test case prioritization
approaches. International Journal of Engineering &
Technology, Vol. 7, No. 4, pp.2184-2191, 2018.
https://doi.org/10.14419/ijet.v7i4.15805

21. K. Solanki, S. Dalal and V. Bharti. Software
Engineering Education and Research in India: A
survey, International Journal of Engineering Studies,
vol. 1, no. 3, pp 181-192, 2009.

22. O. Dahiya and K. Solanki and S. Dalal, Comparative
Analysis of regression test case prioritization
approaches. International Journal of Advanced Trends
in Computer Science Engineering, Vol. 8, No. 4, pp
1532-1536, 2019.

23. R.B Jadhav, S. D. Joshi, U. G. Thorat, and A. S. Joshi,
Software defect learning and analysis utilizing
regression method for quality software development.
International Journal of Advanced Trends in Computer
Science Engineering, Vol. 8, No. 4, pp 1275-1282, 2019.
https://doi.org/10.30534/ijatcse/2019/38842019

24. L Rajamanickam, N. A. Maatsat and S.N. BintiDaud,
Software Testing: The generation tools International
Journal of Advanced Trends in Computer Science
Engineering, Vol. 8, No. 3, pp 231-234, 2019.
https://doi.org/10.30534/ijatcse/2019/20822019

