

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3280

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse124932020.pdf

https://doi.org/10.30534/ijatcse/2020/124932020


ABSTRACT

This paper improves information security on the basis of the
traditional LSB steganography by the integration of
cryptography and data compression techniques. The
proposed method improves the security of information hiding
by introducing multiple layers of security processes such as
encryption and decryption, compression, and data embedding
technique, respectively. This paper employed the Vigenere
cipher for the encryption and decryption of the secret file
where the generated ciphertext is compressed using the
Huffman coding algorithm. The proposed method is tested on
three image couriers embedded with 16kB, 32kB, and 48kB
secret messages. The empirical results show that the
proposed methodology is more competent compared to the
traditional LSB image steganography alone with respect to
imperceptibility by Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index (SSIM), stego image file size, and
Mean Square Error (MSE) metrics.

Key words: Cryptography, Huffman coding algorithm, least
significant bit algorithm, Vigenere cipher, steganography

1. INTRODUCTION

The number of internet users increases over time. With this,
the increase of information shared over wireless media is
inevitable; hence, the upsurge of cybercrimes and threat of
malicious access [1]. The two of the most regarded
techniques used for information security are cryptography
and steganography [2]. The combination of both technologies
can be a prime solution to strengthen security and maintain
the confidentiality of data [3].

Cryptography is the method of secret writing while the
steganography is the scientific discipline of data hiding over
other forms of media [4]. In cryptography, important data are
transformed into an unintelligible format so that only the
intended user can access the file only after the decryption
process is successful [5], [6]. Meanwhile, steganography
does not keep important data secret, but it provides secrecy of
data by embedding the secret file to non-secret files like
images, text, audio, and video [7], [8].

In this study, both cryptography and steganography were
utilized in order to come up with a more amplified
information security measures. The use of Vigenere cipher [9]
was observed in order to transform the secret message into
ciphertext. This study also uses a compression technique
using the Huffman coding algorithm [10] in order to save
storage costs. The ciphertext generated using the Vigenere
cipher is compressed. The combination of both techniques
ensures the secrecy of data as contents are imperceptible
without earlier knowledge of decrypting rules and the
compression technique. Subsequently, the compressed file is
embedded in an image using the Least Significant Bit (LSB)
algorithm [11]. The rest of the paper is outlined as follows:
Section 2 discusses the existing algorithms used in this study.
Section 3 includes a discussion of the proposed methodology.
Section 4 presents the results and discussion, while Section 5
highlights the conclusion.

2. RELATED LITERATURE

2.1 Vigenere Cipher

The Vigenere cipher is a simple polyalphabetic encryption
technique which is based on a series of 26 Caesar ciphers
[12], [13]. The algorithm uses a 26x26 matrix wherein rows
and columns are represented by the characters A to Z. Each
row of the matrix has the 26 letters of the alphabet, which is
shifted once to the right in a cyclic manner. A sample
Vigenere matrix is shown in Figure 1. Encryption and
decryption using the algorithm require a secret keyword
matched to each character of the plaintext.

For instance, the plaintext EXECUTIVE is encrypted using
the secret keyword KEY. Every character from the keyword
is matched repeatedly with each character in the plaintext.
Next, each plaintext character paired with its corresponding
keyword character is used as row and column lookup values,
respectively. Based on the matrix, the first plaintext character
E is substituted as O by referring to row E and column K.
Similarly, for the second character X, it is substituted as B by
referring to row X and column E., The results of encrypting
the rest of the plaintext is shown in Table 1.

An Efficient Least Significant Bit Image Steganography with

Secret Writing and Compression Techniques
Jan Carlo T. Arroyo1, Jenny A. Espadero2, Marife A. Ganas3, Randy F. Ardeña4, Ramcis N. Vilchez5,

Allemar Jhone P. Delima6
1-6College of Computing Education, University of Mindanao, Davao City, Davao del Sur, Philippines

6College of Engineering, Technology and Management, Cebu Technological University-Barili Campus,
Cebu, Philippines

jancarlo_arroyo@umindanao.edu.ph1, jespadero@umindanao.edu.ph2, marife_ganas@umindanao.edu.ph3,
randy_ardena@umindanao.edu.ph4, ramcis_vilchez@umindanao.edu.ph5, allemardelima@umindanao.edu.ph6

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3281

Table 1: Encryption using Vigenere cipher
Plaintext E X E C U T I V E
Keyword K E Y K E Y K E Y
Ciphertext O B C M Y R S Z C

To decrypt, each ciphertext character is paired with the
characters in the keyword. Each keyword character is used to
locate the corresponding row, and the heading of the column
that contains the ciphertext letter is the equivalent plaintext
character. For example, the first ciphertext character O is
translated as E by referring to row K and the cell with the
character O (column E).

Figure 1: Vigenere matrix

2.2 Huffman Coding

David A. Huffman developed an optimal prefix code used for
lossless data compression called Huffman coding [14], [15].
The algorithm introduces variable-length codewords in
character substitution, based on a table derived from the
frequency rate of characters from a plaintext. With Huffman
coding, the symbols which frequently occur are represented
with fewer bits, while those less frequent symbols are
represented with more bits. For instance, a file containing
100,000 characters A, B, C, D, E, and F is encoded. The
frequency count and their equivalent codewords are
presented in Table 2.

Table 2: Character frequency and equivalent codewords
 A B C D E F
Frequency
(in
thousands)

49 17 12 10 6 4

Fixed-length
codeword 000 001 010 011 100 101

Variable
length
codeword

0 100 101 110 1110 1111

When the file is encoded using a 3-bit fixed-length codeword
representation, it uses 300,000 bits. However, if it is encoded
using variable-length codewords, the message is encoded in
212,000 bits only, such that (49 * 1 + 17 * 3 + 14 * 3 + 10 * 3
+ 6 * 4 + 4 * 4) * 1,000 = 212,000 bits. The use of Huffman

coding in this example allows a saving of approximately 29%
of space.

In generating codewords, the Huffman coding algorithm uses
a binary tree based on the frequency count of symbols. First, a
leaf node is created for every symbol and is added to the
queue. Next, new internal nodes are created from the two
nodes called child with a frequency equal to the sum of the
two nodes' frequency. After, new nodes are added to the
queue. The process is repeated while there are still nodes in
the queue. The last remaining node is the root node, and the
binary tree is complete. Based on the given example, the tree
and the generated codewords are shown in Figure 2.

Figure 2: Huffman binary tree

2.3 Least Significant Bit in Image Steganography

LSB is a renowned technique in steganography known for its
straightforward process in embedding crucial data in other
objects by replacing some of the least significant bits of a
cover file [16]–[20]. LSB in image steganography functions
in a way that slight alterations done to images are not obvious
using the naked eye.

LSB works by modifying each pixel of the image through its
RGB color space. Since every RGB component is composed
of 8 bits of memory, LSB modifies the last bit of each
component to embed secret data. For example, a 9-bit binary
message 101001101 is encoded into a group of 3 neighboring
pixels, as shown in Figure 3.

Figure 3: Embedding message to pixels

The bits from the message replace the least significant bits of
each RGB component. If the LSB is identical to the message
bit, it is skipped; otherwise, it is replaced. For instance, the

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3282

9-bit message was embedded in the RGC component
sequence at the cost of replacing 4 bits (shown in red), as
shown in Figure 4.

Figure 4: Embedded message using LSB

3. PROPOSED METHODOLOGY

The encrypt-compress-embed technique proposed in this
study involves the use of the Vigenere cipher for encryption,
Huffman coding algorithm for compression, and LSB
method for data insertion. The flowchart of the proposed
process is shown in Figure 5.

Figure 5: Encoding a message using the proposed method

To encode a message using the proposed method, the
following steps are detailed as follows:

a. Identify a plaintext, cover image, and key.
b. Encrypt the plaintext using Vigenere cipher and the key
d. Compress ciphertext using Huffman Coding
e. Embed the binary sequence result to the image by

traversing through each pixel and replacing the LSB.

In decoding a hidden message using the proposed method,
the steps are presented in Figure 6 and detailed as follows:

a. Identify the image and key.
b. Using the LSB method, retrieve the embedded binary

sequence.
c. Decompress the sequence using Huffman coding
d. Decrypt ciphertext using Vigenere cipher and the key

Figure 6: Decoding a message using the proposed method

The proposed method was implemented and tested using
Python 3. Three sample images, namely Plane, Lena, and
Peppers, shown in Figure 7, hereto referred as dataset 1,
dataset 2, dataset 3, respectively, obtained from [21], [22]
were used as the cover images. The specifications of each
dataset are presented in Table 3. The size of the messages
embedded was 16kB, 32kB, and 48kB. The key used for
encryption and decryption is CIPHER. The simulation was
executed in an i7-7000HQ 2.8 GHz 16GB RAM 4GBVRAM
Windows 10 laptop computer. To assess the viability and
performance of the proposed method, it was tested with the
following metrics: Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and resulting file size.
Results were then compared against the performance of using
LSB alone.

Figure 7: Testing dataset

Table 3: Dataset specifications
 Dimension File type Color mode File Size
Dataset 1 512x512 PNG Grayscale 290kB
Dataset 2 512x512 PNG Grayscale 159kB
Dataset 3 512x512 PNG Grayscale 240kB

The PSNR is used to assess the restoration quality of an
image by identifying the amount of noise distortion between
the original and the modified images [23], [24]. Having high
PSNR means that there are lesser noise and good image
restoration quality. The PSNR is defined by a mean squared
error (MSE), which finds the magnitude of error between the
images. To find the PSNR, the following equation is used:

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3283

(1)

where MAXC refers to the maximum possible value of the
pixel in the image and the MSE is expressed as:

(2)

where m and n are the number of rows and columns
respectively, C(a,b), and S(a,b) are the pixels located at index
a and b given cover image C and stego image S.

Another measure to test the viability of the proposed method
is the use of the Structural Similarity Index (SSIM). SSIM is
a metric that measures perceived alterations or degradation in
the quality of images caused by modifications [25], [26].
Basically, this measure identifies how similar one image is to
another. The SSIM is also known as an improvement to the
PSNR metrics. To find the SSIM, the equation used is:

(3)

where is the average of x, is the average of y, is the
variance of x, is the variance of y, is the covariance of
x and y, = = are two variables to stabilize the
division with the weak denominator, L is the dynamic range
of the pixel-values, by default. The
closer the value of SSIM to 1, the more identical the two
images are.

4. RESULTS AND DISCUSSION

The simulation results using both traditional LSB image
steganography and the proposed method applied on Plane,
Lena, and Pepper datasets are shown in this section. The
histogram, PSNR, SSIM, MSE, and file size analyses for the
used dataset are also presented.

The histogram of the original carrier and the stego images are
shown in Figures 8-9. It is evident in the histograms shown in
Figure 9 that the lone LSB method produced more noise as
opposed to those of the proposed method. It can be observed
that the noise becomes noticeable as the message size
increases, as evident in the stego image generated using LSB
alone.

Figure 8: Dataset 1 original image carrier and its histogram

Message
Size Lone LSB Proposed Method

16kB

32kB

48kB

Figure 9: Histograms of dataset 1 stego images

The histograms of the original image carrier and the stego
images generated using the dataset 2 are shown in Figures
10-11. Based on the empirical outcomes, it is noticeable that
the lone LSB method showed more noise compared to the
histogram of images produced by the proposed method. The
proposed method generated better histograms, which are
likely similar to the original image carrier despite being
added with a secret message with increased size.

Figure 10: Dataset 2 original image carrier and its histogram
Message

Size Lone LSB Proposed Method

16kb

32kb

48kb

Figure 11: Histograms of dataset 2 stego images

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3284

The histograms of the stego images using dataset 3 and the
original image carrier are shown in Figures 12 and 13,
respectively. The results show that is proposed method
generated a better stego image with lesser noise regardless of
message size being embedded as compared to the stego
image generated using the lone LSB.

Message
Size Lone LSB Proposed Method

16kb

32kb

48kb

Figure 12: Histograms of dataset 3 stego images

Figure 13: Dataset 3 original image carrier and its histogram

For dataset 1 image embedded with 16kB, 32kB, and 48kB
messages, the proposed method gained better PSNR values at
61.3, 57.98, and 56.16 decibels (dB). The abovementioned
values are higher than those of the stego image generated
using the lone LSB, wherein the stego image with 16kB
message obtained 58.66 dB PSNR, while 55.53 dB and 53.72
dB PSNR values for the images with 32kB and 48kB
messages, respectively. Results show that the proposed
method generated lesser noise against the lone LSB method.
Moreover, the SSIM value of the proposed method is much
closer to 1 compared to the lone LSB steganography
technique, which means that the stego images generated
using the proposed method is very close to the original image
despite being embedded with a hidden message. On the
extent of the file size, the proposed method produced stego
images with smaller file sizes as against the method that uses
LSB alone at around 4.9 to 11.7% savings. Further, the MSE
statistical tool used revealed approximately 42-45%
difference with error rates for the proposed method and the
lone LSB, respectively. The summary of the results for
dataset 1 is presented in Table 4.

Table 4: Dataset 1 PSNR, SSIM, MSE and file size results
Message

Size Metric Lone LSB Proposed
Method Variance

16kB

PSNR 58.66 dB 61.3 dB 4.50%

SSIM 0.99954 0.99970 0.016%

MSE 0.08835 0.04813 -45.52%

File Size 315,430 B 299,967 B -4.90%

32kB

PSNR 55.53 dB 57.98 dB 4.41%

SSIM 0.9992 0.99948 0.028%

MSE 0.18196 0.10332 -43.22%

File Size 354,300 B 321,453 B -9.27%

48kB

PSNR 53.72 dB 56.16 dB 4.54%

SSIM 0.99899 0.99928 0.029%

MSE 0.27568 0.15732 -42.93%

File Size 392,125 B 346,024 B -11.76%

In dataset 2, the LSB method gained more noise with lower
PSNR values than the output of the proposed method at 3.9%
to 4.3% variance. On the other hand, the SSIM of the
proposed method is relatively higher than the lone traditional
LSB steganography, which means that the resulting images
are very similar to the original image. The proposed method
also generated stego images, which are 8.9-11.85% smaller in
terms of file size against the lone LSB method. Based on the
statistical error test, the traditional LSB steganography
obtained an error rate of at least 41.30% higher than the
proposed methodology. The summary of the results for
dataset 2 is shown in Table 5.

Table 5: Dataset 2 PSNR, SSIM, MSE and file size results
Message

Size Metric Lone LSB Proposed
Method Variance

16kB

PSNR 58.42 dB 60.73 dB 3.95%

SSIM 0.99936 0.99980 0.044%

MSE 0.09353 0.05490 -41.30%

File Size 319,719 B 304,001 B -4.92%

32kB

PSNR 55.41 dB 57.73 dB 4.19%

SSIM 0.99932 0.99957 0.025%

MSE 0.18701 0.10944 -41.48%

File Size 357,277 B 325,346 B -8.94%

48kB

PSNR 53.65 dB 55.96 dB 4.31%

SSIM 0.99899 0.99940 0.041%

MSE 0.28058 0.16450 -41.37%

File Size 396,543 B 349,549 B -11.85%

The embedding of 16kB, 32kB, and 48kB secret messages in
dataset 3 affirmed that the proposed method performed better
in terms of PSNR, SSIM, MSE, and file size. For the PSNR
metric, the proposed method gained a higher score of 60.75
dB, 57.74 dB, and 55.97 dB as compared to the lone LSB
with 58.40 dB, 55.39 dB and 53.63, respectively. In terms of
the similarity between the images, the proposed method
gained values that are closer to 1; thus, the images are more

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3285

identical to the original image. The files generated by the
proposed method also has smaller file sizes than that of the
lone LSB with around 4.7 to 12.5% diminution. As for the
MSE metric, the lone LSB has a higher error rate at 41% as
compared to the proposed method. The summary of the
results for dataset 3 is presented in Table 6.

Table 6: Dataset 3 PSNR, SSIM, MSE and file size results
Message

Size Metric Lone LSB Proposed
Method Variance

16kB

PSNR 58.40 dB 60.75 dB 4.02%

SSIM 0.99947 0.99971 0.024%

MSE 0.09386 0.05463 -41.80%

File Size 276,073 B 262,885 B -4.78%

32kB

PSNR 55.39 dB 57.74 dB 4.24%

SSIM 0.99884 0.99936 0.052%

MSE 0.18776 0.10920 -41.84%

File Size 311,348 B 284,679 B -8.57%

48kB

PSNR 53.63 dB 55.97 dB 4.36%

SSIM 0.99853 0.99899 0.046%

MSE 0.28162 0.16437 -41.63%

File Size 347,495 B 303,964 B -12.53%

5. CONCLUSION

The data secrecy in this method is robust because multiple
layers of security are introduced where cipher, compression,
and file embedding processes were undertaken. Simulation
results revealed that the proposed method generates stego
images with higher PSNR and SSIM values with lower MSE
rates and file sizes against the stego images generated using
the lone traditional LSB steganography. In all test cases, the
proposed method shows superiority when it comes to
generating stego images, as evident in the results of the
specified metrics used in this study.

REFERENCES

[1] S. Chauhan, Jyotsna, J. Kumar, and A. Doegar,
“Multiple layer Text security using Variable block
size Cryptography and Image Steganography,” in 3rd
IEEE International Conference on Computational
Intelligence and Communication Technology, 2017,
pp. 1–7.
https://doi.org/10.1109/CIACT.2017.7977303

[2] D. Seth, L. Ramanathan, and A. Pandey, “Security
Enhancement: Combining Cryptography and
Steganography,” Int. J. Comput. Appl., vol. 9, no. 11,
pp. 3–6, 2010.
https://doi.org/10.5120/1433-1932

[3] S. Singh and A. Singh, “An Information Security
Technique Using DES-RSA Hybrid and LSB,” Int. J.
Emerg. Technol. Comput. Appl. Sci., vol. 14, no. 355,
pp. 187–192, 2013.

[4] A. D. P. Ariyanto, E. H. Rachmawanto, D. R. I. M.
Setiadi, and C. A. Sari, “Performance Analysis of
LSB Image Steganography Combined with
Blowfish-RC4 Encryption in Various File

Extensions,” Proc. 2019 4th Int. Conf. Informatics
Comput., 2019.

[5] S. N. Gowda, “Innovative enhancement of the Caesar
cipher algorithm for cryptography,” in International
Conference on Advances in Computing,
Communication and Automation, 2016.

[6] M. Abdalla, J. H. An, M. Bellare, and C.
Namprempre, “From identification to signatures via
the Fiat-Shamir transform: Necessary and sufficient
conditions for security and forward-security,” IEEE
Trans. Inf. Theory, vol. 54, no. 8, pp. 3631–3646,
2008.
https://doi.org/10.1109/TIT.2008.926303

[7] M. O. Espina, A. C. Fajardo, B. D. Gerardo, and R. P.
Medina, “Multiple level information security using
image steganography and authentication,” Int. J. Adv.
Trends Comput. Sci. Eng., vol. 8, no. 6, pp.
3297–3303, 2019.
https://doi.org/10.30534/ijatcse/2019/100862019

[8] M. Espina, A. C. Fajardo, B. D. Gerardo, and R. P.
Medina, “A novel puzzle-based image
steganography technique,” in Eleventh International
Conference on Graphics and Image Processing,
2020, vol. 1137317, no. 1.

[9] A. D. Achmad, A. A. Dewi, M. R. Purwanto, P. T.
Nguyen, and I. Sujono, “Implementation of vigenere
cipher as cryptographic algorithm in securing text
data transmission,” J. Crit. Rev., vol. 7, no. 1, pp.
76–79, 2020.

[10] A. Moffat, “Huffman coding,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 1–35, 2019.
https://doi.org/10.1145/3342555

[11] X. Zhou, W. Gong, W. Fu, and L. Jin, “An improved
method for LSB based color image steganography
combined with cryptography,” in IEEE/ACIS 15th
International Conference on Computer and
Information Science, 2016, pp. 4–7.

[12] D. Kahn, Codebreakers. Macmillan and Sons, 1967.
[13] D. Salomon, Coding for Data and Computer

Communication. Springer, 2005.
[14] D. A. Huffman, “A Method for the Construction of

Minimum-Redundancy Codes,” Proc. IRE, vol. 40,
no. 9, pp. 1098–1101, 1952.
https://doi.org/10.1109/JRPROC.1952.273898

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, “Huffman codes,” in Introduction to
Algorithms, 2009, pp. 428–437.

[16] S. Goel, S. Gupta, and N. Kaushik, “Image
Steganography -- Least Significant Bit with Multiple
Progressions,” in Proceedings of the 3rd
International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2014,
2015, pp. 105–112.

[17] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and
T. Kalker, Digital Watermarking and
Steganography, Second Edi. Burlington: Morgan
Kaufmann, 2008.
https://doi.org/10.1016/B978-012372585-1.50015-2

[18] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,
“Techniques for data hiding,” IBM Syst. J., vol. 35,
no. 3.4, pp. 313–336, 1996.

[19] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding
optimal least-significant-bit substitution in image
hiding by dynamic programming strategy,” Pattern

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3280 – 3286

3286

Recognit., vol. 36, pp. 1583–1595, 2003.
[20] K. Curran, X. Li, and R. Clarke, “An Investigation

into the Use of the Least Significant Bit Substitution
Technique in Digital Watermarking,” Am. J. Appl.
Sci., vol. 2, no. 3, pp. 684–654, 2005.
https://doi.org/10.3844/ajassp.2005.648.654

[21] “Public-Domain Test Images for Homeworks and
Projects,” Retrieved from

 https://homepages.cae.wisc.edu/~ece533/images/. .
[22] “The USC-SIPI Image Database,”

http://sipi.usc.edu/database/.
[23] K.-H. Jung and K.-Y. Yoo, “Data hiding method

using image interpolation,” Comput. Stand.
Interfaces, vol. 31, no. 2, pp. 465–470, 2009.
https://doi.org/10.1016/j.csi.2008.06.001

[24] G. Swain and S. Lenka, “Classification image
steganography techniques in spatial domain: A
study,” Int J Comput Sci Eng Tech, vol. 5, pp.
219–232, Jan. 2014.

[25] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Trans. Image
Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[26] Z. Wang and A. C. Bovik, “Mean squared error:
Love it or leave it? A new look at Signal Fidelity
Measures,” IEEE Signal Process. Mag., vol. 26, no.
1, pp. 98–117, Jan. 2009.
https://doi.org/10.1109/MSP.2008.930649

