
Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1713

ABSTRACT

The goal of Continuous Testing is to take full advantage of
iterative development and attain the time-to-market objective.
However, Continuous Testing becomes a bottleneck and
reduces the speed of the project. In that context, project
monitoring and measurement is a herculean task for the
project managers. There is a need for well-designed metrics
and standards which should consider change causing factors
and project interdependencies. Software project success
depends on how well these metrics measured on a real-time
basis. The Real-Time Project Metrics Dashboard becomes an
important tool to monitor project by all important stakeholders
(Customers, Project Managers, Dev-Test-Ops Teams,
Management, etc). This paper presents the design and
development of various metrics and data points related to
continuous testing in the DevOps setting. This paper presents
more than 42 key metrics/data points and 150 ancillary
metrics/data points. This paper also presents the key
algorithms developed for implementing these metrics. These
metrics are generated using illustrative project datasets and
published using Django-Python web Framework.

Key words : Continuous Testing, Agile Testing, DevOps
Metrics, Software Metrics

1.INTRODUCTION

DevOps is an emerging cross-disciplinary philosophy. It
enhances communication and collaboration between Business,
Development, Testing and Operations teams. Continuous
Testing is defined as a software testing process which
promotes test early and tests often. The role of continuous
testing is to cut down the development cycle, increase the
number of releases so that business can reach the market
faster. In Continuous Testing, deployment takes place early in
the lifecycle, detect defects early and reduces the cost of
fixing. Teams are able to release code at any point of time in
this model. Continuous testing demands quantitative and
qualitative assessment of all the risks and their mitigation
plans before the project moves to next sprint [1]. This type of
testing makes the developer code faster and write better code
[2].

The success of Continuous Testing lies in how well the
relevant project information is displayed to all project
stakeholders, how well test cases are designed, prioritized and
allocated to the teams, how well risk zones are identified and
alerted stakeholders. Ultimately, it reduces the feedback loop,
improves quality and organization performance.

The objective of this paper is to design critical continuous
testing metrics in the DevOps context and present in the form
of real-time application health analytics dashboard. This paper
is organized as follows. Section II presents related work.
Section III proposes a conceptual design of various testing
metrics and real-time implementation. Section IV presents the
threats to validity and Section V presents the conclusion.

2.RELATED WORK

The primary goal of Continuous Testing (CT) is to assess
business risk coverage. CT establishes a safety net to protect
the user experience from accelerated development processes.
CT has become part of the development process. It evaluates
each layer of modern software architecture at the appropriate
phase of the software life cycle. It reduces false positives and
eliminates redundancy [3]. Business demands uninterrupted
service with seamless continuous integration of service
upgrades. This model results in shorter, frequent and efficient
releases[4]. This type of releases is only possible through
continuous testing. Continuous Testing brings three major
business benefits - the decision to go or no go in SDLC, new
features to market faster, the trade-off between time, quality
and functionality [5]. The impact of frequent releases should
be well managed. Typically impact could be from technical
factors, organizational factors, and interactional factors. If we
go little detailed, they are connected to one of this four
dimensions-security, velocity, productivity and quality[6]. The
negative impact could be contained through proper monitoring
of metrics [7]. Continuous testing needs systematic stitching
between people, processes, and technology[8]. Continuous
Testing is successful when it follows a systematic hierarchical
test strategy [9]. Domain understanding and grasp on
application behavior are needed for the teams in order to
manage software development, testing, and maintenance. It is
critical for continuous testing. It ensures high coverage, early

Continuous Testing Real-Time Health Analytics Dashboard

Jayasri Angara1, Srinivas Prasad2
1KLEF (KL Deemed to be university),AP, India, angara.jayasri@gmail.com

2GITAM University, India, srinivas.prasad@hotmail.com

 ISSN 2278-3091
Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse123922020.pdf

https://doi.org/10.30534/ijatcse/2020/123922020

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1714

detection of defects, better utilization of resources and
seamless communication between business users, domain
experts, testers and developers [10].

Communication and Collaboration are critical in the
continuous testing process. Metrics and Dashboards provide
confidence and action among all stakeholders. It should be
real-time monitoring and truly depict the health of project[11].
Metrics facilitate better business decisions, provide a
challenge to the project teams, increase the satisfaction,
etc[12]. Typical metrics should cover product/project
attributes (size, quality, requirements, burn down, effort
estimation, percentage of test cases automated, availability of
tools and infrastructure, user stories traceability, test case
prioritization and their allocation etc), process attributes
(cycle time, build status, average velocity, release frequency,
test efficiency patterns, etc), resource attributes (allocation,
task completion status, performance, business value delivered,
etc) [12][13][14]. Metrics should also cover non-functional
aspects like project management (Sprint duration, estimate
confidence, risk management, team, etc)[15]. It is a good
practice to define key KPIs like frequency of deployment,
speed of deployment, speed and frequency of build
verification, deployment success rate, incident/defect volumes,
requirements coverage ratio, feature usage, mean time to
restore service, security test pass rate, etc along with core
metrics [6]. The success of CT lies in how well the Test First
process executed [16]. Test Case generation and
corresponding test case related metrics using machine learning
techniques play a major role in CT success [17-18].

3. CONTINUOUS TESTING METRICS AND
IMPLEMENTATION

3.1 Conceptual design of Continuous Testing Metrics (Part
1-Basic Project Details)

Metrics and key performance indicators present meaningful
information flow. Information flow takes place between
customer desk, development environment, integration
environment, pre-production/production environment, defect
tracking system, version management system, project
management tools and other organization-specific dashboards.
DevOps Continuous Testing demands the design of
metrics/measures which presents the real-time status of the
project. These metrics may not be mere numbers but measure
the un-measurable attributes like trust, confidence, culture
strength & cohesion within the teams, etc. Few are difficult to
measure and present but they are needed for successful
completion of the project.

 In this section, basic project demographic details are
presented. We used Django, a Python-based open-source web
framework for implementation of these metrics. Django
follows the MVT (model-view-template) architectural pattern.

As showed in Figure1, Dashboard-Part 1 presents basic
demographic information like Project Name, Project Start
Date, Project End Date, Total Number of Sprints Planned,
Number of Sprints Completed, Current Sprint Number, No of
Developers, No of Testers, No of Operation Team members,
No of User Stories, Expected Delivery (Delivery Date
Uncertainty Window) and Burn down Chart.

Figure 1: Dashboard- Part 1

On click of "Project Name's Value" in Figure 1, Project
Demographics page is displayed as showed in Figure 2. This
page presents details like customer details, technology details,
project location details, key project contacts, etc.

Figure 2: Project Demographics

On click of "Total No of Sprints Planned Value" in Figure 1,
Sprint Stats page is displayed as showed in Figure 3. This
page presents Sprint related details like Total No of Sprints
Planned, No of Sprints Completed, Current Sprint number,
Expected Velocity, Expected Requirements Flow, Effort
estimation (Backlog Size), Confidence Level, Expected
Duration (Calculated)(In Weeks), Sprint Cost ($), Budget
Estimation($), Std Deviation of Expected Velocity, Std
Deviation of Expected Requirements Flow.

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1715

Figure 3: Sprint Stats

Expected Duration is calculated using the normal distribution
curve as presented in Figure 4. This algorithm contains the
Threshold week, Week Number, Cumulative Confidence
number, Probability, Risk Tolerance, etc. In the given
illustration, the cumulative confidence level stands at 0.879
during Week 19 which crossed the 0.8 threshold value. This
number becomes the expected duration in weeks. Expected
Velocity is calculated (Expected Velocity Calculator
developed as an illustration) as the average of all completed
sprints velocities as showed in Figure 5. Std Deviation of
Expected Velocity and Std Deviation of Expected
Requirements Flow are determined based on the previous
history.

Figure 4: Normal Distribution Curve

Figure 5. Expected Velocity Calculator

The delivery data uncertainty window is presented in Figure 6
which depicts the probability vs. cumulative vs. risk tolerance
values.

Figure 6: Delivery Date Uncertainty Window

On click of "Burn down Chart Value" in Figure1, Burn Down
Chart is displayed as showed in Figure 7.

Figure 7: Burn Down Chart

On click of "No of Dev" or "No of Tester" or " No of Ops
Engineers" value in Figure 1, Team Summary page is
displayed as showed in Figure 8. This page presents Resource
ID, Name, Type of Resource, Skills, Capability Index
(calculated based on previous performance history in the
organization) and Max Effort per Week.

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1716

Figure 8: Team Summary

Capability Index is calculated using an algorithm which is
presented in the Figure 9. The key fields to calculate are -
Resource ID, Project ID, Estimation Accuracy (EA),
Technical Knowledge (TK), Collaboration within the
team(CT), Customer Understanding(CU), Process
Maturity(PM), Domain Knowledge(DK). These fields take
numerical values (3-High, 2-Medium,1-Low). The following
sum values are calculated where field value >= 2 or 3
(Medium or high) -
∑ ܖ	ܑۯ۳
ܑୀ૚	 	 ܖ	܍ܚ܍ܐܟ, = ܛ܌ܚܗ܋܍ܚ	܎ܗ	ܚ܍܊ܕܝܖ	ܔ܉ܜܗܜ

∑ ܖ	۹ܑ܂
ܑୀ૚	 ,	 ∑ ܖ	ܑ܂۱

ܑୀ૚	 	,	 ∑ ܖ	ܑ܃۱
ܑୀ૚	 	 ,∑ ܖ	ܑۻ۾

ܑୀ૚	 ,	 ∑ ܖ	۲۹ܑ
ܑୀ૚	 .

A similar exercise is done at team member level where field
value >= 2 or 3. The relative performance values at resource
level (j= resource number) is presented as 	∑ ܖ	ܒܑۯ۳

ܑୀ૚,ܒୀ૚	 /
∑ ܖ	ܑۯ۳
ܑୀ૚	 . Finally, the weighted average (sum product of

effort estimated * weight) /sum of weights) is being
calculated.

Figure 9: Algorithm for Resource Level Capability Index

3.2 Conceptual design of Continuous Testing Metrics (Part
2-Test Analysis)
The second part of the metrics is related to Test Analysis. Test
Cases play a major role in Test Analysis. They should be
analyzed from the Test Case Complexity Perspective,
Business Priority Perspective, and Test Case Risk Analysis

perspective. Also, there are few important measures to be
monitored like Static Code Analysis, % Requirements
Volatility, Test Design Coverage, Number of Defects,
Percentage of Bugs, Percentage of Failures, etc. These are
processed and displayed as showed in Figure 10.

Figure 10: Dashboard- Part 2

On click of Total Test Case Complexity in Figure 10, Test
case technical complexity related metrics are displayed. Test
Case complexity is analyzed from 4 different aspects- 1.
Product / Application Criticality (AC) 2. Product / Application
Stability (AS) Product / Application Technical Complexity
(TC) 3. Product / Application Domain Complexity (DC) 4.
Project Management / Process Maturity (PM) which is
presented in Figure 11. These metrics are calculated for the
current sprint, the previous sprint and completed and in-
progress sprints perspective.

Figure 11: Test Case Technical Complexity Report

On click of Total Test Case Business Priority in Figure 10,
Test case business priority related metrics are displayed. Test
case business priority is calculated based on Release Priority,
Multiple Approvals Needed, Shared Business Resources
(Customer / Partners / Vendors), Interdependent Business, Test
Data Preparation Complexity, etc. The metrics are displayed as
showed in Figure 12.

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1717

Figure 12: Test Case Business Priority Report

On click of Test Case Prioritization vs Test Case Complexity
(Current Sprint) in Figure 10, Test Case Prioritization vs Test
Case Complexity matrix is presented as showed in Figure 13.
This matrix helps in finding complexity-priority zones in
managing test cases. This process is helpful in delivery and
allocation.

Figure 13: Test Case Prioritization Vs. Test Case Complexity

On click of Test case Priority based Resource Allocation
Model of Figure 10, Test case Priority based Resource
Allocation Model is displayed. This allocation is done through
an algorithm which is explained in Figure 14.

Figure 14: Test case Priority based Resource Allocation Model

Post-allocation, the allocated test cases, resource names, and
their utilization and leftover effort details are automatically
presented by the system which is shown in Figure 15.

Figure 15: Test case Priority based Resource Allocation Summary

On click of Pre-Risk Zones Identification Chart (Uses TC, BP,
Effort for Test case) in Figure 10, various test cases technical
complexities vs. Business Priority vs. execution effort details is
presented as showed in Figure 16. This summary helps to
identify the Pre-Risk zones and to deploy resources
accordingly.

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1718

Figure 16: Pre-Risk Zones Identification Chart

On click of Test Case Risk Summary and Pass Summary
Report in Figure 10, Test Case Risk Summary and Pass
Summary Report is presented as showed in Figure 17. It
contains Total Test cases (TCs), TCs Implemented, TCs
Partially Implemented, TCs Planned, TCs Alternative
Implementation, TCs Not Applicable, Assessment Result-
Current (Satisfied),Assessment Result- Current (Other than
Satisfied), Assessment Result- Previous (Satisfied),Assessment
Result- Previous (Other than Satisfied), Percent Satisfied %
(Current),Percent Satisfied % (Previous),% of Functional Test
Cases Passed, % of API Testing Passed, % of Performance and
Load Testing Passed, % of Security Testing Passed, % of
Acceptance Testing Passed, Total testcases with 100% Test
Data, % of P1 Defects, % of P2 Defects, % of P3 Defects, % of
Bugs with Severity Blocker , % of Bugs with Severity Critical,
% of Bugs with Severity Major , Risk Exposure Level (High)
(Current), Risk Exposure Level (Moderate) (Current), Risk
Exposure Level (Low) (Current), Risk Exposure Level (High
%) (Current), Risk Exposure Level % (Moderate), Risk
Exposure Level (Low) % (Current), Risk Exposure Level
(High) (Previous),Risk Exposure Level (Moderate)
(Previous),Risk Exposure Level (Low) (Previous),Risk
Exposure Level (High) % (Previous),Risk Exposure Level
(Moderate) % (Previous), Risk Exposure Level (Low) %
(Previous) etc. The same is presented in Figure 17.

Figure 17: Test Case Risk Summary and Pass Summary Report

On click of Static Code Analysis Report in Figure 10, it reads
the entire code base connected to business logic and presents
the metrics like Overall Code Rating, Maintenance Index
Value, Raw Metrics Summary (illustration -loc=1063,
lloc=754, sloc=783, comments=173, multi=0, blank=109,
single comments=171), Cyclomatic Complexity, Halstead’s
Software Metrics (Halstead Program Length, Halstead
Vocabulary, Program Volume, Potential Minimum Volume,
Program Level, Program Difficulty, Programming Effort,
Language Level, Intelligence Content, Programming Time),
Conventions, Warnings, Refactoring details, etc.

Figure 17: Static Code Analysis Report

The final set of metrics are general project execution related.
They are percentage of Dev Tools & Servers availability, No of
Releases, Total Number of Customer Meetings, Total Number
of Internal Meetings, Average Turnaround of Customer Issues
(Days), Average experience of Dev Team, Percentage of
DevTeam Skill Availability, Percentage Test Tools & Servers
availability, Percentage of Releases Succeeded, No of
Customer Complaints, No of Issues Raised, Average Sprint
Level CSAT Rating, Average Experience of Test Team,
Percentage of Test Team Skill Availability, etc. These metrics
are calculated from the database and presented as showed in
the Figure 18.

Figure 18: Dashboard- Part 3

Jayasri Angara et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1713 – 1719

1719

4.THREATS TO VALIDITY

We attempted to simulate real-time projects execution
parameters and implemented them using Django-Python Web
Framework. These metrics can be further fine-tuned while
implementing real-time projects. This paper covers exhaustive
list of metrics for in the context of DevOps continuous testing.
However, project managers need to select relevant metrics
suiting to their project requirements and customize real-time
dash board. We created datasets using Excel and implemented
this dashboard. However, this can be further improvised by
introducing database management software tools. Authors and
Affiliations

5.CONCLUSION

Continuous Testing (CT) promotes automated tests as part of
software delivery so that feedback on functional, technical and
business risks is real-time and continuous. Project
Communication, Technology adoption, Team Collaboration,
Tools and Processes, etc are critical factors driving CT process.
The probability of project success is high when metrics are
applied systematically, methodologically and results are
published real-time. CT project health requires the design of
progressive metrics/measures which brings-out the adaptive
project culture. It improves the collaboration between all
project stakeholders. It requires a well-designed system. CT
Metrics becomes the tone of organization culture and abilities
for effective testing in DevOps phenomena.

REFERENCES

[1] O. Aktunc. Entropy Metrics for Agile Development
Processes, in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops
(ISSREW), pp. 7–8, 2012.
https://doi.org/10.1109/ISSREW.2012.36

[2] J. Angara, S. Gutta, S. Prasad. DevOps with Continuous
Testing Architecture and Its Metrics Model. In: Sa P.,
Bakshi S., Hatzilygeroudis I., Sahoo M. (eds) Recent
Findings in Intelligent Computing Techniques. Advances
in Intelligent Systems and Computing, vol 709. Springer,
Singapore, 2018.

[3] W Ariola. DevOps: Are You Pushing Bugs to Your
Clients Faster? Thirty-Third Annual Pacific Northwest
Software Quality Conference, World Trade Center
Portland Portland, Oregon, October 12-14 ,2015.

[4] W. M. Farid and F. J. Mitropoulos. NORPLAN: Non-
functional Requirements Planning for agile processes,
in 2013 Proceedings of IEEE Southeastcon, pp. 1–8,
2013.
https://doi.org/10.1109/SECON.2013.6567463

[5] D. Hartmann and R. Dymond. Appropriate agile
measurement: using metrics and diagnostics to deliver
business value, in Agile Conference, p. 6 pp.– 134, 2006.

[6] InfoStretch, http://www.qmetry.com/casestudy-stanford/
[7] N. Kerzazi, and F. Khomh. Factors Impacting Rapid

Releases: An Industrial Case Study, in Proceedings of
the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, New
York, NY, USA, pp. 61:1–61:8, 2014.
https://doi.org/10.1145/2652524.2652589

[8] A. Kushwaha, S. K. Verma, and C. Sharma. Analysis of
the Concerns Associated with the Rapid Release
Cycle, Int. J. Comput. Appl., vol. 52, no. 12, 2012.

[9] Measuring DevOps Success,
https://www.microfocus.com/media/white-
paper/measuring_devops_success_wp.pdf, accessed on
03-Apr-2019

[10] S. Misra and M. Omorodion. Survey on Agile Metrics
and Their Inter-relationship with Other Traditional
Development Metrics, SIGSOFT Softw Eng Notes, vol.
36, no. 6, pp. 1–3, Nov. 2011.
https://doi.org/10.1145/2047414.2047430

[11] D. Saff, and. M. Ernst, An experimental evaluation of
continuous testing during development. In Proceedings
of the 2004 International Symposium on Software Testing
and Analysis, pages 76–85, Boston, MA, USA, July 2004.

[12] M. Schur, A. Roth, A. Zeller. Mining Workflow Models
from Web Applications, IEEE Transactions on Software
Engineering 41(12):1-1(2015)

[13] Spirent. A Solution Blueprint for DevOps.
http://www.spirent.com/Assets/WP/WP_A_Solution_Blu
eprint_for_DevOps

[14] Tricentis 2019. What is Continuous Testing?,
https://www.tricentis.com/products/what-is-continuous-
testing/, accessed on 03-Apr-2019

[15] Wayne A. and Cynthia D (2016). Continuous Testing
for IT Leaders, https://alm.parasoft.com/
continuoustestingbook. accessed on 14-06-2016

[16] N. Yahya, S.S.Maidin, A.B.Soomro.Factors Influence
Novice Programmers toward Test First Approach,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol 8, No.4, July-Aug 2019.
https://doi.org/10.30534/ijatcse/2019/39842019

[17] L. Rajamanickam, N. A. Mat Saat, and S. N. Daud,
Software Testing: The Generation Tools, International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 8, pp. 231-234, 2018.
https://doi.org/10.30534/ijatcse/2019/20822019

[18] M.H.Molawade, S.D. Joshi, Software reliability
prediction using Knowledge Engineering approach,
International Journal of Advanced Trends in Computer
Science and Engineering,Vol 8, No 6, Nov-Dec 2019
https://doi.org/10.30534/ijatcse/2019/14862019

