
B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1704


ABSTRACT

Online phishing is one of the Internet's most widespread
crime schemes. A common counter measure includes testing
URLs against blacklists of established phishing websites,
which are typically collected on the basis of manual
verification and are inefficient. As the Internet scale expands,
automatic URL detection is increasingly necessary to provide
timely security for end-users. In this paper, we propose an
efficient and versatile malicious URL detection system with a
rich collection of features representing the diverse
characteristics of phishing websites and their hosting
platforms, including features that are difficult to forge. Using
the Random Forests algorithm, our program benefits from
both high detection capacity and low error levels. Based on
our experience, this is the first research to carry out these
large-scale websites / URL scanning and classification
experiments, taking advantage of the distributed viewing
points for the feature set. The results of the experiment show
that our program can be used by the blacklist provider to
create automated blacklists.

Key words : Phishing, Malicious, Machine Learning, URL.

1. INTRODUCTION

Phishing is a crime that employs social engineering and
technological subterfuge to steal customer identity details and
financial account credentials. Social engineering schemes rob
unjust victims of their confidence that they negotiate with a
trustworthy, legitimate group, for example by the use of fake
e-mail addresses and e-mails. They are designed to direct
users to bogus websites that divulge financial details
including usernames and passwords to beneficiaries.
Technical subterfuge programs plant malware on computers
to directly steal credentials, typically using devices that
intercept customer user names and passwords or misdirect
users to falsified websites.

Phishing is an online scam that seeks to manipulate
unsuspected users to reveal their confidential (often valuable)

personal data to people who do not believe, mostly for
malicious intention. It involves usernames, passwords,
information on financial accounts, email addresses, SSNs
often relationships. In Internet contact, Phishing is typically
conducted as a trustworthy individual by mixing social and
technological tricks. The techniques used by attackers also
involve sending spoofing emails and creating deceptive
websites to enable users to reveal details. Spoofing emails are
commonly intended by legal companies to direct users to
bogus websites that encourage users to enter sensitive
information.

The Internet has become an increasingly enticing
environment for people who disbelieve. As the 2013
Microsoft Computer Safety Index shows, worldwide phishing
may have an annual effect of up to $2.4 billion. Based on
APWG's 4th quarter 2019 Phishing Activity Patterns report
("the report"), the total number of phishing sites detected was
162,155. This was down from the 266,387 seen in Q3 and the
182,465 seen in Q2, and up from the 138,328 seen in Q4
2018.

The study also listed the pattern of growing use of HTTPS
infrastructure on phishing websites, which means that
Internet myths more effectively annoy end-users by
converting established protection resources into end-users.
The study reported that over 30% of phishing attacks were
hosted on Websites with HTTPS certificates by the fourth
quarter of 2017. Moreover, over 80 per cent of users find that
the green lock icon on the browser URL bar is valid and
stable, according to a PhishLabs survey. Even if it is a fake,
the confusing "Safe" label provided by modern browsers to
verifiable HTTPS sites makes the situation worse.

A variety of existing tools in browsers, search engines or
applications such as Google's Safe Browsing and Microsoft's
SmartScreen are currently attempting to warn users that a
certain URL the user is about to visit has been detected as
unsecure or harmful. It is achieved by linking the URL to
blacklists generated by the security community. These
blacklists are made up using various methods, from user
reviews to web crawlers with site content analysis to

Detection of Multi-Class Website URLs Using Machine Learning Algorithms

B.Pandu Ranga Raju1, B.Vijaya Lakshmi2, C.V.Lakshmi Narayana3
1Assistant Professor, Department of IT, AITS, Rajampet, Andhra Pradesh, India, balaraju.pandu@gmail.com

2Assistant Professor, Department of CSE, TCSC, Mumbai, Maharastra, India, vijaya.balaraju@gmail.com
3Assistant Professor, Department of CSE, AITS, Rajampet, Andhra Pradesh, India,

cvlakshminarayana@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse122922020.pdf

https://doi.org/10.30534/ijatcse/2020/122922020

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1705

automated classification based on heuristics or classifications.
However, several malicious websites can still slip through
these security schemes, which are the product of several
reasons:

1. The website is too new and so no mechanisms have yet
been tested or analyzed.

2. The web was not adequately analyzed either because of
the systems inadequate or because of counter-measures
to identify attackers, such as "cloaking," or because of
the misuse of legally accessible short URL services.

Several programs are in place to fix the issue of missing
blacklists by reviewing the contents or actions of the website
in a real-time client way when the end user uses it.
Nevertheless, these devices suffer from overhead runtime.
Moreover, consumers may have been exposed to the attacks
from these malicious websites depending on the nature of the
attack, because the material has been downloaded before an
investigation begins. The most important aspect of phishing
security is the timely identification of phishing websites. If
phishing URLs were effectively identified and blacklisted,
end users would receive an alert while they would be fooled
for visiting the shelling site.

Within this paper, we therefore propose an efficient sensing
device that crawls websites and discovers malicious pages
automatically. We plan to use our program from a blacklist
provider that can automatically compile and manage a
blacklist of malicious URLs. Our program is fitted with
several features representing various types of main features of
the content or actions of the website that are impossible or
difficult to cover through misconceptions. This program will
proactively crawl and analyze a URL on the basis of a
professional classifier and mark it as phishing / malicious or
legitimate. Crawling is often carried out from distributed
points of view, allowing the device to acquire new features
and to achieve greater exactness and faster recognition speed.
The blacklist will achieve greater coverage and timeliness by
avoiding manual review. Customer monitoring is therefore
avoided, thus eliminating both the overhead latency and the
possibility of uploading inappropriate content to personal
computers.

Specifically, we suggest a new phishing detection system in
this study which views phishing detection as a binary grading
problem when the positive and negative grades are legal and
use a supervised learning algorithm which uses a range of
features which can be hard or impossible to collect from the
customer's side. Our end-to-end framework enables the
blacklist provider to detect and update the blacklist phishing
URL easily and accurately. The number of features used by
the learning algorithm are extracted from a wide range of
knowledge gathered from the distributed network with widely

distributed points of view. Such features are derived from raw
test data, including URL string, HTTP headers, DNS records,
server status, network traces, WHOIS, and redirect. Our
framework is robust to prevent misunderstandings, taking
advantage of carefully selected features which indicate
diverse aspects of the phishing content distributor, including
physical characteristics, network characteristics and
programming implementation features.

Although certain aspects of our classification have been
addressed in previous works, based on our experience, this is
the first study that incorporates so many different
characteristics and collects information from more than one
million websites to achieve very accurate identification of
phishing. More importantly, our system has many features
that represent the physical aspects of servers that host difficult
to forge malicious content which raise the bar for attackers to
sneak through the detection system.

The system with a data set of more than 100,000 phishing
URLs and 1,000,000 valid URLs is evaluated. The phishing
URLs are downloaded by the free OpenDNS blacklist
provider PhishTank, while the legitimate URLs are a
snapshot of the top one million Majestic list. According to the
experiment findings, 98 percent with very small false
positives, while still benefiting from strong classification
power for both the phishing and the legitimate classes, could
be accomplished with the proposed system.

2. RELATED WORK

Our paper focuses on the identification of machine learning
phishing websites. Related issues such as poor domain
blacklisting and e-mail spam filtering have been hard to
achieve. In addition, machine learning is becoming
increasingly common in these areas. Existing approaches to
malicious websites [1-13] can primarily be divided in two
groups depending on the characteristics used: static
approaches [1-8] depending on features and dynamic
approaches [9-13] based on functions. Static feature-based
approaches [1-8] depend on features extracted from URL,
page content, HTML DOM structure, domain-based data, etc.
Alternatively, dynamic feature-based solutions [9-13]
concentrate mainly on analyzing the captured behaviors when
loading and rendering the application, and reviewing device
logs when executed with certain scripts. For this article, we
focus on using static characteristics.

2.1 Heuristic Based Methods in Proactive Blacklisting

Fukushima et al. addressed the concept of analyzing IP
address blocks and registrars used to performatively list
unknown malicious websites [1]. They assessed the
prevalence of IP address blocks and registrars used by
attackers intensively using some 4,000 instances from the
Malware domain list [14]. In accordance with registrars, IP

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1706

address blocks then calculate the reputational level of
websites, whereby individuals with low reputations are stated
to be accused.

Their system may be subjected to a high false positive rate, i.e.
that benevolent domains are marked as malicious. Many
legitimate websites are only deemed malicious if they have the
same registrar or IP blocks as other malicious websites.
Felegyhazi et al. suggested a constructive method of
blacklisting based on inferences of same miscreant domains,
whose domains have been identified in verified blacklists.
This inference is obtained using WHOIS and DNS area file
information [2].

This approach considers domains that are concurrently
registered or that move to the same server as a documented
illegal domain at the same time. Based on their analysis, 73%
of the domains assumed later appeared in blacklists. Yet
attacks based on existing blacklisted domains as seed can be
inferred, which means that they are not enough to cope with
new assaults that are not connected to existing malicious
domains.In comparison, our approaches can be used to catch
malicious domains, regardless of the relationship between
domains, once the classifier has been equipped.

2.2 Machine Learning Based Methods

2.2.1 Malicious Domain Detection

Dong et al. have reviewed a complete list of features to be
derived from X.509 certificates [3]. With the most 100,000
Alexa websites as their valid examples and with Phishing
URLs downloaded from phishing examples, 95.5% and
93.7% precision and reminder are achieved for the Random
Forests classification group [15]. The list of features includes
information not only from licenses, but from a variety of other
aspects of a specific website, including server characteristics,
DNS responses, network efficiency and so on.

Xiang et al. introduced the CANTINA+ multi-layer learning
platform, which uses features such as the URL, HTML DOM,
search engines and third-party tools, such as PageRank, for
the identification of phishing websites [4]. A minimum of 10
of 15 features are derived from HTML or URL textual
patterns and formats. Rosiello et al suggested another
similarity method focused on HTML DOM style for the
identification of phishing used by browsers [5]. There are,
however, several significant disadvantages to the DOM or
lexical knowledge methods. First of all, the attacker can easily
exploit the lexical characteristics of URL or HTML content to
trick the classification scheme. While, the page content needs
to be downloaded in order to perform the classification,
during which the malicious portion may be added and
submitted to the user's website if the system is used in the
browser of the user. Furthermore, as many studies have

shown, cloaking technologies (clothing means that the site is
used to provide specific visitors with different content based
on pre-defined requirements for bypassing the security system
or deceiving the crawlers) are used by a non-denial able
portion of malicious sites for the purpose of misleading
crawler services such as Google to place them in a higher
position or This phenomenon results in the PageRank or
keyword scan, which is less effective for CANTINA+ [1,
15-18].

Ma et al. tried to circumvent this problem by not including
content-related classification apps. They also used ten
thousand of features created from IP address, WHOIS
registrations and domain names, most of which were lexical
features developed using "word bag" technology [6].

One downside of their methodology is that due to the large
number of algorithmically generated lexical features, the
resulting model is difficult to interpret. In comparison, the
features of our system are both understandable and
explainable.

2.2.2 Email Spam Filtering

Ouyang et al. proposed a multi-stage, machine-learning email
detection program that includes an extensive range of
network features [7]. They evaluated their approach with
more than 1,4 million messages obtained in over two years,
and recorded a truly positive rate of between 12% and 77%
using the Decision Tree algorithm. Their work on this topic
varies in many ways from their study. First, for classification
purposes we use an advanced machine learning algorithm,
i.e. Random Forests. Second, we used many other features
than network features for the classification function, which
makes the classification more robust since network quality
may affect the network features collected. Thirdly, the focus
of our research is on the classification of phishing URLs with
a wider range of applications.

Basnet et al. concentrated on exploiting e-mail content
functionality for spam detection and explored many different
algorithms for machine learning [8]. Yet their approach also
has the same problem as above for Xiang et al. [4] and
Rosiello et al. [5]. In addition, your examined samples,
including only 973 phishing mails and 3027 legitimate emails
are small, making your classification accuracy number less
credible. Finally, our research provides different viewpoints
than current studies in the underlying manner.

First, we compile and check the program with a wide range of
example URLs that download the phishing URLs from the
PhischTank [19] and download the legitimate URLs from the
top one million list of Majestics [20]. This increases the
importance of the performance evaluation and the study in
question.

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1707

Second, the complexity and variety of features tested by the
machine learning algorithm was considerably improved. The
addition of features representing different aspects of the target
URLs ensures a detailed view of the target URLs and of the
underlying hosting infrastructure, enhancing the efficiency of
the proposed system substantially and increasing the
threshold for an incorrect detection system from
circumventing such a program. In addition, the study of the
studied models contributes to a synthesis of the existing
phishing environment.

3. METHODOLOGY

The required steps to construct a precise URL classifier began
with the collection and testing of a representative data set for
model training. Next, with several algorithms, we established
supervised machine learning models. We trained and checked
the models using different feature sets once they were
implemented. These models and feature sets were then
analyzed to define improvement areas. Finally, the
performance comparisons of our feature sets and models, to
establish more detailed classifications.

3.1. Data Gathering

The first step in the creation of a representative data set was to
collect data. We have used many open-source repositories and
pages to obtain this data collection. The information comes
from five categories of attack: regular, phishing, malware,
ransomware and botnet. Representative data from each of the
five categories is needed.

Our usual data were obtained from two sources: the Canadian
Cybersecurity Institute (CICS) and Frantisek Strasak's
researches [21, 22]. The CICS has provided data by passing
URLs to a Heritrix web crawler from Alexa Top Websites to
retrieve URLs. After extracting the URLs and deleting
duplicates, the data set was left with 35.300 URLs labeled as
standard [21]. In the Alexa Top 1000, Frantisek Strasak
registered its web traffic for 3 days. He created multiple
packets capturing web traffic data. After testing his computer
for malware, he was able to check that the sites visited in
capture files were regular [22]. His capture files have been
used to retrieve all URLs. We then removed and restored
duplicates to our data collection. The malicious URLs came
from four separate sources; the respective threat form is
blacklisted. Table 1 indicates the source and date of the data
obtained.

Table 1: Malicious Data Gathered
Class Source Count Date

Retrieved
Description

Phishing PhishTank
[23]

21,979 July 30,
2019 -
August

20, 2019

A blacklist
containing
phishing

URLs

Malware Abuse.ch,
URLhaus

[24]

217,818 May 22,
2019 -
August

20, 2019

A blacklist
containing
malware

URLs
Ransomw

are
Abuse.ch,

Ransomwar
e Tracker

[25]

1,903 May 16,
2019 -
August

20, 2019

A blacklist
containing

ransomware
URLs

BotnetC&
C

CyberCrime
[26]

16,292 August
20, 2019

A blacklist
containing

botnet URLs

Our data collection effort generated significantly more
malicious data than usual data. As a consequence, training
and test sets were generated by varying ratios between normal
and malicious URLs to make the distribution practical. Even
with this measure in place, our training and testing data set is
still possible and does not reflect practical traffic.

The normal data from CICS and Frantisek Strasak is expected
to consist of entirely legitimate, non-malicious URL data and
consist of a representative sample of the general population of
URLs.

3.2. Algorithms

In our background research, we found several supervised
machine learning algorithms that performed well in URL
classification. Most of this previous work was on
classification of binary URLs, but we tried to construct a
multi-class URL classifier. A binary classifier classifies data
into two types, classifying URLs as natural or malicious in
this case. A multi-class classifier classifies data into three or
more classes, such that URLs are categorized as common,
phishing, malware, ransomware and botnet. The advantages
of a multi-class grouping are that it gives more information
about the URL and possible attacks. It can be very useful in
planning and stopping threats from public data sources. The
algorithms we implemented were: Vector Machine Support
(SVM), Random Forest and Logistic regression.

3.2.1. Support Vector Machine

A support vector machine is a biased classifier, which
generates an optimal hyperplane for classifying new data with
labeled training data. SVMs use kernels that convert data into
a higher dimension space. This is important for classification
into complex, non-linear data sets such as URL feature
extraction data. This enables the model to produce a mapping
function that divides data points into their groups. In our
models, we evaluated two separate kernels: the linear kernel
and the Radial Basic Function (RBF). The gamma value
determines the distance between the boundary data points and
the dividing line and has been used to boost the model's
accuracy. When these parameters are set, a high gamma value
will result in a more complex decision limit and
over-adjustment [27, 28, 29].

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1708

3.2.2. Logistic Regression

Logistic regression calculates the likelihood of an input
belonging to a specific class. The logit function is used to do
this. The logit function is set to:

This gives a value between 0 and 1, which is the probability
that an entered data point is part of a class. The closest the
value is to one, the more likely a class is to have an object.
This is then used to suit a line used to predict new data. The
model learns by adjusting the coefficients that represent the
data line. As the model learns, the coefficients shift to the
highest likelihood of the right category [30, 31] being
expected.

The model uses the final coefficients to predict new data after
testing. The forecasts use a cluster threshold to assess the type
of the data point. For example, if a binary classifier threshold
is set to 0.5, any value 0.5 or higher is categorized as normal
and any value under 0.5 is categorized as non-normal.
Logistic regression is typically a binary classification and we
have a multi-class classification and thus we have used the
multinomial algorithm. This approach functions in the same
way as the binary version, except that it uses multiple binary
classification tools. The one-vs-all approach contrasts one
class category with the rest; average vs. average, for example,
would identify the knowledge as normal or as non-normal
[30, 31]. Phishing vs. phishing will be another example. The
algorithm then combines the binary classifiers generated by
each form into a single model. When the models are executed,
every binary classifier is executed on the input and the most
probable class is the selected classification.

3.2.3. Random Forest

The Random Forest algorithm is a classification algorithm.
That works as follows:

1. The data set is divided randomly into 'L' subsets with
'k' inputs. This is done with substitution, so subsets can
contain the same entries. This data sampling approach
is known as bootstrapping.

2. Every subset is then used for the decision tree
preparation. A decision tree works by providing
several splits in which the data is divided by a
function. The function is chosen randomly from all
data features. The value of the function determines the
direction the tree is going down.

3. After training the trees, new inputs go through all of
the trees to get a prediction. For classification, the final
prediction is based on a majority vote from all of the
trees.

This algorithm improves on a single decision tree and creates

robustness of the model as it prevents overfitting the data and
is able to make splits on randomly chosen features, as opposed
to using only the best features to split the data [32, 33].
Random Forest is a bagging type ensemble method. Ensemble
methods combine the decisions from other algorithms to give
a less biased, more accurate prediction [34]. In particular,
bagging methods run several algorithms in parallel and
aggregate their results to create a prediction. An overview of
bagging can be found in Figure 2.

Figure 2: Boosting Overview

3.3. Feature Extraction
Our background research provided us with a wealth of
features and feature sets to test. The features we focused on for
our implementation were lexical and host-based. Previous
research shows that these features are sufficient to create an
accurate classifier. Content-based features may provide value
but present risk to the integrity of our systems due to
potentially malicious web page content related to the URLs;
therefore, they were not evaluated. We implemented 32
features in total, 29 of them being lexical. The features can be
found in Table 2.

Table 2. Feature List
Type of
Features

Feature Name

Lexical
Features

1. Length of URL
2. Length of host name
3. Length of path
4. Number of dots in URL
5. Number of @ in URL
6. Number of % in URL
7. Number of underscores in URL
8. Number of Tidles (~) in URL
9. Number of ampersands (&) in

URL
10. Number of # symbols in URL
11. Number of hyphens in Host

Name
12. Number of dots in Host Name
13. Number of hyphens in Path
14. Number of slashes in Path
15. Number of = symbols in Path
16. Number of semicolons in Path
17. Number of commas in Path
18. Number of dots in path
19. Params in URL
20. Queries in URL
21. Fragments in URL
22. Entropy of Host Name

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1709

23. Check for Non-Standard Port
24. Check Alexa Top 1 Million
25. Check for Puny Code
26. Check Sub-Domains
27. Number of Digits in Host Name
28. IP Based Host Name
29. Check Top Level Domain
30. Username / Password in URL
31. Check URL Protocol

Host based
Features

32. Location of IP Address
33. Address Registry
34. Number of Days Registered

3.3.1 Lexical Features

The lexical features are text-based characteristics of the URL.
We split the URL into its protocol, host name and path. From
there we analyzed the textual features in each. We used the
Python libraries tldextract and urllib to parse the URLs and
extract features. The lexical features we implemented were
based on features described in previous research [27, 35-37].

3.3.2. Host-Based Features

Host-based features are composed of the network information
about the URL host. We used a combination of features
identified from our background research. The extracted
features include: the IP address location, the registered
country of the host, and the amount of time the host has been
registered. We used the Python package ipwhois and socket to
get the host information [27, 35]. The full feature list can be
found in Table 2. The last three features in the list are the
three host-based features. These features are useful because
they can identify URLs with hosts located in suspicious areas
and identify inconsistencies between the hosts and where they
are registered. Also, malicious URLs tend to be registered
more recently, therefore the length of time for domain
registration can be a good indicator for detecting malicious
URLs [27, 35].

4. DEVELOPMENT

We first determined the set of existing tools and libraries
appropriate for our use case. Then, we implemented and
trained several models using a training data set. After the
models were trained, they were tested with a test data set to
determine the models’ performance. Finally, we optimized
the parameters and train/test data set ratios to maximize the
accuracy of the models.

4.1. Tools Used

We decided to use Python as our coding language because it is
useful for processing large amounts of data and has readily
available open source machine learning libraries. We
assessed and selected a suitable machine learning library.

The three main Python libraries for machine learning are:
PyTorch, TensorFlow, and Scikit- Learn. Scikit-Learn is an
easy to use Python library that comes with out-of-the-box
algorithm implementations. Scikit-Learn is more of a
general-purpose machine learning library that includes
implementations of many classic algorithms. TensorFlow and
PyTorch are deep learning frameworks. They are more
flexible and allow for the integration of custom code. We
decided to use Scikit-Learn for the beginning
implementations of our models because it contained models
for all the aforementioned algorithms. TensorFlow and
PyTorch are excellent alternative libraries to Scikit-Learn, but
due to our algorithms of choice and the ease of use we selected
Scikit-Learn. Nonetheless, it is possible to replicate what we
have implemented using models from TensorFlow and
PyTorch.

We also needed a way to extract the features we discussed
previously. Thus, we created our own tool. Our tool takes a
URL as input and returns a numerical array containing values
for the features previously mentioned

4.2. Training

We split the training data into normal and malicious URLs
and varied the split ratios of these two categories. We trained
using a 50/50, 60/40, 70/30, and 80/20 normal/malicious
splits. We trained the model on each of these split ratios in
order to find the optimal training split between normal and
malicious data that would produce the best performing model
given a real scenario.

4.3. Testing and Evaluating

We used several methods to test and evaluate the models. We
evaluated the performance of the features, along with an
evaluation of the models’ performance. We used built-in
Scikit-Learn functions as well as some other mathematical
tools to test the effectiveness of our features. We used two
methods to test the relationship between the feature variables
and classes: a chi-square test and ANOVA F-Value test.

The chi-square test is used to test for independence of
categorical features. A chi-squared value is calculated for
each categorical feature. If the chi-score is greater than or
equal to the threshold value, then the feature affects the URL
class. Otherwise, if the chi-score is less than the threshold, the
feature is most likely not useful. The ANOVA F-Value test is
similar to the chisquare test in that it is a test for
independence, except it is used for numerical values.
Similarly, if the F-Value is greater than or equal to the
threshold value, then the feature affects the URL class, and
vice versa. We also used a heatmap plot from the Python
library, Seaborn, to visualize the correlation between features.
The heatmap plot required a correlation matrix which was
generated using the Python library, Pandas. These techniques

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1710

reduced the complexity of the data, which led to faster and
more accurate classification.

To analyze the performance of our models we examined
several metrics. We first looked at the overall accuracy of the
model. The accuracy is a percent-value based on the number
of true positives over the total number of predictions. A true
positive is a correctly classified URL. Table 3 describes true
positives in the case of a ‘Normal’ URL.

Table 3: Example of True Positives and Negatives, and False

Positives and Negatives
 Predicted

Class
Actual Class

True
Positive

Normal Normal

True
Negative

Not Normal
(ex. Phishing,
malware)

Not Normal
(ex. Phishing,
malware)

False
Positive

Normal Not Normal
(ex. Phishing,
malware)

False
Negative

Not Normal
(ex. Phishing,
malware)

Normal

5. PERFORMANCE
5.1. Tagging

We tested the tagging method using the Random Forest
algorithm, since it had the highest accuracy among the
algorithms in our previous results. We used a 60% Normal /
40% Malicious split and 4 different threshold values. The
results of this test and the threshold values used can be found
in Figure 3 and Figure 4. In Figure 4, a false positive refers to
a ‘Normal’ URL that was given a malicious tag (e.g.
‘malware’, ‘phish’, etc.). A false negative is a malicious URL
that was given a ‘Normal’ tag. The false positive rates were
calculated by counting the number of false positives and
dividing by the number of URLs. The false negative rate was
calculated in the same way but using a count of false
negatives. The tagging algorithm produced very high
accuracies. With lower threshold values producing higher
accuracies. The higher accuracies came with a trade-off as
lower thresholds led to higher false positive and negative
rates.

98.13

97.29

96.14
95.34

94.26

0.25 0.30 0.35 0.40 0.45

Ac
cu

ra
cy

 (%
)

Threshold Value

Random Forest Tagging Accuracy

Figure 3: Tagging Accuracy Results

0.
57

0.
5

0.
43

0.
34

0.
29

0.
61

0.
54

0.
46

0.
36

0.
29

0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0

RA
TE

 (%
)

THRESHOLD VALUE

FA LSE POSI TI VE / NEAGTI VE RATES
False Negative Rate False Positive Rate

Figure 4: False Positive/Negative Rates

5.2. Algorithms Parameters

We performed a 2-dimensional optimization for the Extra
Trees and AdaBoost algorithms on a 50% Normal / 50%
Malicious split. The results of the AdaBoost optimization can
be found in Figure 5. In Figure 5, using a learning rate of 1,
we varied the number of estimators from 65 to 75 and stepped
by 1. These results showed the ideal parameters for the
AdaBoost algorithm which were a learning rate of 1 and the
number of estimators equal to 66.

5.3. Training Ratios

Next, we tested the algorithms against the 4 different training
ratios we used previously. The results of this test can be found
in Figure 6. Similar to our previous results, the 60/40 split
yielded the highest accuracies. The Extra Trees classifier had
the highest accuracy of 96.10%. The 80/20 split had the
lowest accuracies for Random Forest and Extra Trees. The
50/50 split had the lowest accuracy for AdaBoost. These
results indicate that the 60/40 training method yields the
highest accuracies in malicious URL identification.

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1711

93.4

93.45

93.5

93.55

93.6

93.65

93.7

93.75

93.8

6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6

A
CC

U
R

A
CY

 (%
)

N UMBER OF ESTIMATORS

A C C URA CY V S N UM BER OF E S TIMA TO RS

Figure 5: AdaBoost Optimization Line Chart

91.00

92.00

93.00

94.00

95.00

96.00

97.00

50 60 70 80

A
CC

U
R

A
CY

TRAINING RATIO (% NORMAL, % MALICIOUS)

ACCURACY VS TRAINING RATIO

Random Forest Ex tra Trees AdaBoost

Figure 6: Ensemble Method Accuracies

6. CONCLUSION
An automated phishing detection system is introduced in this
paper. The system uses a rich range of features, including
hard-to-forge attributes, obtained from various aspects of the
corresponding URLs, as well as from distributed points of
view. With the use of the top 1 million Majestic list as
legitimate URLs and hourly downloaded blacklists from
PhishTank as phishing URLs, data collection and machine
learning tests were performed to test the proposed technique.
In addition, based on our contemporary data collection, a
previous study is analysed.

Results of the experiments show that our method achieves
good accuracy for phishing detection, which suggests the
efficacy of the mechanism proposed. At the other hand, the
previous study which is being studied reveals a decline in
efficiency due to the evolution of the phishing environment,
whereas our proposed methodology and feature set indicates
considerable superiority. Meanwhile, variations are exposed
between legitimate and phishing websites based on a case
study of certain features.

REFERENCES

1. Yoshiro Fukushima, Yoshiaki Hori, and Kouichi

Sakurai. Proactive blacklisting for malicious web sites
by reputation evaluation based on domain and ip
address registration. In Trust, Security and Privacy in

Computing and Communications (TrustCom), 2011
IEEE 10th International Conference on, pages 352–361.
IEEE, 2011.
https://doi.org/10.1109/TrustCom.2011.46

2. Mark Felegyhazi, Christian Kreibich, and Vern Paxson.
On the potential of proactive domain blacklisting.
LEET, 10:6–6, 2010.

3. Zheng Dong, Apu Kapadia, Jim Blythe, and L Jean
Camp. Beyond the lock icon: real-time detection of
phishing websites using public key certificates. In
Electronic Crime Research (eCrime), 2015 APWG
Symposium on, pages 1–12. IEEE, 2015.
https://doi.org/10.1109/ECRIME.2015.7120795

4. Guang Xiang, Jason Hong, Carolyn P. Rose, and Lorrie
Cranor. Cantina+: A featurerich machine learning
framework for detecting phishing web sites. ACM
Trans. Inf. Syst. Secur., 14(2):21:1–21:28, September
2011.

5. Angelo PE Rosiello, Engin Kirda, Fabrizio Ferrandi, et
al. A layout-similarity-based approach for detecting
phishing pages. In Security and Privacy in
Communications Networks and the Workshops, 2007.
SecureComm 2007. Third International Conference on,
pages 454–463. IEEE, 2007.

6. JustinMa, Lawrence K. Saul, Stefan Savage, and
GeoffreyM. Voelker. Beyond blacklists: learning to
detect malicious web sites from suspicious urls. In
KDD, 2009.

7. Tu Ouyang, Soumya Ray, Mark Allman, and Michael
Rabinovich. A large-scale empirical analysis of email
spam detection through network characteristics in a
standalone enterprise. Computer Networks,
59:101–121, 2014.
https://doi.org/10.1016/j.comnet.2013.08.031

8. Ram Basnet, Srinivas Mukkamala, and Andrew H Sung.
Detection of phishing attacks: A machine learning
approach. In Soft Computing Applications in Industry,
pages 373–383. Springer, 2008.

9. Alexander Moshchuk, Tanya Bragin, Steven D Gribble,
and Henry M Levy. A crawler-based study of spyware
in the web.

10. Mahmoud T Qassrawi and Hongli Zhang. Detecting
malicious web servers with honey clients. Journal of
Networks, 6(1):145, 2011.
https://doi.org/10.4304/jnw.6.1.145-152

11. Andreas Dewald, Thorsten Holz, and Felix C Freiling.
Adsandbox: Sandboxing javascript to fight malicious
websites. In Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 1859–1864. ACM, 2010.

12. Kevin Zhijie Chen, Guofei Gu, Jianwei Zhuge, Jose
Nazario, and Xinhui Han. Webpatrol: Automated
collection and replay of web-based malware
scenarios. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
pages 186–195. ACM, 2011.

13. Bassam Sayed, Issa Traoré, and Amany Abdelhalim.
Detection and mitigation of malicious javascript using

B.Pandu Ranga Raju et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704 – 1712

1712

information flow control. In Privacy, Security and Trust
(PST), 2014 Twelfth Annual International Conference
on, pages 264–273. IEEE, 2014.
https://doi.org/10.1109/PST.2014.6890948

14. http://www.malwaredomainlist.com/mdl.php.
15. https://aws.amazon.com/cn/alexa-top-sites/.
16. Sean Ford, Marco Cova, Christopher Kruegel, and

Giovanni Vigna. Analyzing and detecting malicious
flash advertisements. In 2009 Annual Computer
Security Applications Conference, pages 363–372.
IEEE, 2009.
https://doi.org/10.1109/ACSAC.2009.41

17. David Y. Wang, Matthew Der, Mohammad Karami,
Lawrence Saul, Damon McCoy, Stefan Savage, and
Geoffrey M. Voelker. Search + seizure: The
effectiveness of interventions on seo campaigns. In
Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, pages 359–372,
New York, NY, USA, 2014. ACM.

18. Apostolis Zarras, Alexandros Kapravelos, Gianluca
Stringhini, Thorsten Holz, Christopher Kruegel, and
Giovanni Vigna. The dark alleys of madison avenue:
Understanding malicious advertisements. In
Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, pages 373–380,
New York, NY, USA, 2014. ACM.

19. https://www.phishtank.com/index.php.
20. https://majestic.com/reports/majestic-million.
21. Canadian Institute for Cybersecurity. (2016). URL

dataset (ISCX-URL-2016). Retrieved from
https://www.unb.ca/cic/datasets/url-2016.html

22. Strasak, F.Normal datasets. Retrieved from
https://www.stratosphereips.org/datasets-normal

23. PhishTank.PhishTank. Retrieved from
http://phishtank.org/

24. URLhaus.URLhaus database. Retrieved from
https://urlhaus.abuse.ch/browse/

25. Ransomware Tracker.Blocklist. Retrieved from
https://ransomwaretracker.abuse.ch/blocklist/

26. CyberCrime.CyberCrime. Retrieved from
http://cybercrime-tracker.net/

27. Ma, J., Saul, L., Savage, S., & Voelker, G. (Jun 28,
2009). Beyond blacklists. Paper presented at the
1245-1254.

28. Bhattacharyya, S. (2018). Support vector machine:
Kernel trick; mercer’s theorem.

29. Patel, S. (2017). Chapter 2: SVM (support vector
machine) — theory.
https://doi.org/10.1002/9781118548387

30. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X.
(2013). Applied logistic regression John Wiley & Sons.

31. Agrawal, A. (2017, March 31,). Logistic regression.
simplified.

32. Breiman, L. (2001). Random forests. Machine
Learning, 45(1), 5-32. doi:1010933404324

33. Liaw, A., & Wiener, M. (2001). Classification and
regression by RandomForest.

34. Rocca, J. (2019). Ensemble methods: Bagging,
boosting and stacking. Retrieved from
https://towardsdatascience.com/ensemble-methods-bagg
ing-boosting-and-stackingc9214a10a205

35. Sahoo, D., Liu, C., & Hoi, S. C. H. (2017). Malicious
URL detection using machine learning: A survey.

36. Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019).
Machine learning based phishing detection from
URLs. Expert Systems with Applications, 117, 345-357.
https://doi.org/10.1016/j.eswa.2018.09.029

37. Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S. C., &
Tiong, W. K. (2019). A new hybrid ensemble feature
selection framework for machine learning-based
phishing detection system. Information Sciences, 484,
153-166.
https://doi.org/10.1016/j.ins.2019.01.064

