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 
ABSTRACT 
 
Online phishing is one of the Internet's most widespread 
crime schemes. A common counter measure includes testing 
URLs against blacklists of established phishing websites, 
which are typically collected on the basis of manual 
verification and are inefficient. As the Internet scale expands, 
automatic URL detection is increasingly necessary to provide 
timely security for end-users. In this paper, we propose an 
efficient and versatile malicious URL detection system with a 
rich collection of features representing the diverse 
characteristics of phishing websites and their hosting 
platforms, including features that are difficult to forge. Using 
the Random Forests algorithm, our program benefits from 
both high detection capacity and low error levels. Based on 
our experience, this is the first research to carry out these 
large-scale websites / URL scanning and classification 
experiments, taking advantage of the distributed viewing 
points for the feature set. The results of the experiment show 
that our program can be used by the blacklist provider to 
create automated blacklists.  
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1. INTRODUCTION 
 
Phishing is a crime that employs social engineering and 
technological subterfuge to steal customer identity details and 
financial account credentials. Social engineering schemes rob 
unjust victims of their confidence that they negotiate with a 
trustworthy, legitimate group, for example by the use of fake 
e-mail addresses and e-mails. They are designed to direct 
users to bogus websites that divulge financial details 
including usernames and passwords to beneficiaries. 
Technical subterfuge programs plant malware on computers 
to directly steal credentials, typically using devices that 
intercept customer user names and passwords or misdirect 
users to falsified websites.  
 
Phishing is an online scam that seeks to manipulate 
unsuspected users to reveal their confidential (often valuable) 

 
 

personal data to people who do not believe, mostly for 
malicious intention. It involves usernames, passwords, 
information on financial accounts, email addresses, SSNs 
often relationships. In Internet contact, Phishing is typically 
conducted as a trustworthy individual by mixing social and 
technological tricks. The techniques used by attackers also 
involve sending spoofing emails and creating deceptive 
websites to enable users to reveal details. Spoofing emails are 
commonly intended by legal companies to direct users to 
bogus websites that encourage users to enter sensitive 
information. 
 
The Internet has become an increasingly enticing 
environment for people who disbelieve. As the 2013 
Microsoft Computer Safety Index shows, worldwide phishing 
may have an annual effect of up to $2.4 billion. Based on 
APWG's 4th quarter 2019 Phishing Activity Patterns report 
("the report"), the total number of phishing sites detected was 
162,155. This was down from the 266,387 seen in Q3 and the 
182,465 seen in Q2, and up from the 138,328 seen in Q4 
2018. 
 
The study also listed the pattern of growing use of HTTPS 
infrastructure on phishing websites, which means that 
Internet myths more effectively annoy end-users by 
converting established protection resources into end-users. 
The study reported that over 30% of phishing attacks were 
hosted on Websites with HTTPS certificates by the fourth 
quarter of 2017. Moreover, over 80 per cent of users find that 
the green lock icon on the browser URL bar is valid and 
stable, according to a PhishLabs survey. Even if it is a fake, 
the confusing "Safe" label provided by modern browsers to 
verifiable HTTPS sites makes the situation worse. 
 
A variety of existing tools in browsers, search engines or 
applications such as Google's Safe Browsing and Microsoft's 
SmartScreen are currently attempting to warn users that a 
certain URL the user is about to visit has been detected as 
unsecure or harmful. It is achieved by linking the URL to 
blacklists generated by the security community. These 
blacklists are made up using various methods, from user 
reviews to web crawlers with site content analysis to 
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automated classification based on heuristics or classifications. 
However, several malicious websites can still slip through 
these security schemes, which are the product of several 
reasons: 
 

1. The website is too new and so no mechanisms have yet 
been tested or analyzed. 

2. The web was not adequately analyzed either because of 
the systems inadequate or because of counter-measures 
to identify attackers, such as "cloaking," or because of 
the misuse of legally accessible short URL services. 

 
Several programs are in place to fix the issue of missing 
blacklists by reviewing the contents or actions of the website 
in a real-time client way when the end user uses it. 
Nevertheless, these devices suffer from overhead runtime. 
Moreover, consumers may have been exposed to the attacks 
from these malicious websites depending on the nature of the 
attack, because the material has been downloaded before an 
investigation begins. The most important aspect of phishing 
security is the timely identification of phishing websites. If 
phishing URLs were effectively identified and blacklisted, 
end users would receive an alert while they would be fooled 
for visiting the shelling site.  
 
Within this paper, we therefore propose an efficient sensing 
device that crawls websites and discovers malicious pages 
automatically. We plan to use our program from a blacklist 
provider that can automatically compile and manage a 
blacklist of malicious URLs. Our program is fitted with 
several features representing various types of main features of 
the content or actions of the website that are impossible or 
difficult to cover through misconceptions. This program will 
proactively crawl and analyze a URL on the basis of a 
professional classifier and mark it as phishing / malicious or 
legitimate. Crawling is often carried out from distributed 
points of view, allowing the device to acquire new features 
and to achieve greater exactness and faster recognition speed. 
The blacklist will achieve greater coverage and timeliness by 
avoiding manual review. Customer monitoring is therefore 
avoided, thus eliminating both the overhead latency and the 
possibility of uploading inappropriate content to personal 
computers. 
 
Specifically, we suggest a new phishing detection system in 
this study which views phishing detection as a binary grading 
problem when the positive and negative grades are legal and 
use a supervised learning algorithm which uses a range of 
features which can be hard or impossible to collect from the 
customer's side. Our end-to-end framework enables the 
blacklist provider to detect and update the blacklist phishing 
URL easily and accurately. The number of features used by 
the learning algorithm are extracted from a wide range of 
knowledge gathered from the distributed network with widely 

distributed points of view. Such features are derived from raw 
test data, including URL string, HTTP headers, DNS records, 
server status, network traces, WHOIS, and redirect. Our 
framework is robust to prevent misunderstandings, taking 
advantage of carefully selected features which indicate 
diverse aspects of the phishing content distributor, including 
physical characteristics, network characteristics and 
programming implementation features. 
 
Although certain aspects of our classification have been 
addressed in previous works, based on our experience, this is 
the first study that incorporates so many different 
characteristics and collects information from more than one 
million websites to achieve very accurate identification of 
phishing. More importantly, our system has many features 
that represent the physical aspects of servers that host difficult 
to forge malicious content which raise the bar for attackers to 
sneak through the detection system. 
 
The system with a data set of more than 100,000 phishing 
URLs and 1,000,000 valid URLs is evaluated. The phishing 
URLs are downloaded by the free OpenDNS blacklist 
provider PhishTank, while the legitimate URLs are a 
snapshot of the top one million Majestic list. According to the 
experiment findings, 98 percent with very small false 
positives, while still benefiting from strong classification 
power for both the phishing and the legitimate classes, could 
be accomplished with the proposed system.  
 
2. RELATED WORK 
 
Our paper focuses on the identification of machine learning 
phishing websites. Related issues such as poor domain 
blacklisting and e-mail spam filtering have been hard to 
achieve. In addition, machine learning is becoming 
increasingly common in these areas. Existing approaches to 
malicious websites [1-13] can primarily be divided in two 
groups depending on the characteristics used: static 
approaches [1-8] depending on features and dynamic 
approaches [9-13] based on functions. Static feature-based 
approaches [1-8] depend on features extracted from URL, 
page content, HTML DOM structure, domain-based data, etc. 
Alternatively, dynamic feature-based solutions [9-13] 
concentrate mainly on analyzing the captured behaviors when 
loading and rendering the application, and reviewing device 
logs when executed with certain scripts. For this article, we 
focus on using static characteristics.  
 
2.1 Heuristic Based Methods in Proactive Blacklisting 
 
Fukushima et al. addressed the concept of analyzing IP 
address blocks and registrars used to performatively list 
unknown malicious websites [1]. They assessed the 
prevalence of IP address blocks and registrars used by 
attackers intensively using some 4,000 instances from the 
Malware domain list [14]. In accordance with registrars, IP 
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address blocks then calculate the reputational level of 
websites, whereby individuals with low reputations are stated 
to be accused. 
 
Their system may be subjected to a high false positive rate, i.e. 
that benevolent domains are marked as malicious. Many 
legitimate websites are only deemed malicious if they have the 
same registrar or IP blocks as other malicious websites. 
Felegyhazi et al. suggested a constructive method of 
blacklisting based on inferences of same miscreant domains, 
whose domains have been identified in verified blacklists. 
This inference is obtained using WHOIS and DNS area file 
information [2]. 
 
This approach considers domains that are concurrently 
registered or that move to the same server as a documented 
illegal domain at the same time. Based on their analysis, 73% 
of the domains assumed later appeared in blacklists. Yet 
attacks based on existing blacklisted domains as seed can be 
inferred, which means that they are not enough to cope with 
new assaults that are not connected to existing malicious 
domains.In comparison, our approaches can be used to catch 
malicious domains, regardless of the relationship between 
domains, once the classifier has been equipped. 

2.2 Machine Learning Based Methods 

2.2.1 Malicious Domain Detection 
 
Dong et al. have reviewed a complete list of features to be 
derived from X.509 certificates [3]. With the most 100,000 
Alexa websites as their valid examples and with Phishing 
URLs downloaded from phishing examples, 95.5% and 
93.7% precision and reminder are achieved for the Random 
Forests classification group [15]. The list of features includes 
information not only from licenses, but from a variety of other 
aspects of a specific website, including server characteristics, 
DNS responses, network efficiency and so on. 
 
Xiang et al. introduced the CANTINA+ multi-layer learning 
platform, which uses features such as the URL, HTML DOM, 
search engines and third-party tools, such as PageRank, for 
the identification of phishing websites [4]. A minimum of 10 
of 15 features are derived from HTML or URL textual 
patterns and formats. Rosiello et al suggested another 
similarity method focused on HTML DOM style for the 
identification of phishing used by browsers [5]. There are, 
however, several significant disadvantages to the DOM or 
lexical knowledge methods. First of all, the attacker can easily 
exploit the lexical characteristics of URL or HTML content to 
trick the classification scheme. While, the page content needs 
to be downloaded in order to perform the classification, 
during which the malicious portion may be added and 
submitted to the user's website if the system is used in the 
browser of the user. Furthermore, as many studies have 

shown, cloaking technologies (clothing means that the site is 
used to provide specific visitors with different content based 
on pre-defined requirements for bypassing the security system 
or deceiving the crawlers) are used by a non-denial able 
portion of malicious sites for the purpose of misleading 
crawler services such as Google to place them in a higher 
position or This phenomenon results in the PageRank or 
keyword scan, which is less effective for CANTINA+ [1, 
15-18]. 
 
Ma et al. tried to circumvent this problem by not including 
content-related classification apps. They also used ten 
thousand of features created from IP address, WHOIS 
registrations and domain names, most of which were lexical 
features developed using "word bag" technology [6]. 
 
One downside of their methodology is that due to the large 
number of algorithmically generated lexical features, the 
resulting model is difficult to interpret. In comparison, the 
features of our system are both understandable and 
explainable. 
 
2.2.2  Email Spam Filtering 

 
Ouyang et al. proposed a multi-stage, machine-learning email 
detection program that includes an extensive range of 
network features [7]. They evaluated their approach with 
more than 1,4 million messages obtained in over two years, 
and recorded a truly positive rate of between 12% and 77% 
using the Decision Tree algorithm. Their work on this topic 
varies in many ways from their study. First, for classification 
purposes we use an advanced machine learning algorithm, 
i.e. Random Forests. Second, we used many other features 
than network features for the classification function, which 
makes the classification more robust since network quality 
may affect the network features collected. Thirdly, the focus 
of our research is on the classification of phishing URLs with 
a wider range of applications. 
 
Basnet et al. concentrated on exploiting e-mail content 
functionality for spam detection and explored many different 
algorithms for machine learning [8]. Yet their approach also 
has the same problem as above for Xiang et al. [4] and 
Rosiello et al. [5]. In addition, your examined samples, 
including only 973 phishing mails and 3027 legitimate emails 
are small, making your classification accuracy number less 
credible. Finally, our research provides different viewpoints 
than current studies in the underlying manner. 
 
First, we compile and check the program with a wide range of 
example URLs that download the phishing URLs from the 
PhischTank [19] and download the legitimate URLs from the 
top one million list of Majestics [20]. This increases the 
importance of the performance evaluation and the study in 
question. 
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Second, the complexity and variety of features tested by the 
machine learning algorithm was considerably improved. The 
addition of features representing different aspects of the target 
URLs ensures a detailed view of the target URLs and of the 
underlying hosting infrastructure, enhancing the efficiency of 
the proposed system substantially and increasing the 
threshold for an incorrect detection system from 
circumventing such a program. In addition, the study of the 
studied models contributes to a synthesis of the existing 
phishing environment. 
  
3.  METHODOLOGY 
 
The required steps to construct a precise URL classifier began 
with the collection and testing of a representative data set for 
model training. Next, with several algorithms, we established 
supervised machine learning models. We trained and checked 
the models using different feature sets once they were 
implemented. These models and feature sets were then 
analyzed to define improvement areas. Finally, the 
performance comparisons of our feature sets and models, to 
establish more detailed classifications. 
 
3.1. Data Gathering 
 
The first step in the creation of a representative data set was to 
collect data. We have used many open-source repositories and 
pages to obtain this data collection. The information comes 
from five categories of attack: regular, phishing, malware, 
ransomware and botnet. Representative data from each of the 
five categories is needed. 
 
Our usual data were obtained from two sources: the Canadian 
Cybersecurity Institute (CICS) and Frantisek Strasak's 
researches [21, 22]. The CICS has provided data by passing 
URLs to a Heritrix web crawler from Alexa Top Websites to 
retrieve URLs. After extracting the URLs and deleting 
duplicates, the data set was left with 35.300 URLs labeled as 
standard [21]. In the Alexa Top 1000, Frantisek Strasak 
registered its web traffic for 3 days. He created multiple 
packets capturing web traffic data. After testing his computer 
for malware, he was able to check that the sites visited in 
capture files were regular [22]. His capture files have been 
used to retrieve all URLs. We then removed and restored 
duplicates to our data collection. The malicious URLs came 
from four separate sources; the respective threat form is 
blacklisted. Table 1 indicates the source and date of the data 
obtained. 

Table 1: Malicious Data Gathered 
Class Source Count Date 

Retrieved 
Description 

Phishing PhishTank 
[23] 

21,979 July 30, 
2019 - 
August 

20, 2019 

A blacklist 
containing 
phishing 

URLs 

Malware Abuse.ch, 
URLhaus 

[24] 

217,818 May 22, 
2019 - 
August 

20, 2019 

A blacklist 
containing 
malware 

URLs 
Ransomw

are 
Abuse.ch, 

Ransomwar
e Tracker 

[25] 

1,903 May 16, 
2019 - 
August 

20, 2019 

A blacklist 
containing 

ransomware 
URLs 

BotnetC&
C 

CyberCrime 
[26] 

16,292 August 
20, 2019 

A blacklist 
containing 

botnet URLs 
 
Our data collection effort generated significantly more 
malicious data than usual data. As a consequence, training 
and test sets were generated by varying ratios between normal 
and malicious URLs to make the distribution practical. Even 
with this measure in place, our training and testing data set is 
still possible and does not reflect practical traffic. 
 
The normal data from CICS and Frantisek Strasak is expected 
to consist of entirely legitimate, non-malicious URL data and 
consist of a representative sample of the general population of 
URLs. 
 
3.2. Algorithms 
 
In our background research, we found several supervised 
machine learning algorithms that performed well in URL 
classification. Most of this previous work was on 
classification of binary URLs, but we tried to construct a 
multi-class URL classifier. A binary classifier classifies data 
into two types, classifying URLs as natural or malicious in 
this case. A multi-class classifier classifies data into three or 
more classes, such that URLs are categorized as common, 
phishing, malware, ransomware and botnet. The advantages 
of a multi-class grouping are that it gives more information 
about the URL and possible attacks. It can be very useful in 
planning and stopping threats from public data sources. The 
algorithms we implemented were: Vector Machine Support 
(SVM), Random Forest and Logistic regression. 
 
3.2.1. Support Vector Machine 
 
A support vector machine is a biased classifier, which 
generates an optimal hyperplane for classifying new data with 
labeled training data. SVMs use kernels that convert data into 
a higher dimension space. This is important for classification 
into complex, non-linear data sets such as URL feature 
extraction data. This enables the model to produce a mapping 
function that divides data points into their groups. In our 
models, we evaluated two separate kernels: the linear kernel 
and the Radial Basic Function (RBF). The gamma value 
determines the distance between the boundary data points and 
the dividing line and has been used to boost the model's 
accuracy. When these parameters are set, a high gamma value 
will result in a more complex decision limit and 
over-adjustment [27, 28, 29]. 
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3.2.2. Logistic Regression 
 
Logistic regression calculates the likelihood of an input 
belonging to a specific class. The logit function is used to do 
this. The logit function is set to: 

 
This gives a value between 0 and 1, which is the probability 
that an entered data point is part of a class. The closest the 
value is to one, the more likely a class is to have an object. 
This is then used to suit a line used to predict new data. The 
model learns by adjusting the coefficients that represent the 
data line. As the model learns, the coefficients shift to the 
highest likelihood of the right category [30, 31] being 
expected. 
 
The model uses the final coefficients to predict new data after 
testing. The forecasts use a cluster threshold to assess the type 
of the data point. For example, if a binary classifier threshold 
is set to 0.5, any value 0.5 or higher is categorized as normal 
and any value under 0.5 is categorized as non-normal. 
Logistic regression is typically a binary classification and we 
have a multi-class classification and thus we have used the 
multinomial algorithm. This approach functions in the same 
way as the binary version, except that it uses multiple binary 
classification tools. The one-vs-all approach contrasts one 
class category with the rest; average vs. average, for example, 
would identify the knowledge as normal or as non-normal 
[30, 31]. Phishing vs. phishing will be another example. The 
algorithm then combines the binary classifiers generated by 
each form into a single model. When the models are executed, 
every binary classifier is executed on the input and the most 
probable class is the selected classification. 
 
3.2.3. Random Forest 
 
The Random Forest algorithm is a classification algorithm. 
That works as follows: 

1. The data set is divided randomly into 'L' subsets with 
'k' inputs. This is done with substitution, so subsets can 
contain the same entries. This data sampling approach 
is known as bootstrapping. 

2. Every subset is then used for the decision tree 
preparation. A decision tree works by providing 
several splits in which the data is divided by a 
function. The function is chosen randomly from all 
data features. The value of the function determines the 
direction the tree is going down. 

3. After training the trees, new inputs go through all of 
the trees to get a prediction. For classification, the final 
prediction is based on a majority vote from all of the 
trees. 

 
This algorithm improves on a single decision tree and creates 

robustness of the model as it prevents overfitting the data and 
is able to make splits on randomly chosen features, as opposed 
to using only the best features to split the data [32, 33]. 
Random Forest is a bagging type ensemble method. Ensemble 
methods combine the decisions from other algorithms to give 
a less biased, more accurate prediction [34]. In particular, 
bagging methods run several algorithms in parallel and 
aggregate their results to create a prediction. An overview of 
bagging can be found in Figure 2. 

 
Figure 2: Boosting Overview 

3.3. Feature Extraction 
Our background research provided us with a wealth of 
features and feature sets to test. The features we focused on for 
our implementation were lexical and host-based. Previous 
research shows that these features are sufficient to create an 
accurate classifier. Content-based features may provide value 
but present risk to the integrity of our systems due to 
potentially malicious web page content related to the URLs; 
therefore, they were not evaluated. We implemented 32 
features in total, 29 of them being lexical. The features can be 
found in Table 2. 

Table 2. Feature List 
Type of 
Features 

Feature Name 

Lexical 
Features 

1. Length of URL 
2. Length of host name 
3. Length of path 
4. Number of dots in URL 
5. Number of @ in URL 
6. Number of % in URL 
7. Number of underscores in URL 
8. Number of Tidles (~) in URL 
9. Number of ampersands (&) in 

URL 
10. Number of # symbols in URL 
11. Number of hyphens in Host 

Name  
12. Number of dots in Host Name 
13. Number of hyphens in Path 
14. Number of slashes in Path 
15. Number of = symbols in Path 
16. Number of semicolons in Path 
17. Number of commas in Path 
18. Number of dots in path 
19. Params in URL 
20. Queries in URL 
21. Fragments in URL 
22. Entropy of Host Name 
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23. Check for Non-Standard Port 
24. Check Alexa Top 1 Million 
25. Check for Puny Code 
26. Check Sub-Domains 
27. Number of Digits in Host Name 
28. IP Based Host Name 
29. Check Top Level Domain 
30. Username / Password in URL 
31. Check URL Protocol 

Host based 
Features 

32. Location of IP Address 
33. Address Registry 
34. Number of Days Registered 

3.3.1  Lexical Features 
 

The lexical features are text-based characteristics of the URL. 
We split the URL into its protocol, host name and path. From 
there we analyzed the textual features in each. We used the 
Python libraries tldextract and urllib to parse the URLs and 
extract features. The lexical features we implemented were 
based on features described in previous research [27, 35-37]. 
 
3.3.2. Host-Based Features 
 
Host-based features are composed of the network information 
about the URL host. We used a combination of features 
identified from our background research. The extracted 
features include: the IP address location, the registered 
country of the host, and the amount of time the host has been 
registered. We used the Python package ipwhois and socket to 
get the host information [27, 35]. The full feature list can be 
found in Table 2. The last three features in the list are the 
three host-based features. These features are useful because 
they can identify URLs with hosts located in suspicious areas 
and identify inconsistencies between the hosts and where they 
are registered. Also, malicious URLs tend to be registered 
more recently, therefore the length of time for domain 
registration can be a good indicator for detecting malicious 
URLs [27, 35]. 
 
4. DEVELOPMENT 
 
We first determined the set of existing tools and libraries 
appropriate for our use case. Then, we implemented and 
trained several models using a training data set. After the 
models were trained, they were tested with a test data set to 
determine the models’ performance. Finally, we optimized 
the parameters and train/test data set ratios to maximize the 
accuracy of the models. 
 
4.1. Tools Used 

 
We decided to use Python as our coding language because it is 
useful for processing large amounts of data and has readily 
available open source machine learning libraries. We 
assessed and selected a suitable machine learning library. 

 
The three main Python libraries for machine learning are: 
PyTorch, TensorFlow, and Scikit- Learn. Scikit-Learn is an 
easy to use Python library that comes with out-of-the-box 
algorithm implementations. Scikit-Learn is more of a 
general-purpose machine learning library that includes 
implementations of many classic algorithms. TensorFlow and 
PyTorch are deep learning frameworks. They are more 
flexible and allow for the integration of custom code. We 
decided to use Scikit-Learn for the beginning 
implementations of our models because it contained models 
for all the aforementioned algorithms. TensorFlow and 
PyTorch are excellent alternative libraries to Scikit-Learn, but 
due to our algorithms of choice and the ease of use we selected 
Scikit-Learn. Nonetheless, it is possible to replicate what we 
have implemented using models from TensorFlow and 
PyTorch. 
 
We also needed a way to extract the features we discussed 
previously. Thus, we created our own tool. Our tool takes a 
URL as input and returns a numerical array containing values 
for the features previously mentioned 
 
4.2. Training 
 
We split the training data into normal and malicious URLs 
and varied the split ratios of these two categories. We trained 
using a 50/50, 60/40, 70/30, and 80/20 normal/malicious 
splits. We trained the model on each of these split ratios in 
order to find the optimal training split between normal and 
malicious data that would produce the best performing model 
given a real scenario. 
 
4.3. Testing and Evaluating 
 
We used several methods to test and evaluate the models. We 
evaluated the performance of the features, along with an 
evaluation of the models’ performance. We used built-in 
Scikit-Learn functions as well as some other mathematical 
tools to test the effectiveness of our features. We used two 
methods to test the relationship between the feature variables 
and classes: a chi-square test and ANOVA F-Value test. 
 
The chi-square test is used to test for independence of 
categorical features. A chi-squared value is calculated for 
each categorical feature. If the chi-score is greater than or 
equal to the threshold value, then the feature affects the URL 
class. Otherwise, if the chi-score is less than the threshold, the 
feature is most likely not useful. The ANOVA F-Value test is 
similar to the chisquare test in that it is a test for 
independence, except it is used for numerical values. 
Similarly, if the F-Value is greater than or equal to the 
threshold value, then the feature affects the URL class, and 
vice versa. We also used a heatmap plot from the Python 
library, Seaborn, to visualize the correlation between features. 
The heatmap plot required a correlation matrix which was 
generated using the Python library, Pandas. These techniques 



B.Pandu Ranga Raju  et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1704  – 1712 

1710 
 

 

reduced the complexity of the data, which led to faster and 
more accurate classification. 
 
To analyze the performance of our models we examined 
several metrics. We first looked at the overall accuracy of the 
model. The accuracy is a percent-value based on the number 
of true positives over the total number of predictions. A true 
positive is a correctly classified URL. Table 3 describes true 
positives in the case of a ‘Normal’ URL. 

 
Table 3:  Example of True Positives and Negatives, and False 

Positives and Negatives 
 Predicted 

Class 
Actual Class 

True 
Positive 

Normal Normal 

True 
Negative 

Not Normal 
(ex. Phishing, 
malware) 

Not Normal 
(ex. Phishing, 
malware) 

False 
Positive 

Normal Not Normal 
(ex. Phishing, 
malware) 

False 
Negative 

Not Normal 
(ex. Phishing, 
malware) 

Normal 

 

5. PERFORMANCE 
5.1. Tagging 

 
We tested the tagging method using the Random Forest 
algorithm, since it had the highest accuracy among the 
algorithms in our previous results. We used a 60% Normal / 
40% Malicious split and 4 different threshold values. The 
results of this test and the threshold values used can be found 
in Figure 3 and Figure 4. In Figure 4, a false positive refers to 
a ‘Normal’ URL that was given a malicious tag (e.g. 
‘malware’, ‘phish’, etc.). A false negative is a malicious URL 
that was given a ‘Normal’ tag. The false positive rates were 
calculated by counting the number of false positives and 
dividing by the number of URLs. The false negative rate was 
calculated in the same way but using a count of false 
negatives. The tagging algorithm produced very high 
accuracies. With lower threshold values producing higher 
accuracies. The higher accuracies came with a trade-off as 
lower thresholds led to higher false positive and negative 
rates. 
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Figure 3: Tagging Accuracy Results 
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Figure 4: False Positive/Negative Rates 

 
 
5.2. Algorithms Parameters 

 
We performed a 2-dimensional optimization for the Extra 
Trees and AdaBoost algorithms on a 50% Normal / 50% 
Malicious split. The results of the AdaBoost optimization can 
be found in Figure 5. In Figure 5, using a learning rate of 1, 
we varied the number of estimators from 65 to 75 and stepped 
by 1. These results showed the ideal parameters for the 
AdaBoost algorithm which were a learning rate of 1 and the 
number of estimators equal to 66. 

 
5.3. Training Ratios 
 
Next, we tested the algorithms against the 4 different training 
ratios we used previously. The results of this test can be found 
in Figure 6. Similar to our previous results, the 60/40 split 
yielded the highest accuracies. The Extra Trees classifier had 
the highest accuracy of 96.10%. The 80/20 split had the 
lowest accuracies for Random Forest and Extra Trees. The 
50/50 split had the lowest accuracy for AdaBoost. These 
results indicate that the 60/40 training method yields the 
highest accuracies in malicious URL identification. 
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Figure 5: AdaBoost Optimization Line Chart 
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Figure 6: Ensemble Method Accuracies 

6. CONCLUSION 
An automated phishing detection system is introduced in this 
paper. The system uses a rich range of features, including 
hard-to-forge attributes, obtained from various aspects of the 
corresponding URLs, as well as from distributed points of 
view. With the use of the top 1 million Majestic list as 
legitimate URLs and hourly downloaded blacklists from 
PhishTank as phishing URLs, data collection and machine 
learning tests were performed to test the proposed technique. 
In addition, based on our contemporary data collection, a 
previous study is analysed. 
 
Results of the experiments show that our method achieves 
good accuracy for phishing detection, which suggests the 
efficacy of the mechanism proposed. At the other hand, the 
previous study which is being studied reveals a decline in 
efficiency due to the evolution of the phishing environment, 
whereas our proposed methodology and feature set indicates 
considerable superiority. Meanwhile, variations are exposed 
between legitimate and phishing websites based on a case 
study of certain features.  
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