
Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3009 
 

 

 
ABSTRACT 
 
This paper acts as a comprehensive analytical study of natural 
language processing (NLP) and provides a briefing of the 
most prominent astounding reforms of the field over a good 
chunk of time. It covers even the future research insights and 
most relevant features, which act as a result of the discussed 
concepts or research, until this paper's reading point. This 
paper starts with covering the most basic concepts of text 
cleaning, such as tokenization, the importance of stop words, 
etc., to concepts such as sequence modeling, speech 
recognition, the effect of quantum computing concepts in 
Natural Language Processing, and so on. The current 
development of deep neural networks, which is the current 
trend in artificial intelligence, always gives NLP a 
cutting-edge technology, also covered in this paper. This 
paper will also emphasize that it covers the broad area of 
explanations to the concepts to guide learners or researchers 
to have an excellent overall understanding of the field. 
 
Key words: Natural Language Processing (NLP), 
Tokenization, Deep Learning, Recurrent Neural network 
(RNN), Long Short-Term Memory (LSTM), Bidirectional 
Recurrent Neural Network (BiRNN). 
 
1. INTRODUCTION 
 
Natural language processing [1] is an essential and profound 
concept in the field of artificial intelligence and mostly deals 
with areas related to human-computer interactions. This field 
has the most important applications, such as text processing, 
text summarization, document analysis, sentiment 
classification, etc., which will be further discussed in this 
paper, the applications section, and future research. Before 
discussing the most prominent features, this paper would like 
to state the name of the person who started the research in this 
field, who is none other than Alan Turing in his research 
article published in 1950 by the name “computing machinery 
and intelligence” [2]. 

 
 

Firstly, we would like to discuss concepts related to text 
processing and their importance in the future chain of topics 
going to be discussed. In recent times, many outstanding 
reforms have occurred in this field, no matter how it is 
analyzed from many points of view. For instance, right from 
traditional approaches like TF-IDF, parsing, regular 
expression matching, strings, etc., to word vectors, similarity 
scores with various parameters like Euclidean distance, cosine 
similarity, etc. This field has also witnessed ongoing 
breakthroughs like neural networks, machine translation, 
sentiment classification, emotional analysis of documents, 
and to enhance it, the percentage of importance of a particular 
statement in a specified context. On that note, the importance 
of word embedding in the applications mentioned above 
cannot be neglected, and what new application ideas and 
details it has given to the scientists to excel in the given area of 
proficiency should also be valued in its way. Its importance 
has grown so much that it would not be exaggerating to say 
that it currently holds a massive share in ongoing research in 
artificial intelligence. The world has also witnessed the 
wonders in this research and has accomplished successful 
tools like Alexa, Google Assistant, Siri of apple, etc., which 
gained profound importance and popularity in many 
households and the help it delivers in reforming technology 
bringing the future to the present. Speech-to-text converters 
helped in education, and machine translation helped the 
people connect globally even if they are of varied cultures, 
varied traditions, and varied languages. It has helped 
significantly in bringing the world near to us in its way. This 
breakthrough has also led to new and exciting research areas 
like the study of animal language, their speech, and the 
analysis of their emotions, which has helped many countries 
think about how technology can transform our understanding 
with respect to nature and its functionalities. It has also helped 
many animal researchers to show improvements in their 
research regarding animal behavior and functioning. This is 
just the beginning of the entire vast subject of NLP and what it 
can do in people’s lives and to get a clear picture of nature and 
its interactions with each other. It has removed the partitions 
among people with people, people, and wildlife and people 
with technologies as it has become a part of our lives, helping 
us develop day by day and to develop our understanding 
regarding it day by day. It is a special type of relationship 

 
A Comprehensive Analytical Study of Traditional and 
Recent Development in Natural Language Processing 

Aditya Datta1, Biswajit Jena2*, Amiya Kumar Dash3, Roshni Pradhan4 
1International Institute of Information Technology, Bhubaneshwar, Odisha, India, Email:b518017@iiit-bh.ac.in. 
2International Institute of Information Technology, Bhubaneshwar, Odisha, India, Email: c118002@iiit-bh.ac.in. 

3KIIT University, Bhubaneshwar, Odisha, India, Email:amiya.dasfcs@kiit.ac.in. 
4KIIT University, Bhubaneshwar, Odisha, India, Email: roshni.pradhanfcs@kiit.ac.in 

*Corresponding Author 
 

Received  Date : August 04, 2021   Accepted  Date : September 13, 2021      Published Date : October 06, 2021 

ISSN 2278-3091 
Volume 10, No.5, September - October 2021 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse121052021.pdf 

https://doi.org/10.30534/ijatcse/2021/121052021 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3010 
 

 

between living beings, technology, and interdependencies if it 
is deeply understood. It can finally be said, and it is a beautiful 
enhancement done to the growing technology ever. 
 
The remaining sections of the paper are organized as follows. 
Section 2 and 3 discuss the Text cleaning and Tokenization 
approaches of NLP. Section 4 is devoted to text preprocessing 
concepts. Postagging and noun chunks are covered in section 
5. Word Embedding is covered in Section 6. Word vectors and 
similarity scores are discussed in Section 7. The main focus, 
which is the deep learning approach, is discussed in Section 8. 
Recurrent neural network (RNN), Long short-term memory 
(LSTM), and Bidirectional Recurrent neural networks 
(BRNN) are focused on sections 9, 10, and 11, respectively. 
Then Applications of NLP and more concepts associated with 
NLP are discussed in sections 12 and 13. Finally, the 
conclusion is given in section 14. 
 
2. TEXT CLEANING 
 
Text cleaning [3] is a crucial text preprocessing step on which 
many modern tools for NLP, such as machine translation, 
chatbots, speech recognition tools, etc., are highly dependent. 
In a word, we can say that it is the root of the efficiency of 
applications and research in the area. The most basic text 
cleaning steps require tokenization, lemmatization, stemming, 
removing stop words, etc. more profoundly, the topics or 
functions like lemmatization and stemming have a prominent 
impact on the normalization of text. Text cleaning results in 
almost what we can say as the feature matrix of machine 
learning or deep learning, and also it acts as the dominant 
player in producing accurate predictions or results. Now it is 
essential to explain the function of each of the above subfields 
of Text Cleaning. 
 
3. TOKENIZATION 
 
In simple words, tokenization [4] means to break the more 
complex sense into something more straightforward and more 
comfortable to work. In this process, practitioners sometimes 
remove mistakes or grammatically incorrect framing, which 
can harm the process of efficiency by forming a barrier for 
what we can say as an improper feature vector in machine 
learning terms. This process mainly contains two essential or 
widely used functions known as Word Tokenization and 
Sentence Tokenization. 

3.1 Sentence Tokenization 
 
This Tokenizer acts to divide or partition a chunk of text, 
paragraph, or document into each sentence. This partitioning 
is done based on a particular regular expression. Before this 
goes further, to give a simpler sense of regular expressions. 
Regular expressions can be understood as a pattern matcher in 
documents; what it does matches a specific pattern. For 
example, a sequence of four digits for which we design an 
expression matches any sequence of four-digit numbers in the 
entire document.  

3.2 Word Tokenizer 
 
This Tokenizer perhaps has got more significant importance 
in the step of text preprocessing as mostly in many 
documents, sentence tokenization is common, and in most of 
the cases, we get sentences as the input directly by the tool, so 
it becomes prominently important to divide them properly 
into word tokens. Here comes a tricky question or rather a 
basic fundamental question of why we are not considering a 
sentence as a whole, as a feature vector, and why we are 
fixated on words in determining tasks on various applications. 
The answer is rather simple: the same composition of words 
can give a different meaning depending on the phrasing.  
 
Example:1) this dish is not bad but good. (Positive sense) 
                2) this dish is not good but bad.  (Negative sense) 
The above is related to the concept of sentiment classification, 
which this paper will discuss in a bit. The above example 
depicts the variance; the sentences are chosen as features 
rather than words. Now, to dive further into word 
tokenization, they are divided or partitioned according to 
individual needs, and many of the tools for this function 
follow different tokenization rules, for example, some 
partition according to the white spaces between the words, 
some with respect to commas, some give the user a choice of 
devising a regular expression according to its need, etc., as the 
applications of NLP are very much unique in each 
individual’s approach and hence demand different variations 
of text processing which can be intuitively understood in the 
upcoming section of chunking of words, and further, in 
explanation of how the chunking can affect efficiency, 
strengthening the idea of the above-discussed scenario. 
Finally, words formed after tokenization can effectively take 
the role of an input feature vector to train data and form 
effective correlations in data to get valid output [5,43]. 
 
4. TEXT PROCESSING 
 
It is the second major topic that controls the accuracy of the 
output. This is the step performed by an individual once he 
gets satisfied with the text Preprocessing steps. Text 
processing includes algorithms, tuning of hyperparameters, 
checking the algorithm’s efficiency, and customizing the 
traditional algorithms to an individual’s necessity. We would 
like to explain this section by giving frequent connections or 
relating to previous sections and how they are interconnected 
via various methods or applications [6]. 
Before we jump into discussing algorithms’ applications, we 
need to understand the common words which are essential in 
many paths. There are previously standard machine learning 
approaches, but researchers have designed deep learning 
approaches for the same problems or applications, which will 
be explained briefly in the following content, and modern 
deep learning enhancements will be discussed. The common 
concept covered in both approaches is stop words. 
 
 
 
 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3011 
 

 

4.1 Stop words 
 
The stop words removal step is sometimes covered in the text 
preprocessing step but not always; sometimes, it may also be 
performed depending upon the efficiency of the algorithm 
without the removal of stop words. If necessary, only then the 
stop words are removed. In a simpler sense, stop words 
obstruct the correct formation of the Embedding vectors, or 
we can say the words on the removal of which the accuracy of 
the algorithm can increase are stop words. Generally, many 
standard machine learning libraries like NLTK and Spacy are 
a set of predefined words traditionally removed in 
applications such as text summarization, word tagging, etc. To 
intuitively understand their effect, we can say that in the 
routine sentences we speak, we often give a lot of junk 
information based on which the sentence meaning does not 
depend and on the removal of such words, the text processing 
as well as algorithms responsible for forming better 
correlations between words show improvement, as for many 
words tagging and word embedding algorithms may find best 
optimal correlations and might increase accuracy in a notable 
amount.Not only a predefined set, but there can also be 
different meanings of the word “stop words” depending upon 
the format of the document or the type of the document, for 
example, in the case of the following sentences.  

 
I am a senior analyst, and my email id is xyz@abcd.jkl. 
In the above, while we use that sentence in a document where 
the sentence has no unique importance like a movie review by 
a customer who is the above person, in this case, we are only 
interested in rating but not email id. However, when we are 
trying to recommend a movie, the email id cannot be removed 
as it acts as an identity to the individual, in a similar sense for 
some documents; the stop words may not be the same as other 
documents and may even carry useful information. For further 
reading, there is a good understanding provided by this [1]. 
 
5. POSTAGGING AND NOUN CHUNK  
 
Parts of speech tagging are a famous tool to assign each 
individual word with its part of speech. This tool has various 
versions of it provided by various organizations. Research is 
effectively going on to assign more precise parts of speech 
without any error, which is necessarily vital because parts of 
speech play an essential role in forming noun chunks which 
are useful if and only if we can effectively identify the nouns, 
adjectives, articles, etc. with Pos tagging we can also 
formulate our chunks of words with the help of regular 
expressions. It is instrumental in designing a regular 
expression based on the type of document for better results. 
For example, the general chunking rule is: 
{<DT>?<JJ>*<NN>+} 
The above is a noun chunk expression that matches any chunk 
made of article+adjective+noun but, this is useful in the case 
of description documents or texts. In contrast, a regular 
expression of form {<NN>+} is much more helpful for a 
better correlation matrix in the case of scientific or 
experimental texts where there is no much weightage to the 
description. Hence, forming the right noun chunks is very 
much important in cases of text analysis, word embedding, 

named entity recognition, etc., further information on parsing 
and noun chunks is here [46], and information on how to 
extract noun chunks from large scale texts can be found here 
[45]. 
 
6. WORD EMBEDDING 
 
To just brief, for now, what is the function of word 
embedding. In a more straightforward sense, word embedding 
does the same function as One Hot Encoding of sequences but 
not the same. However, during the initial times, one-hot 
encoding is used to denote sentences and sequences in vectors 
having value 1 wherever the word is present and 0 else. Later, 
due to an increase in the sparsity of feature matrix and 
increasing vocabulary usage and also the variation in the 
speech of languages, word embedding was designed based on 
specific features such as several adjectives, gender dictating 
words, phrasing, etc. which acts as different parameters for 
different tasks. This resulted in embedding a vector 
functioning as a feature vector in a finite number of 
dimensions for huge datasets, and one important thing is the 
parameters are chosen in such a way that there will be 
convergence while training the parameters in the least time. 
Now, Figure 1 depicting the word embedding matrix with an 
example. 
 

Figure 1: Image depicting an embedding matrix of a certain 
text.[7] 

 
7. WORD VECTOR AND SIMILARITY SCORE 
 
The idea of word vectors is well established in the paper by 
Mikolov et al. 2013 [5]. It is beautifully described how 
sentences containing words can be converted into word 
vectors by using two models.  

7.1Continuous Bag of Words Model (CBOW) 
 
In a sentence, if given a context of the sentence or given a 
certain number of neighborhood words (window size 
parameter), we need to predict the subject word of the context. 
A detailed representation is given in the form of a diagram 
below in Figure 2. As shown in the figure, an input vector 
(embedding vector) is given, which is the context, and there is 
the hidden projection matrix containing parameters, or in deep 
learning language, we call it as a hidden layer to learn the 
subject according to the context and finally we predict context 
and optimize it by using appropriate methods for training and 
optimization [23]. 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3012 
 

 

 
 

Figure 2: Depicting the CBOW and Skip Gram model [22]. 
 
7.2Skip Gram Model 
 
Unlike the cbow model, given the word, we try to predict the 
context, and this model is very favorable when working on 
fewer amounts of data.  When we have more data, we use the 
cbow model for appropriate reasons that when handling large 
data, we have enough information to train on as we can 
produce an efficient and optimized model. However, in some 
applications, though we have more data, we use the skip-gram 
model. This model has a clear edge for applications involving 
predictions of the context, word tagging task, and in some 
tasks of machine translation. Finally, we would like to 
conclude the word vectors by explaining similarity scores. 
 
7.3 Similarity Scores 
 
This is easiest to understand where we use the basic concept 
of Linear Algebra known as the dot product. To compute the 
similarity between two-word vectors, we take the dot product 
of vectors divided by the product of magnitudes of vectors 
given by the formula, 
 
Similarity Score = (first word vector * second word 
vector)/(||first word vector|| * ||second word vector||)   (1) 

“*”- operation specifies the dot product. 
“×”- operation denotes the normal multiplication 
operator. 
 

8. DEEP LEARNING APPROACHES OF NLP 

8.1Neural Networks 
Neural networks are a revolution in the field of artificial 
intelligence, and many research papers like artificial neural 
networks by Geoffrey Hinton and many pioneers in the field 
like Andre Ng, Yann Le Cunn, etc., have produced unmatched 
outcomes from their efforts. 
 
Feature Input: It is the input given to the neural network. 
Hidden Layer: It may consist of many neurons identifying the 
underlying correlation between different dimensions of the 
features. This function is given in the basic form below. 
Output Layer: The final prediction of the neural network. 
Labels: The true classification from training data to compute 
loss and minimize error. 
Consider a basic neural network as in Figure 3. 
 

 
Figure 3: Showing the function of the neuron [21]. 

 
In Figure 3, xi

(1) ,xi
(2)  and other input neurons together can be 

grouped as input vectors (feature vector) as [xi
(1), xi

(2), xi
(3),...., 

xi
(n)]T  and this vector can be called  xi which is  the  ith training 

example and has ‘n’ dimensions or in this case of Figure 4 
four features(n=4)  to it and the circle in between input neuron 
layer and output layer is called the hidden unit, and every 
circular unit in the neural network is known as a neuron. For 
the hidden unit, the value is (W.T ∗ xi), where the operator ‘*’ 
used depicts the dot product between the two. After this, an 
activation function ai

j is applied on the hidden unit value 
where “ai

j” is the representation of the activation on the jth 
hidden unit in the ith layer of the network, here for this case the 
representation for the hidden unit activation is a1

1. There are 
many types of activation functions such as tanh, relu, linear 
activation, sigmoid, etc., which are widely used. 
Now, generalizing the above functions, we get to the 
following formulae of deep neural networks: 
Forward Propagation: 

 X-feature vector of a particular training example 
ZL - the result of forwarding propagation of ZL-1 and 
WL of the Lth layer. 
AL- activation layer L 
 

                 ZL = (WL * XL)                                                 (2)       
                 AL = activation (ZL)                                          (3)                                                                 
 
MATRIX.T=>Transpose of the matrix in any of the given 
equations in this paper. 
Above are the two essential equations used in feed-forward 
propagation. Figure 4, representing feed-forward neural 
networks. There is going to be a definition of the loss function 
and a discussion on backpropagation intuitively. X is the input 
feature matrix, and the deltas represent the gradients obtained 
through the backpropagation algorithm. 

 
Figure 4:  A deep neural network [47]. 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3013 
 

 

8.2 Back Propagation 
Now, compute the gradients with respect to W's of every layer 
to perform optimization functions to reduce error. To 
understand this first, we will get to the equations part, 

 
erroroutput_layer = modulus(predictions-Y)                   (4)   
errorL = (WL+1.T * errorL+1) * g|(ZL)       (5) 
 
Now, for the intuition part, we just need to think of it as a 
reverse calculation of forwarding propagation; hence, instead 
of propagating the input feature to the output layer, we make 
the error of the output layer and propagate the error according 
to the weights and taking derivative of activation function 
following the simple multivariate chain rule of calculus we 
considered the following cost function for above calculation 
of gradients, 

 
         J = 0.5*((predictions-Y)^2)                                      (6) 

Where, J - cost function, Y-Labels 
 
The above cost function is known as the mean squared error 
function, and many other functions define cost accordingly. 
Further information on backpropagation or in-depth 
explanation can be understood from the paper [6]. There will 
not be any discussion on CNN in this paper. However, it is 
fascinating to note that many CNN algorithms have been 
applied to NLP, such as in speech recognition, machine 
translation, etc., to identify hidden patterns in data. 
 
9.  RECURRENT NEURAL NETWORK (RNN) 
 
Recurrent neural networks [23] are designed to handle input at 
each neuron rather than input all of the feature vectors at once 
and entirely forward propagating and producing predictions. 
To understand this first, it would be better why simple neural 
networks fail in tasks, including sequences or word prediction 
or machine translation, etc. The primary disadvantage in 
simple neural networks is that we cannot handle input feature 
vectors of varying length and also, we cannot use partitioned 
input feature to predict the remaining partition of the feature, 
as in the tasks like word prediction; hence, it becomes very 
much necessary to design a neural network which can take 
input at each stage of forwarding propagation. 
There are many types of RNN, such as, self RNN which takes 
only one single input and propagates it to generate a random 
sequence (at initial timesteps) but, certainly specific sequence 
(after multiple timesteps) whether it can be music, letters, or 
words, speech, etc. there is also an architecture by name 
LSTM which is very important in the field and also there will 
be information on deep Recurrent neural networks which is 
when we try to understand the activation functions in RNN. 

9.1 Basic RNN 
 
The concept of RNN is very much easily visualized as the 
given Figure 5 below. 
 

 
Figure 5: Basic Recurrent Neural Network [23]. 

 
Xt represents the tth time step of the feature vector, or it could 
be understood that if there is a sentence,  
            Input feature (x) =   This is a flower. 
then, x1=” This” which is converted to word embedding 
during input 
U denotes the input weight matrix. 
W denotes the weight matrix. 
S denotes the activation function of neurons. 
V is the output weight matrix. 
 
Hence, it can be seen that simple neural networks cannot 
handle the tasks as RNN, and it can be understood to have 
been designed to handle such specific tasks, and for much 
deeper insights in RNN, this research article [8] will be 
helpful. This paper will briefly discuss deep recurrent neural 
networks and further discuss LSTM with their equations for 
the next section.   

9.2 Deep RNN 
As said previously, this is a brief explanation of deep RNN 
and just is the discussion of one more type of RNN. It could be 
visualized as a stacking up of multiple layers of RNN on top 
of each other as shown in Figure 6, and to explain the things 
further, it is just that the output is now passed as input to the 
next layer with a certain activation function to just understand 
parameters quickly, there will be individual weight matrices 
for input feature x, for activation result obtained during the 
previous timestep, for each layer, and weight matrix for each 
vertical arrow (upward transition) between layers and output 
[18]. 
NOTE: The weight matrix for the entire horizontal layer is the 
same; similarly, for the same layer transition, the weight 
matrix is the same for that transition anywhere for that 
transition. 
 

 
Figure 6: A deep recurrent neural network [18]. 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3014 
 

 

Now, as discussed above, every application has its own 
architecture for training the data. For example, Sentiment 
classification uses many to one architecture; machine 
translation uses many to many to architecture, which will be 
covered in the coming sections. However, the material 
covered here is only the basic version of the explanation, and 
in many cases, deep RNN is not used effectively, consisting of 
many layers unless the task is complex as the handling of the 
weight matrix (parameter matrix) would become tough and 
time-consuming. 

10. LONGSHORT-TERM MEMORY (LSTM) 
In handling sequences of greater length, the RNN may not 
effectively capture the impact created on preceding word on 
future estimate or prediction of the word as there is continuous 
updating of parameters at each and individual timestep, so it 
would be very much beneficial if the system could remember 
the past dependencies for a greater amount of timesteps to 
establish a well and good prediction of results. In this section, 
many equations from previous concepts are discussed, and 
firstly this section discusses the update equation of RNN. 
a<t> = g(Wa[a<t-1>,x<t>] + ba)                                      (7)  
       y<t> = (Wy * a<t>) + by                                               (8) 
In every upcoming equation superscript on each symbol 
denotes the time step of the sequence. The subscript denotes 
to which value the parameter belongs to. But the above 
equation is not efficient in capturing dependencies over a 
longer period of time. 
NOTE: ‘g’ denotes activation function and ba denotes the bias 
of output, x<t> denotes input at timestep ‘t’ and finally one 
more representation is, 
Wa[a<t-1>,x<t>] = Waa * a<t-1> + Wax * x<t>(9) 
Waa=weight matrix belonging to output  
Wax=weight matrix corresponding to input feature vector. 
 * - denotes the dot product. 
Now, to tackle the above issue, there is a need to construct an 
object for handling when to update the parameter for 
preserving the dependency and when to forget the previous 
dependency so as to delete the unwanted relational 
dependencies and also a final tweaking parameter for 
updating the output at each timestep so as to not copy the 
result directly for next time step.So, finally, the following 
equations act as an add-on to the above fundamental equation. 
 
               S<t> = tanh (Wa[a<t-1>,x<t>]+bs)                       (10) 
gammau = sigmoid (Wa[a<t-1>,x<t>]+bu)            (11)                             
gammaf = sigmoid (Wa[a<t-1>,x<t>]+bf)             (12) 
gammao = sigmoid (Wa[a<t-1>,x<t>]+bo)            (13) 
C<t> = gammau*S<t> + gammaf*C<t-1>              (14) 
            a<t> = gammao*C<t>                                          (15) 
In the above listed formulae, 
Dot(.) - element wise matrix multiplication 
Update gate-gamma(u) - responsible for when to update the 
current “C”  
Forget gate-gamma(f) - responsible for when to forget the 
update for the current time step 
Output gate-gamma(o) - amount of information needs to be 
passed on for next time step 

To simply brief the above, it is seen that every gate is using 
the sigmoid function as the function becomes either 0 or 1 
over a large range of values, and we need such a type of 
function to either update the previous or forget the previous to 
the current time step, as far as the output gate is concerned it 
decides how much of the current information needs to be 
followed on leaving room for the input feature for next time 
step to have a significant representation of the prediction. If 
clearly observed, it can be sensed that the forget gate and 
update gate has the opposite effect to each other, i.e., when for 
forget gate is nearly 1, we do not consider the current feature 
will have the least impact on the change of the value of 
activation which will be carried on to next LSTM and if an 
update is nearly 1 then the current value of “C” is updated. A 
simple depiction of LSTM cells is given below in Figure 7, 
explaining the features and mechanisms going inside it. This 
idea or concept can be further enhanced in the research article 
[9], which clearly explains the effects of different activation 
functions. 
 

 
Figure 7: Block diagram of LSTM [48] 

 
Gated recurrent unit cell is also depicted in Figure 8 as it is 
also familiar with LSTM, and in some applications, gated 
recurrent units work better than LSTM, and if interested 
in-depth insights of GRU can be found here [9]. 

 
Figure 8: Block diagram of Gated Recurrent Unit (GRU) [49]. 

11. BIDIRECTIONAL RECURRENT NEURAL 
NETWORK (BRNN) 
Bidirectional Recurrent neural networks are one of the 
important neural networks as the above architectures are 
unidirectional it becomes to predict output at a time step with 
respect to a future wording, and in such scenarios, the BRNN 
is helpful as it takes both forward propagation activation and 
forward propagation activation in the reverse direction in 
predicting output for each and individual output, it performs 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3015 
 

 

better for sequences of greater length and sequences of high 
interdependency [10]. The basic block diagram which shows 
the functionality of BRNN is depicted in Figure 9.  
 

 
Figure 9: Showing a basic BRNN [50]. 

12. APPLICATIONS 
The above-given theory and insights are very helpful in the 
following discussed applications, as they can be inferred as 
the transformation of the NLP field. 

12.1Word Tagging 
Suppose any time searched online about a question related to 
words, whether it might be technical or business-related or 
anything else, it will be suggested or shown as blocks or in 
any other format. The Word Tagging model thoroughly 
explains this type of correlation between the word searches 
and popping suggestions on related articles. This section 
comes from highlighting the previously discussed sections 
and their importance. 
To start, this model first takes a raw document related to many 
subjects or topics, which is a common step in many Text 
processing applications, and then it performs basic and needed 
text cleaning and text processing operations, as discussed 
above in the previous sections. Then the processed text is 
converted into a feature matrix in the form of word 
embedding, and each and the individual sentence is given a 
<POS> and <EOS> tags determining the start and the end of 
the sentence. Now, the similarity scores between the 
sentences are found following any of the CBOW models or 
Skip Gram model by using a traditional machine learning 
library like WORD2VEC, which vectorizes the word 
embedding into vectors by capturing dependencies of all 
contexts of every word present in the “VOCABULARY” of 
the data matrix, OR the above can also be determined by using 
latest deep learning models like BERT which is used in 
performing the Named entity recognition task efficiently. The 
above methods have been used until now, but depending upon 
the scale of the task, the usage of the method is determined. 

12.2Text Summarization 
Text summarization is another important application of 
natural language processing that requires proper parameters 
applied so that there is an effective summary of the text and 
avoiding minimal errors as possible because sometimes 
unimportant things crop up due to less rigorous extraction of 
the text and can be corrected by following the opposite steps. 
Now, to discuss the most important and fundamental tool in 
the extraction of the text is the TF IDF model, which works on 
basic word frequency count across various documents and 
perform the similarity score between the sentences just like 
we do for words by word embedding vectorizer functions so 

as not only to vectorize words but also sentences as a whole. 
The important part here is to understand how the extraction is 
taking place and, more precisely, how the TF IDF algorithm is 
working; understanding this, we follow two steps that 
primarily calculate the word frequency individually and 
represent them as values, If more the frequency of words the 
more is the importance of the word in the document, but 
words such as “and”, “the”, “an” etc. are used extensively in 
any type of document and to reduce their impact there is a 
second step to penalize such scores by multiplying them with 
a factor which is calculating the ratio between the total 
number of documents to the number of documents in which 
the word appeared and finally apply logarithm function to 
base 2 to the result for controlled penalization. The same is 
given by the following equations, 
 
Term frequency = (number of times the word appeared in the 
text)/(total number of words in the text)         (16)                                     
 
Inverse Document Frequency = log{(total number of the 
document)/(the number of documents the word appeared)}(17) 
After obtaining the feature matrix, the individual conditional 
probabilities are considered following the Bayesian inference 
between sentences of the given document, and the sentence 
vectors are given as input for calculation of similarity scores, 
and further, the most relevant chunk of sentences with high 
relative similarity score is considered as an output. The further 
insights of weights for calculation of embedding can be found 
here [2] helpful in the summarization of text and also one 
interesting paper that covers much more depth here [4] and 
also another good reading here [3]. 

12.3Machine translation and Speech Recognition 
Machine translation is a sequence-to-sequence model of 
RNN, and instead of outputting the sequence at each and 
individual time step, the architecture is designed to first 
memorize the entire input feature vector and output each 
output word vector after memorizing the input feature. This 
model works on maximizing the Bayesian probability of the 
output conditional on input, on covering a short formula used 
here, it is important to see the general formula here below, 
 
If two events A and B are occurring with probabilities P(A) 
and P(B) respectively, then the probability of occurring of A 
given B is given by P(A|B), which is, 
 
              P(A|B) = (P(A)/P(B)) * P(B|A)         (18)                                                
The above extended to involve more variables (events) 
conditional on multiple events, which is the crux for the task,  
 
             P(A,B|C) = P(A|C) * P(B|A,C)       (19)                                                     
 
Assuming B here to be output after the timestep of first 
timestep output A and C to be the input feature as a whole then 
it is clear that the above can be generalized and used for 
getting output at nth time step as follows, 
 
P(y<1>,y<2>,y<3>,y<4>,......,y<n-1>,y<n> |x) = 
P(y<1>|x)*P(y<2>|x,y<1>)........*P(y<n>|x,y<1>,y<2>,y<3>,.....,y<n-1>) (20)    



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3016 
 

 

Now, there is a formula to find the probability of getting 
n<th> output in terms of the conditional probability of 
previous individual timestep’s output and the input feature 
vector ‘x’. If the conditional probability at each step is 
maximized, we get the absolute translation of the input 
sentence; this approach is known as a greedy approach. 
 
But the above approach may fail to produce the most sensible 
translation, for suppose let the correct translation for input be, 
“The plan is going to get executed tomorrow,” and suppose 
another translation with the overall average probability being 
highest be, “The plan will be executed tomorrow.” 
Compared to the first sentence, where a greedy approach is 
followed at each individual time step, getting overall 
probability over multiple options is highest; for this, an 
algorithm known as Beam Search is used. 
 

12.4Beam Search 
Instead of always choosing the word with the highest 
probability, we choose a fixed number of different words 
depicting the top “n” number of conditional probabilities 
arranged in descending order of magnitudes of conditional 
probabilities [10]. For example, 
 
For y<1> the top “n” number of outputs are chosen, which 
implies, there are “n” copies of the network made in which 
y<1> takes a different value, i.e., a different word is formed as 
output. The same can be viewed from Figure 10. 
Now, for y<2> we again calculate, 
 
Top “n” values of y<2> which maximizes the conditional 
probability P(y<1>,y<2>|x)  for each and individual network of 
“n” networks present by which there are n square of  
probabilities present out of which , the top “n” conditional 
probabilities are selected and again “n” individual copies of 
architecture are made taking y<1> and y<2> as individual values 
of order respectively. 
And the process is continued, 
Here, “n” is known as beamwidth. 
So, the final objective can be defined as, 
y = argmaxy {productt=[1,Ly](P(y<t>|x,y<1>,y<1>,...,y<1>))}    (21) 
 
Rather than following the above objective for selecting the 
best y, It would be better to take the logarithm of the above 
objective to predict y as in both objectives maximizing y 
maximizes the function, and further, we can normalize the 
function by the length of output “Ly”. Hence the function now 
becomes, 
y=argmaxy(1/Ly)*{summationt=[1,Ly](P(y<t>|x,y<1>,y<1>,...,y<1>)
)}                                                                                         (22) 
 
In an above-defined way, we can perform machine 
translation, and for any further reading on this concept, this 
paper [11] is beneficial and a summary here [12]. 
 

 
Figure 10: Depicting beam search with beam width = 5 [20]. 

 

12.5Attention Model 
Now, it is important to mention a concept known as the 
attention model, which comes under machine translation, and 
also, this concept is used in speech recognition. This concept 
pitches in when there is a sequence of greater length then 
entirely memorizing the input during the first part of the 
architecture of LSTM (ENCODING), and after that 
completely outputting the sequence (DECODING) will 
become tough, and also the results would not be appropriate, 
to tackle this the model divides entire sequence into parts and 
performs beam search with respect to a new parameter known 
as ‘context,” and there is a small change in architecture as 
compared to the previous as shown in Figure 11. 

 
Figure 11: Depicting the attention mechanism [19]. 

 
The above is a BRNN (bi-directional recurrent neural 
network) creating a "context" which is a weighted sum of 
outputs from BRNN whose weights are known as "attention 
weights” and following equations are of help to understand 
above, 
summationt=[1,T] (alpha<t,t|>) = 1         (23)                                               
Now, to find out context “C”, the following is carried out, 
 
          C<t> =  summationt=[1,T] (alpha<t,t|> * O<t|>)         (24)                                
Now, to calculate y<t>, there can be a neural network used 
taking previous output y<t-1> and C<t>as inputs and y<t> as 
output. This is suggested as it is exactly unknown the relation 
between input and output. So, it is easier for a neural network 
to identify the mathematical relation between them. There is a 
concept known as the Bleu score, which is explained in [13] 
and is considered for evaluating models.  
 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3017 
 

 

Speech Recognition is just the application of the above 
concepts, but instead, we deal with audio data, and there is an 
algorithm known as Transformer and many further concepts. 
There is a good paper on this concept which gives good 
intuition here [14]. The attention model is also used to adapt to 
the context and to summarize a series, an excellent paper on 
video summarization using the model is here [42]. 

12.6Quantum encoding and decoding 
The current research in artificial intelligence is becoming 
rigorous with respect to Quantum Computing; already there 
many applications of quantum computing, such as the QAOA 
algorithm [15], which is extensively used in the optimization 
of algorithms, and recently there is an article [17] depicting 
the quantum computing implementation for encoding and 
decoding part of neural network architecture and also there is 
increasing use of Grover’s search algorithm [16] in this field. 
The further understanding of this very much requires a 
thorough understanding of Quantum Computing and 
Quantum Information Theory. 

13. SOME MORE CONCEPTS 
There are some of the important concepts covered in this 
paper. A few other mentions are similar to the above concepts 
or can be like good reading to better understand and instigate 
deep intuition both application and concept. They are the 
following, 
 
Text clustering is an important algorithm that has meaning in 
its name itself. It clusters out the data in a general text when it 
is composed as a description of many types in common [31]. 
Text clustering knowledge can also be helpful in other 
subdivisions of the field, which are the dialogue systems [26, 
30]. To completely understand the practical implementation 
tricks of Neural Machine Translation [24], especially; how it 
deals with embedding layers and how to handle large batches 
of input to the model. As there is a sequence-to-sequence 
model used in neural machine translation, but the sequence is 
getting handled at the level of words, and recently this 
sequence-to-sequence model is also being operated at the 
character level, which is beneficial in its own strong territory. 
This operation at the character level is well explained in the 
article [25]. 
 
Sentiment classification [37, 38] is another important 
application that is very helpful in analyzing the text's polarity. 
The machine learning implementation for sentiment 
classification [39] explains how gated recurrent units can be 
used for sentiment classification.Convolutional neural 
networks are one of the major influencers in coming up with 
different approaches for tasks such as clustering, speech 
recognition, etc. and there is a good number of papers, very 
much beneficial in grasping the concept of architecture for the 
various tasks in NLP, which are [27, 28, 29]. 
 
Information retrieval is an important major division of text 
processing as it gets out the important crux in the entire 
document, to address the previous, sometimes in a 100 pages 
document, there can be only 1 page of useful information 

which can be meaningful for the purpose, hence to solve this, 
there is a book [32] which can be treated as the complete 
introduction to information retrieval. A survey paper [33] 
describes the different methods for information retrieval and 
filtering methods. Understanding Neural network 
implementations in information retrieval can be found here 
[34]. Information retrieval done by the tokenization technique 
is explained here [44]. Self-organizing maps [36] are often 
considered as the clustering algorithm and perhaps more of 
identifying different chunks in the given data, which generally 
suits in case of text processing, describing this is an 
implementation of SOM in Information Retrieval in the paper 
here [35]. 
 
Optimization is a very important part of understanding neural 
networks and also many applications of it which decides the 
efficiency and accuracy of algorithms and parameters and 
thus is very much useful to learn about fundamental 
optimization algorithms like gradient descent, RMS prop, 
Adam, Adaboost, momentum, etc. [40,41]. Feature extraction 
is very important in machine learning and deep learning. The 
feature extraction for text categorization and getting a good 
understanding of text categorization are two useful aspects in 
that direction. BERT,which became successful in document 
classification, is the main pre-trained model used extensively 
in handling complex tasks, and hence relevant knowledge is 
necessary.  

13. CONCLUSION 
It can be said that Natural language processing is a massive 
field with a lot of cross-platform knowledge implementation, 
and the growing demand for the applications in current 
products makes it even more special. NLP is a complex 
concept with infinite dimensions, and one can always obtain 
more based on his efforts and creativity. Currently, the 
computationally efficient quantum computing ideas are being 
applied into various types of fields, and one can be sure that it 
is going to create a greater impact on all applications which 
are unable to perform well or are not being used because of 
being computationally expensive, but now with growing 
technology such as quantum optimization makes it possible 
for such applications to realize, and one major chunk of 
applications definitely belong to NLP. Thus, it is sure that in 
the coming day’s text, speech, sequence, etc., based 
applications will come up with much more ease, and there will 
be an increase in the growth of practical applications of the 
theory proposed. Finally, Natural language processing depicts 
the human-computer relationship beautifully and certainly the 
positive growth of technology and human-machine 
interaction. 
 
ACKNOWLEDGEMENT 
Compliance with Ethical Standards: 
Funding: This study was not funded by any person or 
organization. 
Conflict of Interest: Authors declare that they have no 
conflict of interest. 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3018 
 

 

REFERENCES 
1.RasmitaRautray, Rakesh Chandra Balabantaray, Anisha 
Bhardwaj, Document summarization using sentence features, 
International Journal of Information Retrieval Research 
,2015. 
2. Rakesh Chandra Balabantaray, DK Sahoo, B Sahoo, M 
Swain,Text summarization using term weights, 
International Journal of Computer Applications,2012. 
3.Weiguo Fan, Linda Wallace, Stephanie Rich, and Zhongju 
Zhang, “Tapping into the Power of Text Mining”, Journal of 
ACM, Blacksburg, 2005. 
4. Gupta, V., Lehal ,G. S.,A Survey of Text Summarization 
Extractive Techniques,JOURNAL OF EMERGING 
TECHNOLOGIES IN WEB 
INTELLIGENCE,Vol.2,No.3,2010. 
5.Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient 
estimation of word representations in vector space. In 
Proceedings of Workshop at ICLR, 2013a. 
6.Rumelhart, D. E., Hinton, G. E., and Williams, R. 
J.Learning representations by back-propagating 
errors.Nature, 323, 533--536.1986. 
7.Jurafsky, Daniel & Martin, James. (2008). Speech and 
Language Processing: An Introduction to Natural Language 
Processing, Computational Linguistics, and Speech 
Recognition. 
8. Alex Graves. Generating sequences with recurrent neural 
networks. CoRR, abs/1308.0850, 2013. 
9. Sepp Hochreiter and Jürgen Schmidhuber. Long 
Short-Term memory. Neural computation, 9(8):1735–1780, 
1997. 
10. A. Graves and J. Schmidhuber. Framewise phoneme 
classification with bidirectional LSTM networks. In Proc. Int. 
Joint Conf. on Neural Networks IJCNN 2005, 2005. 
11. Freitag, M., Al-Onaizan, Y.,Beam Search strategies for 
neural machine translation,arXiv preprint arXiv:1702.01806, 
2017 
12.Garg,A.,Agarwal,M.,Machine Translation : a literature 
review,arXiv preprint arXiv:1901.01122, 2018. 
13.Papineni, Kishore &Roukos, Salim & Ward, Todd & Zhu, 
Wei Jing. (2002). BLEU: a Method for Automatic Evaluation 
of Machine Translation. 10.3115/1073083.1073135.  
14.AwniHannun, Carl Case, Jared Casper, Bryan Catanzaro, 
Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, 
Shubho Sengupta, Adam Coates, Andrew Y Ng, Deep Speech 
: scaling up end-to-end speech recognition. 
15. Farhi, E.,Goldstone, J.,Gutmann, S.,A Quantum 
Approximate Optimization Algorithm,arXiv preprint 
arXiv:1411.4028, 2014. 
16. L. Grover. A fast quantum mechanical algorithm for 
database search. In Proc. 28th STOC, pages 212–219, 
Philadelphia, Pennsylvania, 1996. ACM Press. 
17. Bausch, J.,Subramanian, S.,Piddock, S.,A  quantum 
search decoder for natural language processing, arXiv 
preprint arXiv:1909.05023, 2019. 
18. Kong, Huifang& Fang, Yao & Fan, Lei & Wang, Hai & 
Zhang, Xiaoxue& Hu, Jie. (2019). A novel torque distribution 
strategy based on deep recurrent neural network for parallel 
hybrid electric vehicle. IEEE Access. PP. 1-1. 
10.1109/ACCESS.2019.2917545.  

19.Bahdanau, D., Cho, K. H., &Bengio, Y. (2015). Neural 
machine translation by jointly learning to align and translate. 
Paper presented at 3rd International Conference on Learning 
Representations, ICLR 2015, San Diego, United States. 
20. Liu, Bowen &Ramsundar, Bharath &Kawthekar, Prasad 
& Shi, Jade & Gomes, Joseph & Nguyen, Quang & Ho, 
Stephen & Sloane, Jack &Wender, Paul & Pande, Vijay. 
(2017). Retrosynthetic Reaction Prediction Using Neural 
Sequence-to-Sequence Models. ACS Central Science. 3. 
10.1021/acscentsci.7b00303.  
21. Long, Dan &Wuest, S. & Williams, John &Rauwendaal, 
Randall & Bailey, M.. (2010). Contour Planting: A Strategy to 
Reduce Soil Erosion on Steep Slopes.  
22.Landthaler, Joerg &Waltl, Bernhard &Huth, Dominik & 
Braun, Daniel &Matthes, Florian & Stocker, Christoph & 
Geiger, Thomas. (2017). Extending Thesauri Using Word 
Embeddings and the Intersection Method.  
23. Zhu, Juncheng& Yang, Zhile & Mourshed, Monjur& 
Guo, Yuanjun& Zhou, Yimin& Chang, Yan & Wei, Yanjie& 
Feng, Shengzhong. (2019). Electric Vehicle Charging Load 
Forecasting: A Comparative Study of Deep Learning 
Approaches. Energies. 12. 2692. 10.3390/en12142692.  
24.Neishi, M., Sakuma, J., Tohda, S., Ishiwatari, S., 
Yoshinaga, N., & Toyoda, M. (2017). A Bag of Useful Tricks 
for Practical Neural Machine Translation: Embedding Layer 
Initialization and Large Batch Size. WAT@IJCNLP. 
25. Zhang, H., Li, J., Ji, Y., & Yue, H. (2016). A 
character-level sequence-to-sequence method for subtitle 
learning. 2016 IEEE 14th International Conference on 
Industrial Informatics (INDIN), 780-783. 
26. Ren, D., Cai, Y., Chan, W.H., & Li, Z. (2018). A 
Clustering Based Adaptive Sequence-to-Sequence Model for 
Dialogue Systems. 2018 IEEE International Conference on 
Big Data and Smart Computing (BigComp), 775-781. 
27.Allamanis, M., Peng, H., & Sutton, C.A. (2016). A 
Convolutional Attention Network for Extreme 
Summarization of Source Code. ICML. 
28. Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. (2017). 
A Convolutional Encoder Model for Neural Machine 
Translation. ArXiv, abs/1611.02344. 
29. Xing, Y., Xiao, C., Wu, Y., & Ding, Z. (2018). A 
Convolutional Neural Network for Aspect Sentiment 
Classification. IJPRAI, 33, 1959046:1-1959046:13. 
30. Aggarwal, C. C., &Zhai, C. (2012). A survey of text 
clustering algorithms. In Mining text data (pp. 77-128). 
Springer, Boston, MA. 
31. Jing, L., Ng, M. K., & Huang, J. Z. (2010). 
Knowledge-based vector space model for text clustering. 
Knowledge and information systems, 25(1), 35-55. 
32. Manning, C. D., Raghavan, P., &Schütze, H. (2008). 
Introduction to information retrieval. Cambridge university 
press. 
33.Faloutsos, C., &Oard, D. W. (1998). A survey of 
information retrieval and filtering methods. 
34. Mitra, B., &Craswell, N. (2017). Neural models for 
information retrieval. arXiv preprint arXiv:1705.01509. 
35. Lin, X., Soergel, D., &Marchionini, G. (1991, 
September). A self-organizing semantic map for information 
retrieval. In Proceedings of the 14th annual international 



Aditya Datta et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(5),  September - October  2021, 3009 – 3019 

3019 
 

 

ACM SIGIR conference on research and development in 
information retrieval (pp. 262-269). 
36.Kohonen, T. (1997, June). Exploration of very large 
databases by self-organizing maps. In Proceedings of 
international conference on neural networks (icnn’97) (Vol. 
1, pp. PL1-PL6). IEEE. 
37. Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature 
sets and classification algorithms for sentiment classification. 
Information sciences, 181(6), 1138-1152. 
38. Pang, B., Lee, L., &Vaithyanathan, S. (2002, July). 
Thumbs up? sentiment classification using machine learning 
techniques. In Proceedings of the ACL-02 conference on 
Empirical methods in natural language processing-Volume 
10 (pp. 79-86). Association for Computational Linguistics. 
39. Tang, D., Qin, B., & Liu, T. (2015, September). Document 
modeling with gated recurrent neural network for sentiment 
classification. In Proceedings of the 2015 conference on 
empirical methods in natural language processing (pp. 
1422-1432). 
40. Ruder, S. (2016). An overview of gradient descent 
optimization algorithms. arXiv preprint arXiv:1609.04747. 
41. Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., 
& Ng, A. Y. (2011). On optimization methods for deep 
learning. 
42. Ma, Y. F., Lu, L., Zhang, H. J., & Li, M. (2002, 
December). A user attention model for video summarization. 
In Proceedings of the tenth ACM international conference on 
Multimedia (pp. 533-542). 
43. Nayak, A. S., Kanive, A. P., Chandavekar, N., 
&Balasubramani, R. (2016). Survey on preprocessing 
techniques for text mining. International Journal Of 
Engineering And Computer Science, ISSN, 2319-7242. 
44. Singh, V., & Saini, B. (2014). An Effective tokenization 
algorithm for information retrieval systems. Department of 
Computer Engineering, National Institute of Technology 
Kurukshetra, Haryana, India. 
45. Chen, K. H., & Chen, H. H. (1994, June). Extracting noun 
phrases from large-scale texts: A hybrid approach and its 
automatic evaluation. In Proceedings of the 32nd annual 
meeting on Association for Computational Linguistics (pp. 
234-241). Association for Computational Linguistics. 
46. Abney, S. P. (1991). Parsing by chunks. In 
Principle-based parsing (pp. 257-278). Springer, Dordrecht. 
47. Deep neural network tutorial [Online]. Avail: 
https://miro.medium.com/max/958/1*QVIyc5HnGDWTNX3
m-nIm9w.png 
48. Long Short-Term Memory tutorial [Online] Available: 
https://i.stack.imgur.com/RHNrZ.jpg 
49. Gated Recurrent Unit tutorial [Online] Available: 
https://cdnimages1.medium.com/freeze/max/1000/1*OBCui-
SbIRUtlBgWkgQUlw.png?q=2 
50. Bidirectional Recurrent neural network tutorial [Online] 
Available:http://www.easy-tensorflow.com/tftutorials/recurre
nt-neural-networks/bidirectional-rnn-for-classification 
 
 


