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 
ABSTRACT 
 
This paper introduces a systematic methodology to perform 
image recoloring for color-blind people that suffer from 
dichromacy, i.e. protanopia, deuteranopia, and tritanopia. 
The method is applied in digitized art paintings to alleviate 
accessibility problems related to art content consumption by 
the color-blind people, which is a very important issue. The 
methodology involves the RGB, the LMS, and the CIELab 
color spaces and comprises several steps implemented in 
sequence. To reduce the computational complexity, the colors 
of the original image are clustered. Each cluster center is a 
color. By using a standard technique, the cluster centers are 
transformed to simulate the effects of protanopia, 
deuteranopia, and tritanopia. To this end, a specialized 
objective function is minimized to recolor only the cluster 
centers that are significantly different from the respective 
simulated ones, because only these colors are confused by the 
color-blind. Finally, all colors of the original image belonging 
to the clusters associated with centers that have been 
recolored are appropriately recolored, also. The effectiveness 
of the proposed method is quantified in terms of comparative 
analysis over several experimental cases. 
 
Key words: Color-blind, dichromacy, image recoloring, 
objective function, digitized art paintings. 
 
1. INTRODUCTION 
 

The human eye perceives the color using specialized 
photoreceptor cells, called “cones”, contained in the eye’s 
retina. There are three types of cones namely, the L-cones, the 
M-cones, and the S-cones. These cone types are sensitive to 
different, but overlapping, regions of the visible spectrum [1]. 
As an approximation of their stimulation, the L-cones 
correspond to red color, the M-cones to green color, and the 
S-cones to blue color [2, 3, 4]. Figure 1 depicts the spectral 
sensitivity distributions for each cone type as reported in [1].  

Dysfunction or absence of two or more types of cones 
results in color vision deficiency (CVD), also known as color  
blindness (CB) [1, 3, 5]. People suffering from strong CVDs 

 
 

are subjected to various challenges in their everyday life, e.g. 
road signs and traffic light recognition, object recognition in 
images, consumption of colored multimedia content, etc. 
Since the 8% of men and 0.8% of women are color-blind, it is 
clearly understood that any computational framework that  
assists the color blindness would be of great importance.  
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Figure 1: The cones’ spectral sensitivities as functions of the     
wavelength (in nm) [1]. 

Depending on the cone types that have been affected, there 
exist three general classes of CVDs namely, monochromacy 
(known as achromatopsia), dichromacy, and anomalous 
trichromacy [1, 3]. Monochromacy (i.e.  total color blindness) 
is the most severe CVD concerning the absence of two or 
three types of cones, and it is the rarest one. Dichromacy 
concerns the absence of one type of cones and includes three 
categories of CVD: (a)  the protanopia caused by the absence 
of the L-cones, (b) the deuteranopia caused by the absence of 
M-cones, and the tritanopia where the S-cones are missing. 
Anomalous trichromacy includes three categories namely, 
protanomaly, deuteranomaly and tritanomaly caused by 
malfunctioning of the L, M, and S cones, respectively. 

Color image analysis has been effectively employed in 
assisting visually impaired people [6]. In particular, the main 
strategies to alleviate the CVD effects concern the recoloring 
of the original image under certain requirements such as 
image naturalness and color contrast enhancement [3]. Image 
naturalness focuses on minimizing the perceptual difference 
between the original and the recolored image. On the other 
hand, enhancing the color contrast would be very convenient 
in supporting the object recognition performed by the color 
blind.  
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Huang et al [4] used the CIELab color space and developed 
a rotation mechanism to transform the original color in the 
recolored one. To accomplish this, they designed an objective 
function, which quantified the naturalness and the contrast 
requirements. In this direction, Jeong et al [5] substantially 
improved the previous recoloring process by performing a 
translation of the colors not perceived correctly by the 
color-blind in distinguishable RGB color regions. Hassan and 
Paramersan [7] used the XYZ color space to carry out image 
enhancement in three steps namely, normalization, angular 
color rotation, and color un-normalization. In [8], an 
optimization algorithm was proposed that was able to 
preserve the distances between the original colors and the 
corresponding colors as seen by the color blind. Huang et al 
[9] performed the color enhancement by extracting key colors 
and determining an optimal mapping to maintain the contrast 
between pairs of those colors. Tsekouras et al [10] used 
evolutionary computation to elaborate on the set of the 
distinct image colors, which were modified by a daltonization 
approach to generate the recolored image. In [11], a semantic 
segmentation procedure was developed to identify semantic 
image information. Then, the recoloring process was based 
exclusively on that information. Lin et al [12] obtained the 
recolored image by developing a robust color separation 
algorithm to perform eigenvector processing in an opponent 
color space. Finally, Wong and Bishop [13] proposed an 
adaptive technique, which was based on non-linear hue 
remapping able to preserve the image aesthetics.  

Although too much effort has been put in developing 
natural image recoloring [4, 5, 7, 8, 9, 12, 13], there are 
relatively few methods that concern art images [10, 11]. Due 
to the complexity of such kind of images, maintaining a color 
natural appearance of the recolored image is a very 
challenging problem [11]. However, the accessibility of 
color-blind people in cultural content, such as art paintings, 
has been acknowledged as an important demand by 
worldwide organizations dealing with the CVDs and cultural 
organizations such as museums [14, 15, 16]. Many 
color-blind people are at a disadvantage when choosing to 
study or enjoy art paintings because they can only discern a 
confusing set of objects and colors.  

In this paper we propose a systematic methodology to 
produce improved recolored images that maintain the 
naturalness and contrast enhancement requirements for the 
test case of digitized art paintings. In a nutshell, colors that 
are not perceived correctly by the color-blind are detected and 
elaborated. Then, a specialized objective function is 
minimized to modify the above-mentioned colors so that they 
can be correctly perceived, and the objects contained in the 
image can be easily recognized. 

The rest of the paper is organized as follows. Section 2 
analytically describes the proposed methodology. In Section 
3, the simulation experiments are presented and discussed. 
Finally, the paper concludes in Section 4. 

2. THE PROPOSED RECOLORING METHOD 
The proposed methodology refers to all cases of 

dichromacy CVD, i.e. protanopia, deuteranopia, and 
tritanopia. It involves three color spaces namely, the RGB, the 
CIELab, and the LMS. In what follows, 

, ,RGB LabX X and LMSX  denote the RGB, the CIELab, and the 
LMS color spaces. The mapping from RGBX  to LabX  is 

: RGB Labf X X , while the mapping from RGBX  to LMSX  is 
: RGB LMSg X X . To carry out the above mappings, the 

colors are appropriately gamma-corrected, the XYZ color 
space is used as an intermediate space, and the whole 
approach is based on the CIE Standard Illuminant D65.  More 
information about the above mappings can be found in [17, 
18, 19, 20].  

Brettel et al [2] developed an algorithmic framework to 
simulate the dichromatic human vision. They dealt with all 
dichromacy cases, i.e. protanopia, deuteranopia, and 
tritanopia, and showed that a dichromat can see only a 
subspace of the RGBX . Herein, that subspace is denoted as 

,RGB D RGBX X , where the subscript D indicates the 

dichromacy and therefore, it interchangeably refers to 
protanopia, deuteranopia, and tritanopia. To determine 

,RGB DX , they performed specialized transformations that 

involved the XYZ and LMS color spaces, and came up with a 
matrix-based mapping denoted as ,: RGB RGB Dh X X . Thus, 

given a color RGBXc , the dichromat perceives it as 

,D RGB DXc , with ( )D hc c . For a detailed description of 

the above-mentioned color simulation procedure, more 
information can be found in [2].  

The proposed image recoloring methodology consists of 
several steps applied in sequence. These steps are analytically 
described in the following paragraphs. 

First, we perform cluster analysis on the colors of the 
original image. Clustering has been effectively used in many 
applications [21, 22]. Herein, it is used to significantly reduce 
the color information involved in the computational 
procedure and ultimately, reduce its complexity. Let us 
assume that the size of the original image I is N M . The set 
of colors of I is denoted as RGBI  with RGB RGBI X . Since the 
CIELab color space preserves the Euclidean distances 
between colors, the set RGBI  is mapped in the CIELab 
space: ( )Lab RGBI f I , i.e. Lab LabI X . Then, the 
well-known fuzzy c-means is applied over the set LabI  to 
partition it into n fuzzy clusters with centers 1 2, ,..., nx x x , 
where : i Labi X x (note that in general i LabIx ).  

The above-mentioned cluster centers are mapped in the 
space RGBX  :  1{1, 2,..., }: ( )i ii n f   y x  with i RGBXy  
(note that in general i RGBIy ).  Given iy , its simulation to 
the color perceived by a protanope, deuteranope or tritanope is 
denoted as , ( )i D ihy y . By defining a small integer 
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255  the next condition is checked:  

,{1,2,..., } : i i Di n    y y .                     

If the above condition is true, the color iy  is not much 
different from the ,i Dy , meaning that a dichromat can 

perceive it correctly and to distinguish it from other colors. 
Thus, this color remains intact. On the other hand, if the 
condition is false, the color iy , and all colors in the RGBI that 
belong to the respective fuzzy cluster, will be recolored. 
Thus, the set 1 2{ , ,..., }nY  y y y is divided into two subsets, 
the subset 

11 2{ , ,..., }nV  v v v , which includes the elements of 

Y that will be recolored, and the subset 
21 2{ , ,..., }nU  u u u , 

which includes all the elements of Y that will remain intact. 
Thus, 1 2, and .V U Y V U n n n       The simulated 
sets V and U as perceived by the dichromats are 

11, 2, ,{ , ,..., }D D D n DV  v v v  and 
21, 2, ,{ , ,..., }D D D n DU  u u u  

with , ,D RGB DV X , ,D RGB DU X , ( )i D ihv v , and 

, ( )j D jhu u .  
The objective is to calculate a recoloring set 

 1,1 ,2 ,, ...,rec rec rec rec nV  v v v  οf  the set V . Since the LMSX  

space is directly related to the behavior of the cones, the 
impact of their absence or dysfunctionality is well quantified 
in that space. Therefore, the set V is mapped in LMSX   as: 

11 2( ) { ( ), ( ),..., ( )}ng V g g g v v v  with ( )i LMSg Xv  

1{1,2,..., }i n  . The same is done for DV , which gives the 
set 

11, 2, ,( ) { ( ), ( ),..., ( )}D D D n Dg V g g g v v v  with 

,( )i D LMSg Xv 1{1,2,..., }i n  .  
In the LMS space, the error between the color ( )ig v  and 

its simulation  ,( )i Dg v  is: ,( ) ( )i i i Dg g e v v , and the 
recoloring of ( )ig v is determined by a procedure similar to 
the one developed in [10], 

 
, ,( ) ( )rec i i D i ig g  v v e                                                           (1) 

 

with                 
, ,12 , ,13

, , ,21 , ,23

, ,31 , ,32

1
1

1

D i D i

D i D i D i

D i D i

 
 
 

 
    
  

                       (2) 

 
where 11,2,...,i n . For protanopia, the implementation of 
(1) along with the respective matrix in (2) leads to a reduction 
of the L in favor of M and S, obtaining less saturated 
red/oranges and more saturated greens, increasing the contrast 
and therefore, decreasing color confusion of a protanope 
viewer. In the case of deuteranopia, the above process leads to 
the reduction of green in favor of red and blue colors obtaining 
similar results. Finally, the above mechanism appears to have a 
similar effect for the case of tritanopia. In all cases, the color 
confusion is alleviated. 

For protanopia, , ,12 , ,13 0D i D i   , while the rest four 

parameters will be evaluated by the optimization process that 
follows. For deuteranopia, , ,21 , , 23 0D i D i   , while the rest 

of the parameters will be adjusted by the optimization 
procedure that follows. Finally, for tritanopia 

, ,31 , ,32 0D i D i   while the rest of the parameters will be 

treated similarly as in the previous cases.  
To this end, the recolored color in the RGB space is 

obtained as 1
, ,( ( ))rec i rec ig gv v . In addition, its dichromacy 

simulation is calculated according to the following mapping: 
, , ,( )rec i D rec ihv v  11,2,...,i n . 
The set that contains the recolored elements of V is denoted  

as 
1,1 , 2 ,{ , ,..., },rec rec rec rec nV  v v v while its dichromacy 

simulation as 
1, ,1, , 2, , ,{ , ,..., }rec D rec D rec D rec n DV  v v v .  

The elements of the sets ,, , ,rec rec DV V V U , and DU are 
mapped into the LabX  space and the following sets are 
derived:  

 

11 2( ) { ( ), ( ),..., ( )}nf V f f f v v v                                               (4) 

1,1 ,2 ,( ) { ( ), ( ),..., ( )}rec rec rec rec nf V f f f v v v                                (5) 

1, ,1, , 2, , ,( ) { ( ), ( ),..., ( )}rec D rec D rec D rec n Df V f f f v v v                   (6) 

21 2( ) { ( ), ( ),..., ( )}nf U f f f u u u                                             (7) 

21, 2, ,( ) { ( ), ( ),..., ( )}D D D n Df U f f f u u u                                 (8) 

 
The main objective of the proposed method is to optimize 

the parameters of the matrices , 1(with 1,2,..., )D i i n   so that 
the recoloring process in eq. (1) will satisfy the requirements of 
naturalness and contrast enhancement. To accomplish this 
task, we follow an approach similar to the one developed by 
Chatzistamatis et al in [10].   

Considering the sets ( )f V and ( )f U , the distances 

between  their elements ( ) ( )i jf fv u  ( 11 i n  ; 21 j n  ) 

concern the color differences as perceived by a normal viewer. 
 After the recoloring process the respective differences as 

perceived by a dichromat viewer concern the sets ,( )rec Df V  

and ( )Df U  where the distances between their elements are 

   , , ,rec i D j Df fv u . The objective is to keep the above 

distances as similar as possible, so that the dichromat will be 
able to perceive the differences between colors in a similar way 
as the normal color vision viewer. Thus, summing over all 
pairs, 

 

   
1 2

1 , , ,
1 11 2

1 ( ) ( )
n n

i j rec i D j D
i j

S f f f f
n n  

    v u v u      (9) 

 
Following the same approach for the sets ( )f V  and 

,( )rec Df V  we arrive at  
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   
1 1

2 , , , ,2
1 11

1 ( ) ( )
n n

i j rec i D rec j D
i j

S f f f f
n  

    v v v v (10)       

 
It can be easily seen that the minimization of 1J  and 2J  

obtains a recoloring image, the dichromatic perception of 
which  retains the contrast of the original one.  

To satisfy naturalness, the objective function is  
1

3 ,
11

1 ( ) ( )
n

i rec i
i

S f f
n 

  v v                                                   (11) 

 
Eq. (11) can be easily interpreted since we wish the 

modified colors to be close to the original ones.  
To this end, the overall objective function reads as  

1 2 3J S S S                                                                   (12) 
 
where  is a regularization parameter that takes positive 
values and is used to obtain a counterbalance between the 
distinct parts of the objective function.  

To summarize, the main objective of the proposed 
methodology is to minimize the function J with respect to the 
elements of the matrices , 1(with 1, 2,..., )D i i n  .  

Specifically, for the case of protanopia the parameters are 
, ,21 , , 23 , ,31 , ,32, , , ,D i D i D i D i     for deuteranopia 

, ,12 ,D i , ,13 ,D i  , ,31 , ,32,D i D i  , and for tritanopia 

, ,12 , ,13, ,D i D i  , , 21 , , 23,D i D i  . Thus, for each of the above 

cases there are 1n matrices, and for each matrix 4 parameters. 
Therefore, in all dichromatic cases there exist 14n  
parameters to be optimized. To perform the optimization, we 
use the differential evolution (DE) algorithm [23]. The DE 
comprises three evolving learning phases: the mutation, 
crossover and selection. Two parameters must be defined 
namely, the  0, 1RF   that controls the rate at which the 

population evolves, and the  0, 1RC    that controls the 

fraction of the parameter values copied from one generation to 
the next.  

The optimization obtains the parameters of the matrices 
, 1( 1,2,..., )D i i n  that minimize the function J.   Each matrix  

corresponds to one color of the set V.  
Recalling that the elements of V were recolored, and 

i Vv corresponds to the cluster center ( )if v  in the CIELab 

space, we must accordingly recolor all colors of the original 

image that belong to the fuzzy cluster the center of which is 

the color ( )if v . We denote the subset of colors of RGBI  that 

belong to that cluster as iC  (with i RGBC I ). Note that 

11,2,...,i n , and it refers to the color elements of the set V 

because only these colors were recolored by the optimization 

process.  Let assume that iCc  is the color of the pixel 

(1 ; 1 )kt k N t M   p  of the original image I. Its 

simulated vector is , ( )D hc c  . Both the above colors are 

mapped in the LMSX  space to get the vectors ( )g c  and 

,( )Dg c . Then, depending on the dichromacy CVD and using 

the matrix ,D i that corresponds to iv  (i.e. to iC ) , we apply 

eq. (1) to obtain the recolored color in the LMS space, which 

is denoted as ,( ).recg c   Thus, the recoloring of c  in the RGB 

space is obtained as: 1
, ,( ( ))rec recg gc c  .  Finally, the 

pixels of the original image that correspond to colors 

belonging to fuzzy clusters associated with the elements of the 

set U remain intact. 
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Figure 2: Testing paintings1: (a) Painting 1 (by Paul Gauguin), (b) Painting 2 (by Vincent van Gogh), (c) Painting 3 (by Paul Signac), (d) Painting 
4 (by Terence Clarke), (e) Painting 5 (by Ljubomir Aleksandrovic), and (f) Painting 6 (by Achilleas Aivazoglou). 
 

 
Figure 3: Dichromacy simulation paintings using the method of Brettel et al [2]: (a) Tritanopia simulation of  Painting 1, (b) Deuteranopia 
simulation of Painting 2, (c) Tritanopia simulation of Painting 3, (d) Deuteranopia simulation of Painting 4, (e) Protanopia simulation of Painting 
5, and (f) Protanopia simulation of Painting 6. 
 
 

1 The paintings were taken from the Web Gallery of Art in https://www.wga.hu/ and the Pallet Art in https://paletaart2.wordpress.com/ 
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3.  SIMULATION EXPERIMENTS 
 

In this section the proposed algorithm is evaluated for the 
test cases of six digitized art paintings depicted in Figure 2. 
The respective simulated paintings using the method of 
Brettel et al [2] for different dichromacy cases are depicted in 
Figure 3.  

The proposed algorithmic framework is compared to two 
methods that also deal with protanopia, deuteranopia, and 
tritanopia. The first method was developed by Huang et al in 
[9], while the second one was introduced by Wong and Bishop 
in [13].  

To conduct the experiments we set 21  , which implies 
that all colors belonging to a sphere with radius 21 are 
considered similar to the color located at the center of that 
sphere. The number of clusters was preselected as n=24 for all 
the experiments. Regarding eq. (12), we set 0.1  . The 
domain of values for the optimizing parameters of the 
matrices in eq. (2) was the interval [0, 1]. The above values 
were selected by trial-and-error. For the differential 
evolution: 0.8RF  , 0.9RC  , the population size was equal 
to 20, and the maximum number of iterations max 200t  .  

For the other two methods, the parameter setting was the 
same as reported in the respective references.  

Figures 4-6 illustrate the behavior of the objective function 
J during the implementation of the differential evolution 
algorithm for all dichromacy cases and all paintings. Based 
on these figures, it can be easily concluded that the 
convergence of the objective function is smooth and fast. 
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Figure 4: The behavior of J as a function of the iteration number 
considering the three cases of dichromacy for: (a) Painting 1, and          
(b) Painting 2. 
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Figure 5: The behavior of J as a function of the iteration number 
considering the three cases of dichromacy for: (a) Painting 3, and          
(b) Painting 4. 
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Figure 6: The behavior of J as a function of the iteration number 
considering the three cases of dichromacy for: (a) Painting 5, and         
(b) Painting 6. 

 
Note that, in general, the smaller convergent values of J 

arise in the case of tritanopia, while for protanopia and 
deuteranopia are, pretty much, of equivalent size. This 
observation can be justified by the fact that the blue color is 
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not the dominant color in the paintings of Figure 2. Thus, the 
cardinality of the set V is small resulting in small values of the 
individual parts of the function J, as reported in eqs (9)-(11).  

The next experiment concerns the naturalness evaluation 
of the recolored image. For an image of size N M the 
naturalness is quantified by the index studied in [11], which is 
a modified version of the index developed in [4], 
 

,
1 1

1 N M

nat kt rec kt
k t

E
N M  

  p p                                                  (13) 

where ktp  is a pixel of the original image. Smaller values of 
the above index result in better performance as far as the 
naturalness of the recolored image is concerned. 
 

 
Table 1: Naturalness index for the case of protanopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 19.124 22.533 7.698 
Painting 2 12.439 9.038 12.745 
Painting 3 29.245 31.691 24.013 
Painting 4 15.060 24.436 3.964 
Painting 5 25.488 20.098 15.585 
Painting 6 35.033 24.833 8.636 

 
Table 2: Naturalness index for the case of deuteranopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 9.938 22.533 6.381 
Painting 2 6.511 9.038 4.417 
Painting 3 47.346 31.691 16.337 
Painting 4 11.241 24.436 3.404 
Painting 5 17.310 20.098 9.588 
Painting 6 32.455 22.086 24.833 

 
 

Table 3: Naturalness index for the case of tritanopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 78.731 23.811 18.795 
Painting 2 21.423 11.630 6.986 
Painting 3 29.874 24.669 23.545 
Painting 4 30.920 35.964 6.345 
Painting 5 26.431 34.099 10.633 
Painting 6 38.195 7.342 15.307 

 
Tables 1-3 depict the values of the naturalness index in eq. 

(13) obtained by the three methods for protanopia, 
deuteranopia and tritanopia and all paintings. The best values 
for each simulation are presented in bold fonts.  

The results reported in those tables indicate that in most of 
the experimental simulations, the proposed method obtains 
the best values for the naturalness index, meaning that the 
produced recolored images maintain high quality in terms of 
the natural appearance when they are seen by a normal color 

vision viewer. However, there are some results (i.e. painting 2 
in the protanopia experiment, painting 6 in the deuteranopia 
experiment, and painting 6 in the tritanopia experiment) 
where the proposed framework was outperformed by the 
method of Wong and Bishop [13].  Remarkably, even in these 
experimental simulations, it exhibited a behavior that is close 
enough to the respective behavior of the method in [13]. As 
far as the method of Huang et al [9] is concerned, its behavior 
is inferior in all experiments.  

To continue the experimental evaluation of the algorithm, 
the feature similarity index (FSIMc) developed in [24] is 
studied. As the value of the index FSIMc increases the 
chrominance information of the recolored image is closer to 
the chrominance information of the original image.  

 
Table 4: FSIMc index for the case of protanopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 0.9873 0.9439 0.9911 
Painting 2 0.9918 0.9830 0.9876 
Painting 3 0.9670 0.9422 0.9891 
Painting 4 0.9816 0.9653 0.9903 
Painting 5 0.9779 0.9700 0.9915 
Painting 6 0.9644 0.9347 0.9883 

 
Tables 4-6 illustrate the FSIMc values obtained by the three 

methods for all dichromacy cases and all paintings. As 
indicated by the above tables, apart from some experimental 
cases (i.e. painting 2 in the protanopia experiment, paintings 2 
and 6 in the deuteranopia experiment, and paintings 3 and 6 in 
the tritanopia experiment), the proposed algorithm achieves 
the best results in most of the simulations, which directly 
implies that the recolored paintings look similar to the original 
ones.  

Table 5: FSIMc index for the case of deuteranopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 0.9927 0.9439 0.9935 
Painting 2 0.9830 0.9976 0.9926 
Painting 3 0.9466 0.9422 0.9926 
Painting 4 0.9916 0.9653 0.9954 
Painting 5 0.9880 0.9700 0.9920 
Painting 6 0.9722 0.9347 0.9589 

 
Table 6: FSIMc index for the case of tritanopia 

Painting 
Huang et 

al 
[9] 

Wong and 
Bishop 

[13] 

Propose
d 

Painting 1 0.9328 0.9461 0.9500 
Painting 2 0.9313 0.9386 0.9731 
Painting 3 0.9803 0.9535 0.9144 
Painting 4 0.9743 0.8895 0.9838 
Painting 5 0.9652 0.9228   0.9747 
Painting 6 0.9690 0.9953 0.9300 

The next experiment concerns the visual comparison of the 
three algorithms. Figures 7-10 report some of the results. 
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Figure 7: Results on Painting 5 for the case of Protanopia: (a) recolored (method of Wong et al [13]), (b) recolored as seen by a protanope (method 
of Wong et al [13]), (c) recolored (proposed method), (d) recolored as seen by a protanope (proposed method); Results on Painting 6 for the case of 
Protanopia: (e) recolored (method of Huang et al [9]), (f) recolored as seen by a protanope (method of Huang et al [9]), (g) recolored (proposed 
method), (h) recolored as seen by a protanope (proposed method). 

 
Figure 8: Results on Painting 2 for the case of Deuteranopia: (a) recolored (method of Huang et al [9]), (b) recolored as seen by a deuteranope 
(method of Huang et al [9]), (c) recolored (proposed method), (d) recolored as seen by a deuteranope (proposed method); Results on Painting 4 for 
the case of Deuteranopia: (e) recolored (method of Wong et al [13]), (f) recolored as seen by a deuteranope (method of Wong et al [13]), (g) recolored 
(proposed method), (h) recolored as seen by a deuteranope (proposed method). 
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Figure 9: Results on Painting 1 for the case of Tritanopia: (a) recolored (method of Wong et al [13]), (b) recolored as seen by a tritanope (method 
of Wong et al [13]), (c) recolored (proposed method), (d) recolored as seen by a tritanope (proposed method). 
 

 
Figure 10:  Results on Painting 3 for the case of Tritanopia: (a) recolored (method of Huang et al [9]), (b) recolored as seen by a tritanope (method 
of Huang et al [9]), (c) recolored (proposed method), (d) recolored as seen by a tritanope (proposed method). 
 
 

Specifically, Figure 7 depicts some results for protanopia, 
where the proposed method is compared to the method 
developed in [13] for the painting 5, and the method in [9] for 
the painting 6. Figure 8 illustrates some results obtained for 
deuteranopia, where our algorithm is compared to the method 
in [9] for the painting 2, and the method in [13] for the painting 
4. Figure 9 presents the results for painting 1, where the 
proposed methodology is compared to the method of Wong et 
al [13] considering the tritanopia deficiency. Finally, Figure 10 
reports the respective results for the painting 3 considering the 
case of tritanopia, where the proposed method is compared to 
the method of Huang et al [9].  

In view of the respective images in Figures 2 and 3, it can be 
easily seen that the recolored images, obtained by the proposed 
method in Figures 7-10, look more similar to the original 
images than the recolored images from the other two 
recoloring methods. These results are quite convincing and are 
supported by the numerical results reported in Tables (1)-(6).  

The main outcomes of the above experiments indicate that 
the naturalness index and the FSIMc index are effectively 
optimized by the proposed approach. In addition, the contrast 
of the original image is sufficiently retained by the recolored 
image, while the method can naturally modify the original 
colors enhancing the perception of color-blind viewers. 
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4. CONCLUSIONS  
 

In this paper an effective algorithmic framework was 
proposed to perform recoloring of art paintings. The goal was 
to enhance the color perception of people suffering from 
dichromacy. All cases of dichromacy, i.e. protanopia, 
deuteranopia, and tritanopia, were studied. The methodology 
involved three standard color spaces namely, the RGB, the 
CIELab, and the LMS space. To reduce the computational 
time, the colors of the original image were clustered. The 
resulting cluster centers (which are colors) were simulated by 
a standard model to approximate the dichromacy color vision 
deficiency. Then, colors that are confused by the color-blind 
were embedded in an objective function, the minimization of 
which estimated the parameters that decide the recoloring 
strategy.  

The method was tested in several experimental cases. The 
main findings of the experiments can be enumerated as 
follows: (a) the naturalness of the recolored image is 
preserved when it is compared to the original image, 
indicating that the recolored image is naturally perceived by a 
normal color vision viewer; (b) the contrast is sufficiently 
retained by the recolored image; (c) the colors in the recolored 
image can easily be distinguished by the color-blind.  

Future efforts could extend the present algorithm by 
developing more sophisticated learning approaches and 
effective color transformations to improve the color 
perception by viewers that suffer from dichromacy and 
anomalous trichromacy. 
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