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 
ABSTRACT  
 
This paper modifies the traditional Polybius square with a 
5x5 grid through the introduction of a new dynamic 
substitution-based matrix for ciphertext assignment. The 
modification is done through the alteration of cell elements, 
where the ASCII decimal code equivalent of the key is the 
basis for the element positioning. The proposed enhanced 
Polybius square called ASCII Code-based Polybius Square 
Alphabet Sequencer (APSAlpS) is hoped to be used along 
with other lightweight cryptographic algorithms classified as 
block ciphers, stream ciphers, and hash functions in solving 
constrains identified in IoT. The use of the modified Polybius 
square along with other lightweight ciphers to establish a 
better IoT security is recommended. 
 
Key words: Cryptography, ciphers, IoT, modified Polybius 
square 
 
1. INTRODUCTION 
 
The Internet of Things (IoT), as a novel paradigm in the 
Information Technology arena, has gained a foothold in 
today’s research trend as IoT plays an essential role in human 
life. The inception of IoT leverages social works as tagging 
technologies such as radio frequency identification (RFID) 
and wireless sensor networks (WSN) to wit: wireless fidelity 
(WiFi), Bluetooth, long-term evolution (LTE), 
third-generation (3G), global system for mobile 
communication (GSM), general packet radio service (GPRS), 
near-field communication (NFC), Zigbee connections and 
the likes, are now used to connect physical objects almost to 
everything. With this, a boost in communication mediums 
and the sharing of information is perceived. In general, IoT 
interconnects physical objects and living things, bringing 
both into the sphere of the cyber world. However, as the new 
technology arises, constraints on the paradigm shift also 
emerge. Factors such as data security, data integrity, 
operating environment, communications security, and the 
likes, hampers the optimal use of IoT. The identified 
constraints have opened an avenue for a new field, the 
Lightweight Cryptography. Lightweight ciphers generally 
classified as block ciphers, hash functions, and stream 
ciphers are implemented in IoT applications as software 
implementation cost comes in handy. Further, the flexibility 
of manufacturing and maintenance using lightweight ciphers 
is made efficient [1]. Figure 1 shows the application of 
lightweight cryptography in IoT obtained from [2]. 
 

 

 
As data protection and the privacy of users is known to be one 
of the hindrances for wide-scale adoption of IoT [3]–[5], 
various researchers lobby on the use of cryptography to 
strengthen security [6], [7]. Cryptography [8], as a known 
technique used in data communications security for a better 
IoT implementation, deals with algorithms to ensure data 
integrity, secured wireless communication systems, and other 
security services where information transfer takes place 
between different users [9]–[11]. The bottleneck for optimal 
use of cryptography relies on the cipher technology used, 
which varies depending on the problem the researcher 
wanted to solve [8].  
 

 
 

Figure 1: Application of lightweight cryptography in IoT 
 

Algorithms under block ciphers such as AES, Blowfish, 
3DES, RC5, and DES [12], along with hash functions and 
stream ciphers generally called as lightweight ciphers are 
identified as solutions to IoT constraints, are commonly used 
to perform the job. However, the use of standalone 
lightweight ciphers to secure data is not enough. 
Hybridization of techniques is being used to provide more 
reliable data and network security protection.  

 
Various classical ciphers such as Railfence cipher [13], [14], 
Polybius square cipher [15]–[19], Playfair cipher [20]–[22], 
Permutation cipher [23], Homophonic substitution cipher 
[24], [25], Hill cipher [26], Grille cipher [27], Four-square 
cipher [23], Enigma machine cipher [23], Caesar cipher 
[28]–[30], Base64 cipher [31]–[33], Affine cipher [23], 
[34]–[36], and ADFGVX cipher [23], [37]–[39] to name 
some, are being incorporated with block ciphers, among 
others, to solve the constraints in IoT. Among the classical 
ciphers, the Polybius Cipher, known as the Polybius square, 
is identified as one of the commonly used methods for such 
purpose [40]–[42]. However, the Polybius square has 
tradeoffs and is easy to crack with frequency analysis due to 
the simplicity of element distribution scheme in the grid [43]. 
The root cause of the problem is in the structure of how 
digraphs are produced as ciphertext. Therefore, there is a 
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need to introduce a new digraph identification scheme; thus, 
this study. The modified Polybius square is hoped to add 
strength to the security, when combined with lightweight 
ciphers, as a medium to establish more secure IoT systems. 

 
2. RELATED LITERATURE 
 
The domain of IoT spans from healthcare, smart cities, 
connected cars, wearables, and smart homes, among others 
[1]. Cryptography [10] plays a vital role in the 
implementation of IoT. This obscuring technique is known to 
protect data from various industries [44]–[47]. 
Communications security is ensured through the use of two 
basic ciphers, the substitution [43] and transposition [35], 
whose bottleneck for an optimal implementation relies on the 
cipher algorithm used for encipherment and decipherment 
process. 
 
Polybius Cipher, being one of the commonly used cipher 
techniques in the literature, is continuously being improved 
for better security performance. The following subsections 
are the modifications made on the Polybius square. 

 
2.1 Embedding Data Crypted with Extended Shifting 
Polybius Square Supporting Turkish Character Set 

 
An extended Polybius Square presented in [15] works by 
integrating Turkish characters in a 10x7 grid. The extended 
version also introduced a dynamic matrix wherein elements 
of a matrix shift values depending on a numeric value. The 
study proposes unique substitution values every time the 
matrix components shift. The extended Polybius matrix with 
Turkish characters is presented in Table 1. 
 

Table 1: Polybius square with Turkish characters 
 01 02 03 04 05 06 07 

01 A B C Ç D E F 
02 G Ğ H I İ J K 
03 L M N O Ö P R 
04 S Ş T U Ü V Y 
05 Z Q X W 1 2 3 
06 4 5 6 7 8 9 0 
07 . , : ; + - * 
08 /  ! “ # $ % 
09 & = < > ? @ [ 
10 ] \ __ ( ) { } 

 
First, a shifting value is set to generate a new matrix, which is 
used for encryption. For instance, the shift value is ‘0052’; 
thus, a new grid is created, as shown in Table 2.  
 

Table 2: Shifted Polybius square 
 01 02 03 04 05 06 07 

01 “ # $ % & = < 
02 > ? @ [ ] \ _ 
03 ( ) { } A B C 
04 Ç D E F G Ğ H 
05 I İ J K L M N 
06 O Ö P R S Ş T 
07 U Ü V Y Z Q X 
08 W 1 2 3 4 5 6 
09 7 8 9 0 . , : 
10 ; + - * /  ! 

 
To encrypt a value, each plaintext character is converted to its 
corresponding ciphertext in a 4-digit format using the matrix. 
For instance, ‘AZ GİT’ is converted into 
‘030507051006040505020607’ as presented in Table 3. The 

decryption process is done by dividing the ciphertext into 
groups of 4-digit numbers and then matching each group to 
the matrix. 

Table 3: Encryption using shifting Polybius square 
Plaintext A Z (space) G İ T 

Ciphertext 0305 0705 1006 0405 0502 0607 
 
The proposed method was successfully implemented in a 
steganographic algorithm. Since ciphertext values generated 
by the scheme can range from 0101 to 1007, these can be 
applied to modify the least-significant bit (LSB) of an image 
file to embed encrypted messages. Findings from the Peak 
Signal to Noise Ratio (PSNR) and Structural Similarity Index 
Measurement (SSIM) tests show that there are no obvious 
alterations and distortions in the file. 

 
2.2 Implementation of Nihilist Cipher Algorithm in 
Securing Text Data with Md5 Verification 

 
The use of a 5x5 Polybius square in encrypting messages 
presented in [16] differs in the arrangement of the characters 
from the traditional scheme. The study also proposed the use 
of a key for increased security. Based on the example given in 
Table 4, letters are arranged column-wise, from top to 
bottom, then left to right.  
 

Table 4: Polybius square using Nihilist cipher 
 1 2 3 4 5 
1 A F L Q V 
2 B G M R W 
3 C H N S X 
4 D I O T Y 
5 E K P U Z 

 
To perform encryption, the plaintext and the key are 
converted as ciphertext using the given Polybius matrix. Each 
resulting digraph from the plaintext and key is summed 
together to generate the final encrypted message. As an 
example, the plaintext ‘THINGS’ is encoded using the secret 
key ‘DEVICE’. The first character ‘T’ from the plaintext is 
translated as 44, whilst the first character ‘D’ from the secret 
key is translated as 41. Adding both digraphs, the ciphertext 
for ‘T’ and ‘D’ becomes 85 (44+41=85). After converting 
each of the characters, the final ciphertext value for the whole 
plaintext is ‘858357755385,’ as shown in Table 5. 
 

Table 5: Encryption using Nihilist cipher 
Plaintext T H I N G S 
Ciphertext 44 32 42 33 22 34 
Key D E V I C E 
Ciphertext 41 51 15 42 31 51 
Final 
Ciphertext 85 83 57 75 53 85 

 
For decryption, the secret key must be provided. First, the key 
is translated into ciphertext using the Polybius Square. Each 
translated digraph is paired with the corresponding digraphs 
from the ciphertext. To retrieve the plaintext, the digraphs 
from the key are deducted from the digraphs of the ciphertext. 
The process is repeated until it reaches the end of the 
plaintext.  

 
A test was performed to ensure data integrity using the MD5 
hash function. Results show that despite encryption and 
decryption processes, the intended message remained intact 
and genuine. 
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3. METHODOLOGY 
 
3.1 Traditional Polybius Square 

 
The Polybius Cipher uses a square grid composed of 5 rows 
and 5 columns. In this matrix, the letters of the English 
alphabet are placed in alphabetical order from left to right and 
top to bottom. Each cell in the matrix is identified according 
to its relative index in the grid represented by the 
combination of the row and column number, as shown in 
Table 6.  

 
Table 6: Traditional Polybius square matrix 

 1 2 3 4 5 
1 A B C D E 
2 F G H I/J K 
3 L M N O P 
4 Q R S T U 
5 V W X Y Z 

 
Since no key is needed for this scheme, encryption and 
decryption using this technique are made easy. To encrypt a 
message, each character from the string is located in the 
matrix to retrieve its respective coordinate based on the value 
of the intersection of row and columns. The accumulated 
coordinate values will represent the ciphertext. For example, 
encrypting the word ‘INTERNET’ results to 
‘2433441542331544’ where the character ‘I’ is 24, ‘N’ is 33, 
and so forth. The encryption result using the traditional 
Polybius square is presented in Table 7. 

 
Table 7: Encryption using traditional Polybius square 

Plain Text I N T E R N E T 
Position 1 2 3 4 5 6 7 8 
Ciphertext 24 33 44 15 42 33 15 44 

 
The decryption process is done in a reverse manner. Each 
digraph is compared to the grid to retrieve its corresponding 
plaintext value. For example, the encoded message 
‘2433441542331544’ is translated as ‘INTERNET,’ as 
shown in Table 8. 

 
Table 8: Decryption using traditional Polybius square 

Ciphertext 24 33 44 15 42 33 15 44 
Position 1 2 3 4 5 6 7 8 
Plain Text I N T E R N E T 
 

3.2 Enhanced Polybius Square 
 

The enhanced Polybius square called ASCII Code-based 
Polybius Square Alphabet Sequencer (APSAlpS) uses the 
traditional Polybius Square matrix composed of letters ‘a’ to 
‘z.’ However, in this method, the use of a secret key is 
required. With the key, the elements inside the matrix are 
reorganized by shifting cells based on its ASCII decimal 
values. A cell shifting is done for every plaintext character 
encoded; thus, a new matrix is generated for each iteration. 
Similar plaintext letters may not have the same ciphertext 
value, thus ensuring that the encoded message generated by 
the modified technique is always dynamic and, therefore, 
more complicated to break using cryptanalysis. 
 
For the APSAlpS to work, it is required to identify a plaintext 
and a secret key. Every character in the plaintext is matched 
with a character from the key based on its relative position. 
The process is repeated until it reaches the last character of 

the plaintext. Next, the ASCII decimal code value of each 
character of the key is retrieved. The ASCII decimal code 
value of the character serves as the basis to perform the 
number of shifts required to reorder the elements in the 
matrix. After every shift, the new matrix is used to retrieve 
the equivalent ciphertext value. The message 
‘LIGHTWEIGHT’ with the key ‘IOT’ and its relative ASCII 
decimal codes is shown in Table 9. 

 
Table 9: Plaintext and key with ASCII equivalent 

Plaintext L I G H T W E I G H T 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

 
With the given values, the original matrix performs 76 shifts 
to the right, as shown in Table 10 below. The new matrix is 
used to retrieve the encoding value of the first character of the 
plaintext wherein the character ‘C’ is encrypted as the value 
24, as shown in Table 11. 

 
Table 10: New matrix after 1st cell shift 

 1 2 3 4 5 
1 I/J K L M N 
2 O P Q R S 
3 T U V W X 
4 Y Z A B C 
5 D E F G H 

 
Table 11: 1st character encryption using APSAlpS 

Plaintext L I G H T W E I G H T 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

Cipher 
Text 24           

 
To encrypt the next character, a new matrix is generated 
again by shifting the elements to the right 73 times. As a 
result, the character ‘I’ is encoded as 31, as represented in 
Tables 12 and 13.  

 
Table 12: New matrix after 2nd cell shift 

 1 2 3 4 5 
1 T U V W X 
2 Y Z A B C 
3 D E F G H 
4 I/J K L M N 
5 O P Q R S 

 
Table 13: 2nd character encryption using APSAlpS 

Plaintext L I G H T W E I G H T 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

Cipher 
Text 24 31          

 
The procedure is reiterated up to the length of the plaintext. 
The final encrypted value at the end of the process is now 
regarded as ‘24 31 43 42 22 44 55 23 35 34 14’, as shown in 
Table 14. 
 
The variation in the encrypted values between the use of 
traditional Polybius Square and the modified Polybius Square 
using similar plaintexts is presented in Table 15. Based on the 
results, it is apparent that the ciphertext generated by both 
methods are completely different from one another. The table 
also depicts that the common ciphertext codes 22, 23, 24, 31, 
and 44 of both traditional and modified methods have 
different values in the latter. This denotes that even if the 
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encryption values share the same code, they may not have 
equivalent plaintext value, thus making the cipher difficult to 
break using frequency analysis. 
 

Table 14: Encrypted values using APSAlpS 
Plaintext L I G H T W E I G H T 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

Cipher 
Text 24 31 43 42 22 44 55 23 35 34 14 

 
Table 15: Comparison between methods 

Traditional Polybius Square 
Plaintext L I G H T W E I G H T 
Cipher 
Text 31 24 22 23 44 52 15 24 22 23 44 

APSAlpS 
Plaintext L I G H T W E I G H T 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

Cipher 
Text 24 31 43 42 22 44 55 23 35 34 14 

 
The secret key is required for decrypting an encoded 
message. Each digraph from ciphertext must be matched in 
with a character from the key. The process is repeated until 
the last digraph of the ciphertext is reached. Next, the ASCII 
decimal code value of each character of the key is retrieved. 
The retrieved ASCII decimal code value serves as the basis to 
perform the number of shifts required to reorder the elements 
in the matrix. After every shift, the new matrix is used to 
retrieve the code equivalent for every digraph. The process is 
repeated until all digraphs are converted to their respective 
plaintext values. The encrypted message ‘24 31 43 42 22 44 
55 23 35 34 14’ with the secret key ‘IOT’ and its 
corresponding ASCII decimal codes is shown in Table 16. 

 
Table 16: Decrypted values using APSAlpS 

Ciphertext 24 31 43 42 22 44 55 23 35 34 14 
Key I O T I O T I O T I O 
ASCII 
Value 76 73 71 72 84 87 69 73 71 72 84 

Plaintext L I G H T W E I G H T 
 
To check how both traditional and modified methods work 
for strings with repetitive letters, the phrase 
‘TALLAHASSEE’ is encrypted. The simulation results are 
shown in Table 17. 

 
Table 17: Comparison using repeated letters 

Traditional Polybius Square 
Plaintext T A L L A H A S S E E 
Cipher 
Text 44 11 31 31 11 23 11 43 43 15 15 

APSAlpS 
Plaintext T A L L A H A S S E E 
Key F L F L F L F L F L F 
ASCII 
Value 85 83 85 83 85 83 85 83 85 83 85 

Cipher 
Text 34 52 12 13 33 51 24 12 52 25 15 

 
Obvious patterns are evident for the encrypted values 
produced by using the traditional method wherein the 
repeating values 11 for ‘A,’ 31 for ‘L,’ ‘43’ for S, and 15 for 
‘E’ are observed several times. However, looking closely at 
the ciphertext produced by the APSAlpS, it is apparent that 
no two same plaintext values are encrypted identically to the 
traditional method. Also, taking out similar ciphertext codes 
from the modified technique does not necessarily equate to 
having the same plaintext values such that 12 could mean ‘L’ 

or ‘S,’ and 52 could mean ‘A’ or ‘S.’ The results of the 
modified method also show that similar plaintext values may 
have variating codes such that ‘S’ can be represented as either 
12 or 52, as against in the traditional method wherein the 
same characters share the same code. 

 
3.3 Evaluation Methods  

 
One way of predicting the value of the ciphertext is done 
using frequency analysis [48]. To test the output of the 
proposed method for frequency analysis, a given plaintext is 
encrypted and then submitted as input to an online 
digraphs-digits-only frequency analysis tool [49]. The 
following text was used for testing: 
 
“Ihavemyselffullconfidencethatifalldotheirdutyifnothingisne
glectedandifthebestarrangementsaremadeastheyarebeingmad
eweshallproveourselvesonceagainabletodefendourIslandhom
etorideoutthestormofwarandtooutlivethemenaceoftyrannyifn
ecessaryforyearsifnecessaryaloneAtanyratethatiswhatweareg
oingtotrytodoThatistheresolveofHisMajestysGovernmenteve
rymanofthemThatisthewillofParliamentandthenationTheBrit
ishEmpireandtheFrenchRepubliclinkedtogetherintheircausea
ndintheirneedwilldefendtothedeaththeirnativesoilaidingeach
otherlikegoodcomradestotheutmostoftheirstrengthEventhoug
hlargetractsofEuropeandmanyoldandfamousStateshavefallen
ormayfallintothegripoftheGestapoandalltheodiousapparatuso
fNaziruleweshallnotflagorfailWeshallgoontotheendweshallfi
ghtinFranceweshallfightontheseasandoceansweshallfightwit
hgrowingconfidenceandgrowingstrengthintheairweshalldefe
ndourIslandwhateverthecostmaybeweshallfightonthebeaches
weshallfightonthelandinggroundsweshallfightinthefieldsandi
nthestreetsweshallfightinthehillsweshallneversurrenderande
venifwhichIdonotforamomentbelievethisIslandoralargeparto
fitweresubjugatedandstarvingthenourEmpirebeyondtheseasa
rmedandguardedbytheBritishFleetwouldcarryonthestruggleu
ntilinGodsgoodtimetheNewWorldwithallitspowerandmightst
epsforthtotherescueandtheliberationoftheold” 
 
The modified method was also assessed by recording its 
execution time. A simple program was developed in an 
i7-7700HQ 2.80GHz 16GB RAM 4GB VRAM laptop 
computer and Python 3. 

 
4. RESULTS AND DISCUSSION 
 
Upon performing the evaluation methods, the simulation 
results showed that the APSAlpS offers more layers of 
security with the use of a secret key and dynamically 
generated matrices.  
 
The frequency analysis result of the encoded text using the 
traditional Polybius Square is presented in Table 18. Based 
on the findings, the top 10 digraphs 15, 44, 11, 33, 23, 24, 34, 
42, 31and 43 have the most frequency in usage. If these 
values are converted using the traditional method, the 
decrypted values would be E, T, A, N, H, I, O, R, L, S, 
respectively. The results follow the study of [50], which 
presented the most frequent letters used in the Latin alphabet, 
wherein the top 10 are the same as the findings. Simulation 
results prove that a monoalphabetic cipher such as the 
Polybius square is certainly susceptible to frequency analysis 
and, therefore, simple to break [8], [10], [14], [51]. 
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Table 18: Frequency analysis results using the traditional Polybius 
square 

Digraphs Frequency % 
15 169× 13.28% 
44 122× 9.58% 
11 107× 8.41% 
33 93× 7.31% 
23 87× 6.83% 
24 85× 6.68% 
34 85× 6.68% 
42 75× 5.89% 
31 73× 5.73% 
43 72× 5.66% 
14 58× 4.56% 
21 43× 3.38% 
22 41× 3.22% 
52 28× 2.2% 
45 26× 2.04% 
32 25× 1.96% 
13 22× 1.73% 
54 18× 1.41% 
51 15× 1.18% 
12 13× 1.02% 
35 13× 1.02% 
25 2× 0.16% 
55 1× 0.08% 

 
The frequency analysis result of the ciphertext produced by 
the modified Polybius Square is presented in Table 19. 
Findings show that there is a minimal disparity in the 
frequency of each digraph. This means that the use of the 
digraphs is almost equally distributed among themselves. 
Consequently, decrypting the encoded message through 
frequency analysis can be challenging and may take time as 
every digraph or code may represent a number of plaintext 
values. For example, the most frequent digraph 55 could 
mean any of the characters depending on the cycle of 
transformations the matrix had undergone. This, therefore, 
makes the modified Polybius Square not susceptible to 
frequency analysis. 
 

Table 19: APSAlpS frequency analysis result 
Digraphs Frequency % 

55 68× 5.34% 
53 66× 5.18% 
12 61× 4.79% 
45 61× 4.79% 
32 56× 4.4% 
23 54× 4.24% 
42 53× 4.16% 
25 53× 4.16% 
35 53× 4.16% 
31 53× 4.16% 
44 51× 4.01% 
51 51× 4.01% 
54 50× 3.93% 
41 50× 3.93% 
21 49× 3.85% 
43 49× 3.85% 
11 49× 3.85% 
52 48× 3.77% 
13 47× 3.69% 
14 45× 3.53% 
15 45× 3.53% 
22 44× 3.46% 
24 40× 3.14% 
34 39× 3.06% 
33 38× 2.99% 

 
In terms of the execution time of the modified method as 
compared to the traditional Polybius Square, results reveal 

that the former has higher execution time with 0.0031s as 
compared to the latter with 0.0005s. This finding can be 
attributed to the fact that the modified scheme generates a 
new matrix for every character to be encrypted. In contrast, 
the traditional technique only uses a static grid, hence 
requiring fewer processes done, and in turn, a lower 
execution time. The indexed simulation results for the 
execution time are shown in Table 20.  

 
Table 20: Execution time results 

String: MISSISSIPPI 
Length: 11 characters 
APSAlpS Key: US 
Traditional P.S. Execution Time 0.003192900000000165 s 
APSAlpS Execution Time 0.0005627999999999744 s 

 
5.  CONCLUSION AND RECOMMENDATION 
 
This study modifies the 5x5 Polybius square by dynamically 
shifting the elements in the grid determined through the keys’ 
ASCII code. Simulation results revealed that the proposed 
method is more secure against the unmodified Polybius 
cipher. Since the modification strengthens the cipher 
capability of the Polybius square, it is suggested that the 
modified cipher be used along with other lightweight 
cryptographic algorithms in increasing the security in IoT 
domains. 
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