

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3249

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse119932020.pdf

https://doi.org/10.30534/ijatcse/2020/119932020


ABSTRACT

This paper modifies the traditional Polybius square with a
5x5 grid through the introduction of a new dynamic
substitution-based matrix for ciphertext assignment. The
modification is done through the alteration of cell elements,
where the ASCII decimal code equivalent of the key is the
basis for the element positioning. The proposed enhanced
Polybius square called ASCII Code-based Polybius Square
Alphabet Sequencer (APSAlpS) is hoped to be used along
with other lightweight cryptographic algorithms classified as
block ciphers, stream ciphers, and hash functions in solving
constrains identified in IoT. The use of the modified Polybius
square along with other lightweight ciphers to establish a
better IoT security is recommended.

Key words: Cryptography, ciphers, IoT, modified Polybius
square

1. INTRODUCTION

The Internet of Things (IoT), as a novel paradigm in the
Information Technology arena, has gained a foothold in
today’s research trend as IoT plays an essential role in human
life. The inception of IoT leverages social works as tagging
technologies such as radio frequency identification (RFID)
and wireless sensor networks (WSN) to wit: wireless fidelity
(WiFi), Bluetooth, long-term evolution (LTE),
third-generation (3G), global system for mobile
communication (GSM), general packet radio service (GPRS),
near-field communication (NFC), Zigbee connections and
the likes, are now used to connect physical objects almost to
everything. With this, a boost in communication mediums
and the sharing of information is perceived. In general, IoT
interconnects physical objects and living things, bringing
both into the sphere of the cyber world. However, as the new
technology arises, constraints on the paradigm shift also
emerge. Factors such as data security, data integrity,
operating environment, communications security, and the
likes, hampers the optimal use of IoT. The identified
constraints have opened an avenue for a new field, the
Lightweight Cryptography. Lightweight ciphers generally
classified as block ciphers, hash functions, and stream
ciphers are implemented in IoT applications as software
implementation cost comes in handy. Further, the flexibility
of manufacturing and maintenance using lightweight ciphers
is made efficient [1]. Figure 1 shows the application of
lightweight cryptography in IoT obtained from [2].

As data protection and the privacy of users is known to be one
of the hindrances for wide-scale adoption of IoT [3]–[5],
various researchers lobby on the use of cryptography to
strengthen security [6], [7]. Cryptography [8], as a known
technique used in data communications security for a better
IoT implementation, deals with algorithms to ensure data
integrity, secured wireless communication systems, and other
security services where information transfer takes place
between different users [9]–[11]. The bottleneck for optimal
use of cryptography relies on the cipher technology used,
which varies depending on the problem the researcher
wanted to solve [8].

Figure 1: Application of lightweight cryptography in IoT

Algorithms under block ciphers such as AES, Blowfish,
3DES, RC5, and DES [12], along with hash functions and
stream ciphers generally called as lightweight ciphers are
identified as solutions to IoT constraints, are commonly used
to perform the job. However, the use of standalone
lightweight ciphers to secure data is not enough.
Hybridization of techniques is being used to provide more
reliable data and network security protection.

Various classical ciphers such as Railfence cipher [13], [14],
Polybius square cipher [15]–[19], Playfair cipher [20]–[22],
Permutation cipher [23], Homophonic substitution cipher
[24], [25], Hill cipher [26], Grille cipher [27], Four-square
cipher [23], Enigma machine cipher [23], Caesar cipher
[28]–[30], Base64 cipher [31]–[33], Affine cipher [23],
[34]–[36], and ADFGVX cipher [23], [37]–[39] to name
some, are being incorporated with block ciphers, among
others, to solve the constraints in IoT. Among the classical
ciphers, the Polybius Cipher, known as the Polybius square,
is identified as one of the commonly used methods for such
purpose [40]–[42]. However, the Polybius square has
tradeoffs and is easy to crack with frequency analysis due to
the simplicity of element distribution scheme in the grid [43].
The root cause of the problem is in the structure of how
digraphs are produced as ciphertext. Therefore, there is a

Jan Carlo T. Arroyo1, Allemar Jhone P. Delima2
1College of Computing Education, University of Mindanao, Davao City, Davao del Sur, Philippines

2College of Engineering, Technology and Management, Cebu Technological University-Barili Campus,
Cebu, Philippines

jancarlo_arroyo@umindanao.edu.ph1, allemarjpdjca@yahoo.com2

A Modified Polybius Cipher with a New Element-in-Grid

Sequencer

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3250

need to introduce a new digraph identification scheme; thus,
this study. The modified Polybius square is hoped to add
strength to the security, when combined with lightweight
ciphers, as a medium to establish more secure IoT systems.

2. RELATED LITERATURE

The domain of IoT spans from healthcare, smart cities,
connected cars, wearables, and smart homes, among others
[1]. Cryptography [10] plays a vital role in the
implementation of IoT. This obscuring technique is known to
protect data from various industries [44]–[47].
Communications security is ensured through the use of two
basic ciphers, the substitution [43] and transposition [35],
whose bottleneck for an optimal implementation relies on the
cipher algorithm used for encipherment and decipherment
process.

Polybius Cipher, being one of the commonly used cipher
techniques in the literature, is continuously being improved
for better security performance. The following subsections
are the modifications made on the Polybius square.

2.1 Embedding Data Crypted with Extended Shifting
Polybius Square Supporting Turkish Character Set

An extended Polybius Square presented in [15] works by
integrating Turkish characters in a 10x7 grid. The extended
version also introduced a dynamic matrix wherein elements
of a matrix shift values depending on a numeric value. The
study proposes unique substitution values every time the
matrix components shift. The extended Polybius matrix with
Turkish characters is presented in Table 1.

Table 1: Polybius square with Turkish characters
 01 02 03 04 05 06 07

01 A B C Ç D E F
02 G Ğ H I İ J K
03 L M N O Ö P R
04 S Ş T U Ü V Y
05 Z Q X W 1 2 3
06 4 5 6 7 8 9 0
07 . , : ; + - *
08 / ! “ # $ %
09 & = < > ? @ [
10] \ __ () { }

First, a shifting value is set to generate a new matrix, which is
used for encryption. For instance, the shift value is ‘0052’;
thus, a new grid is created, as shown in Table 2.

Table 2: Shifted Polybius square
 01 02 03 04 05 06 07

01 “ # $ % & = <
02 > ? @ [] \ _
03 () { } A B C
04 Ç D E F G Ğ H
05 I İ J K L M N
06 O Ö P R S Ş T
07 U Ü V Y Z Q X
08 W 1 2 3 4 5 6
09 7 8 9 0 . , :
10 ; + - * / !

To encrypt a value, each plaintext character is converted to its
corresponding ciphertext in a 4-digit format using the matrix.
For instance, ‘AZ GİT’ is converted into
‘030507051006040505020607’ as presented in Table 3. The

decryption process is done by dividing the ciphertext into
groups of 4-digit numbers and then matching each group to
the matrix.

Table 3: Encryption using shifting Polybius square
Plaintext A Z (space) G İ T

Ciphertext 0305 0705 1006 0405 0502 0607

The proposed method was successfully implemented in a
steganographic algorithm. Since ciphertext values generated
by the scheme can range from 0101 to 1007, these can be
applied to modify the least-significant bit (LSB) of an image
file to embed encrypted messages. Findings from the Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index
Measurement (SSIM) tests show that there are no obvious
alterations and distortions in the file.

2.2 Implementation of Nihilist Cipher Algorithm in
Securing Text Data with Md5 Verification

The use of a 5x5 Polybius square in encrypting messages
presented in [16] differs in the arrangement of the characters
from the traditional scheme. The study also proposed the use
of a key for increased security. Based on the example given in
Table 4, letters are arranged column-wise, from top to
bottom, then left to right.

Table 4: Polybius square using Nihilist cipher
 1 2 3 4 5
1 A F L Q V
2 B G M R W
3 C H N S X
4 D I O T Y
5 E K P U Z

To perform encryption, the plaintext and the key are
converted as ciphertext using the given Polybius matrix. Each
resulting digraph from the plaintext and key is summed
together to generate the final encrypted message. As an
example, the plaintext ‘THINGS’ is encoded using the secret
key ‘DEVICE’. The first character ‘T’ from the plaintext is
translated as 44, whilst the first character ‘D’ from the secret
key is translated as 41. Adding both digraphs, the ciphertext
for ‘T’ and ‘D’ becomes 85 (44+41=85). After converting
each of the characters, the final ciphertext value for the whole
plaintext is ‘858357755385,’ as shown in Table 5.

Table 5: Encryption using Nihilist cipher
Plaintext T H I N G S
Ciphertext 44 32 42 33 22 34
Key D E V I C E
Ciphertext 41 51 15 42 31 51
Final
Ciphertext 85 83 57 75 53 85

For decryption, the secret key must be provided. First, the key
is translated into ciphertext using the Polybius Square. Each
translated digraph is paired with the corresponding digraphs
from the ciphertext. To retrieve the plaintext, the digraphs
from the key are deducted from the digraphs of the ciphertext.
The process is repeated until it reaches the end of the
plaintext.

A test was performed to ensure data integrity using the MD5
hash function. Results show that despite encryption and
decryption processes, the intended message remained intact
and genuine.

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3251

3. METHODOLOGY

3.1 Traditional Polybius Square

The Polybius Cipher uses a square grid composed of 5 rows
and 5 columns. In this matrix, the letters of the English
alphabet are placed in alphabetical order from left to right and
top to bottom. Each cell in the matrix is identified according
to its relative index in the grid represented by the
combination of the row and column number, as shown in
Table 6.

Table 6: Traditional Polybius square matrix

 1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Since no key is needed for this scheme, encryption and
decryption using this technique are made easy. To encrypt a
message, each character from the string is located in the
matrix to retrieve its respective coordinate based on the value
of the intersection of row and columns. The accumulated
coordinate values will represent the ciphertext. For example,
encrypting the word ‘INTERNET’ results to
‘2433441542331544’ where the character ‘I’ is 24, ‘N’ is 33,
and so forth. The encryption result using the traditional
Polybius square is presented in Table 7.

Table 7: Encryption using traditional Polybius square

Plain Text I N T E R N E T
Position 1 2 3 4 5 6 7 8
Ciphertext 24 33 44 15 42 33 15 44

The decryption process is done in a reverse manner. Each
digraph is compared to the grid to retrieve its corresponding
plaintext value. For example, the encoded message
‘2433441542331544’ is translated as ‘INTERNET,’ as
shown in Table 8.

Table 8: Decryption using traditional Polybius square

Ciphertext 24 33 44 15 42 33 15 44
Position 1 2 3 4 5 6 7 8
Plain Text I N T E R N E T

3.2 Enhanced Polybius Square

The enhanced Polybius square called ASCII Code-based
Polybius Square Alphabet Sequencer (APSAlpS) uses the
traditional Polybius Square matrix composed of letters ‘a’ to
‘z.’ However, in this method, the use of a secret key is
required. With the key, the elements inside the matrix are
reorganized by shifting cells based on its ASCII decimal
values. A cell shifting is done for every plaintext character
encoded; thus, a new matrix is generated for each iteration.
Similar plaintext letters may not have the same ciphertext
value, thus ensuring that the encoded message generated by
the modified technique is always dynamic and, therefore,
more complicated to break using cryptanalysis.

For the APSAlpS to work, it is required to identify a plaintext
and a secret key. Every character in the plaintext is matched
with a character from the key based on its relative position.
The process is repeated until it reaches the last character of

the plaintext. Next, the ASCII decimal code value of each
character of the key is retrieved. The ASCII decimal code
value of the character serves as the basis to perform the
number of shifts required to reorder the elements in the
matrix. After every shift, the new matrix is used to retrieve
the equivalent ciphertext value. The message
‘LIGHTWEIGHT’ with the key ‘IOT’ and its relative ASCII
decimal codes is shown in Table 9.

Table 9: Plaintext and key with ASCII equivalent

Plaintext L I G H T W E I G H T
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

With the given values, the original matrix performs 76 shifts
to the right, as shown in Table 10 below. The new matrix is
used to retrieve the encoding value of the first character of the
plaintext wherein the character ‘C’ is encrypted as the value
24, as shown in Table 11.

Table 10: New matrix after 1st cell shift

 1 2 3 4 5
1 I/J K L M N
2 O P Q R S
3 T U V W X
4 Y Z A B C
5 D E F G H

Table 11: 1st character encryption using APSAlpS

Plaintext L I G H T W E I G H T
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

Cipher
Text 24

To encrypt the next character, a new matrix is generated
again by shifting the elements to the right 73 times. As a
result, the character ‘I’ is encoded as 31, as represented in
Tables 12 and 13.

Table 12: New matrix after 2nd cell shift

 1 2 3 4 5
1 T U V W X
2 Y Z A B C
3 D E F G H
4 I/J K L M N
5 O P Q R S

Table 13: 2nd character encryption using APSAlpS

Plaintext L I G H T W E I G H T
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

Cipher
Text 24 31

The procedure is reiterated up to the length of the plaintext.
The final encrypted value at the end of the process is now
regarded as ‘24 31 43 42 22 44 55 23 35 34 14’, as shown in
Table 14.

The variation in the encrypted values between the use of
traditional Polybius Square and the modified Polybius Square
using similar plaintexts is presented in Table 15. Based on the
results, it is apparent that the ciphertext generated by both
methods are completely different from one another. The table
also depicts that the common ciphertext codes 22, 23, 24, 31,
and 44 of both traditional and modified methods have
different values in the latter. This denotes that even if the

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3252

encryption values share the same code, they may not have
equivalent plaintext value, thus making the cipher difficult to
break using frequency analysis.

Table 14: Encrypted values using APSAlpS
Plaintext L I G H T W E I G H T
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

Cipher
Text 24 31 43 42 22 44 55 23 35 34 14

Table 15: Comparison between methods

Traditional Polybius Square
Plaintext L I G H T W E I G H T
Cipher
Text 31 24 22 23 44 52 15 24 22 23 44

APSAlpS
Plaintext L I G H T W E I G H T
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

Cipher
Text 24 31 43 42 22 44 55 23 35 34 14

The secret key is required for decrypting an encoded
message. Each digraph from ciphertext must be matched in
with a character from the key. The process is repeated until
the last digraph of the ciphertext is reached. Next, the ASCII
decimal code value of each character of the key is retrieved.
The retrieved ASCII decimal code value serves as the basis to
perform the number of shifts required to reorder the elements
in the matrix. After every shift, the new matrix is used to
retrieve the code equivalent for every digraph. The process is
repeated until all digraphs are converted to their respective
plaintext values. The encrypted message ‘24 31 43 42 22 44
55 23 35 34 14’ with the secret key ‘IOT’ and its
corresponding ASCII decimal codes is shown in Table 16.

Table 16: Decrypted values using APSAlpS

Ciphertext 24 31 43 42 22 44 55 23 35 34 14
Key I O T I O T I O T I O
ASCII
Value 76 73 71 72 84 87 69 73 71 72 84

Plaintext L I G H T W E I G H T

To check how both traditional and modified methods work
for strings with repetitive letters, the phrase
‘TALLAHASSEE’ is encrypted. The simulation results are
shown in Table 17.

Table 17: Comparison using repeated letters

Traditional Polybius Square
Plaintext T A L L A H A S S E E
Cipher
Text 44 11 31 31 11 23 11 43 43 15 15

APSAlpS
Plaintext T A L L A H A S S E E
Key F L F L F L F L F L F
ASCII
Value 85 83 85 83 85 83 85 83 85 83 85

Cipher
Text 34 52 12 13 33 51 24 12 52 25 15

Obvious patterns are evident for the encrypted values
produced by using the traditional method wherein the
repeating values 11 for ‘A,’ 31 for ‘L,’ ‘43’ for S, and 15 for
‘E’ are observed several times. However, looking closely at
the ciphertext produced by the APSAlpS, it is apparent that
no two same plaintext values are encrypted identically to the
traditional method. Also, taking out similar ciphertext codes
from the modified technique does not necessarily equate to
having the same plaintext values such that 12 could mean ‘L’

or ‘S,’ and 52 could mean ‘A’ or ‘S.’ The results of the
modified method also show that similar plaintext values may
have variating codes such that ‘S’ can be represented as either
12 or 52, as against in the traditional method wherein the
same characters share the same code.

3.3 Evaluation Methods

One way of predicting the value of the ciphertext is done
using frequency analysis [48]. To test the output of the
proposed method for frequency analysis, a given plaintext is
encrypted and then submitted as input to an online
digraphs-digits-only frequency analysis tool [49]. The
following text was used for testing:

“Ihavemyselffullconfidencethatifalldotheirdutyifnothingisne
glectedandifthebestarrangementsaremadeastheyarebeingmad
eweshallproveourselvesonceagainabletodefendourIslandhom
etorideoutthestormofwarandtooutlivethemenaceoftyrannyifn
ecessaryforyearsifnecessaryaloneAtanyratethatiswhatweareg
oingtotrytodoThatistheresolveofHisMajestysGovernmenteve
rymanofthemThatisthewillofParliamentandthenationTheBrit
ishEmpireandtheFrenchRepubliclinkedtogetherintheircausea
ndintheirneedwilldefendtothedeaththeirnativesoilaidingeach
otherlikegoodcomradestotheutmostoftheirstrengthEventhoug
hlargetractsofEuropeandmanyoldandfamousStateshavefallen
ormayfallintothegripoftheGestapoandalltheodiousapparatuso
fNaziruleweshallnotflagorfailWeshallgoontotheendweshallfi
ghtinFranceweshallfightontheseasandoceansweshallfightwit
hgrowingconfidenceandgrowingstrengthintheairweshalldefe
ndourIslandwhateverthecostmaybeweshallfightonthebeaches
weshallfightonthelandinggroundsweshallfightinthefieldsandi
nthestreetsweshallfightinthehillsweshallneversurrenderande
venifwhichIdonotforamomentbelievethisIslandoralargeparto
fitweresubjugatedandstarvingthenourEmpirebeyondtheseasa
rmedandguardedbytheBritishFleetwouldcarryonthestruggleu
ntilinGodsgoodtimetheNewWorldwithallitspowerandmightst
epsforthtotherescueandtheliberationoftheold”

The modified method was also assessed by recording its
execution time. A simple program was developed in an
i7-7700HQ 2.80GHz 16GB RAM 4GB VRAM laptop
computer and Python 3.

4. RESULTS AND DISCUSSION

Upon performing the evaluation methods, the simulation
results showed that the APSAlpS offers more layers of
security with the use of a secret key and dynamically
generated matrices.

The frequency analysis result of the encoded text using the
traditional Polybius Square is presented in Table 18. Based
on the findings, the top 10 digraphs 15, 44, 11, 33, 23, 24, 34,
42, 31and 43 have the most frequency in usage. If these
values are converted using the traditional method, the
decrypted values would be E, T, A, N, H, I, O, R, L, S,
respectively. The results follow the study of [50], which
presented the most frequent letters used in the Latin alphabet,
wherein the top 10 are the same as the findings. Simulation
results prove that a monoalphabetic cipher such as the
Polybius square is certainly susceptible to frequency analysis
and, therefore, simple to break [8], [10], [14], [51].

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3253

Table 18: Frequency analysis results using the traditional Polybius
square

Digraphs Frequency %
15 169× 13.28%
44 122× 9.58%
11 107× 8.41%
33 93× 7.31%
23 87× 6.83%
24 85× 6.68%
34 85× 6.68%
42 75× 5.89%
31 73× 5.73%
43 72× 5.66%
14 58× 4.56%
21 43× 3.38%
22 41× 3.22%
52 28× 2.2%
45 26× 2.04%
32 25× 1.96%
13 22× 1.73%
54 18× 1.41%
51 15× 1.18%
12 13× 1.02%
35 13× 1.02%
25 2× 0.16%
55 1× 0.08%

The frequency analysis result of the ciphertext produced by
the modified Polybius Square is presented in Table 19.
Findings show that there is a minimal disparity in the
frequency of each digraph. This means that the use of the
digraphs is almost equally distributed among themselves.
Consequently, decrypting the encoded message through
frequency analysis can be challenging and may take time as
every digraph or code may represent a number of plaintext
values. For example, the most frequent digraph 55 could
mean any of the characters depending on the cycle of
transformations the matrix had undergone. This, therefore,
makes the modified Polybius Square not susceptible to
frequency analysis.

Table 19: APSAlpS frequency analysis result
Digraphs Frequency %

55 68× 5.34%
53 66× 5.18%
12 61× 4.79%
45 61× 4.79%
32 56× 4.4%
23 54× 4.24%
42 53× 4.16%
25 53× 4.16%
35 53× 4.16%
31 53× 4.16%
44 51× 4.01%
51 51× 4.01%
54 50× 3.93%
41 50× 3.93%
21 49× 3.85%
43 49× 3.85%
11 49× 3.85%
52 48× 3.77%
13 47× 3.69%
14 45× 3.53%
15 45× 3.53%
22 44× 3.46%
24 40× 3.14%
34 39× 3.06%
33 38× 2.99%

In terms of the execution time of the modified method as
compared to the traditional Polybius Square, results reveal

that the former has higher execution time with 0.0031s as
compared to the latter with 0.0005s. This finding can be
attributed to the fact that the modified scheme generates a
new matrix for every character to be encrypted. In contrast,
the traditional technique only uses a static grid, hence
requiring fewer processes done, and in turn, a lower
execution time. The indexed simulation results for the
execution time are shown in Table 20.

Table 20: Execution time results

String: MISSISSIPPI
Length: 11 characters
APSAlpS Key: US
Traditional P.S. Execution Time 0.003192900000000165 s
APSAlpS Execution Time 0.0005627999999999744 s

5. CONCLUSION AND RECOMMENDATION

This study modifies the 5x5 Polybius square by dynamically
shifting the elements in the grid determined through the keys’
ASCII code. Simulation results revealed that the proposed
method is more secure against the unmodified Polybius
cipher. Since the modification strengthens the cipher
capability of the Polybius square, it is suggested that the
modified cipher be used along with other lightweight
cryptographic algorithms in increasing the security in IoT
domains.

REFERENCES

[1] D. Sehrawat and N. S. Gill, “Lightweight Block
Ciphers for IoT based applications: A Review,” Int.
J. Appl. Eng. Res., vol. 13, no. 5, pp. 2258–2270,
2018.

[2] O. Toshihiko, “Lightweight cryptography applicable
to various IoT devices,” NEC Tech. J., vol. 12, no. 1,
pp. 67–71, 2017.

[3] Q. Xu, P. Ren, H. Song, and Q. Du, “Security
enhancement for IoT communications exposed to
eavesdroppers with uncertain locations,” IEEE
Access, vol. 4, pp. 2840–2853, 2016.
https://doi.org/10.1109/ACCESS.2016.2575863

[4] A. Kaur, “Internet of Things (IoT): Security and
Privacy Concerns,” Int. J. Eng. Sci. Res. Technol.,
vol. 5, no. 5, pp. 161–165, 2016.

[5] Kan-Siew-Leong, P. L. R. Chze, A. K. Wee, E. Sim,
and K. E. May, “A multi-factors security key
generation mechanism for IoT,” in International
Conference on Ubiquitous and Future Networks,
ICUFN, 2017, pp. 1019–1021.
https://doi.org/10.1109/ICUFN.2017.7993953

[6] H. Tao, M. Z. A. Bhuiyan, A. N. Abdalla, M. M.
Hassan, J. M. Zain, and T. Hayajneh, “Secured Data
Collection with Hardware-Based Ciphers for
IoT-Based Healthcare,” IEEE Internet Things J., vol.
6, no. 1, pp. 410–420, 2019.
https://doi.org/10.1109/JIOT.2018.2854714

[7] H. Shin, H. K. Lee, H. Y. Cha, S. W. Heo, and H.
Kim, “IoT Security Issues and Light Weight Block
Cipher,” in 1st International Conference on Artificial
Intelligence in Information and Communication,
2019, pp. 381–384.

[8] W. Stallings, Cryptography and Network Security
Principles and Practices. Prentice Hall, 2015.

[9] B. N. Rao, D. Tejaswi, K. A. Varshini, K. P. Shankar,

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3254

and B. Prasanth, “Design of modified AES algorithm
for data security,” Int. J. Technol. Res. Eng., vol. 4,
no. 8, pp. 1289–1292, 2017.

[10] O. Reyad, “Cryptography and Data Security: An
Introduction,” 2018.

[11] S. N. Kumar, “Review on Network Security and
Cryptography,” Int. J. Adv. Res. Comput. Sci. Softw.
Eng., vol. 8, no. 6, p. 21, 2018.

[12] A. Abd and S. Al-Janabi, “Classification and
Identification of Classical Cipher Type Using
Artificial Neural Networks,” J. Eng. Appl. Sci., vol.
14, no. 11, pp. 3549–3556, 2019.

[13] A. Banerjee, M. Hasan, and H. Kafle, “Secure
Cryptosystem Using Randomized Rail Fence Cipher
for Mobile Devices,” in Intelligent Computing -
Proceedings of the Computing Conference, 2019, pp.
737–750.

[14] A. P. U. Siahaan, “Rail Fence Cryptography in
Securing Information,” Int. J. Sci. Eng. Res., vol. 7,
no. 7, pp. 535–538, 2016.

[15] H. B. Macit, A. Koyun, and M. E. Yüksel,
“Embedding Data Crypted With Extended Shifting
Polybius Square Supporting Turkish Character Set,”
BEU J. Sci., vol. 8, no. 1, pp. 234–242, 2019.
https://doi.org/10.17798/bitlisfen.455126

[16] E. V. Haryannto, M. Zulfadly, Daifiria, M. B. Akbar,
and I. Lazuly, “Implementation of Nihilist Cipher
Algorithm in Securing Text Data with Md5
Verification,” J. Phys. Conf. Ser., vol. 1361, no.
012020, 2019.

[17] G. Manikandan, P. Rajendiran, R. Balakrishnan, and
S. Thangaselvan, “A Modified Polybius Square
Based Approach for Enhancing Data Security,” Int.
J. Pure Appl. Math., vol. 119, no. 12, pp.
13317–13324, 2018.

[18] M. Maity, “A Modified Version of Polybius Cipher
Using Magic Square and Western Music Notes,” Int.
J. Technol. Res. Eng., vol. 1, no. 10, pp. 1117–1119,
2014.

[19] C. Kumar, S. Dutta, and S. Chakraborty, “A Hybrid
Polybius-Playfair Music Cipher A Hybrid
Polybius-Playfair Music Cipher,” Int. J. Multimed.
Ubiquitous Eng., vol. 10, no. 8, pp. 187–198, 2015.

[20] R. Deepthi, “A Survey Paper on Playfair Cipher and
its Variants,” Int. Res. J. Eng. Technol., vol. 4, no. 4,
pp. 2607–2610, 2017.
https://doi.org/10.14257/ijmue.2015.10.8.19

[21] M. Syahrizal, M. Murdani, S. D. Nasution, M.
Mesran, R. Rahim, and A. P. U. Siahaan, “Modified
Playfair Cipher Using Random Key Linear
Congruent Method,” in International Seminar:
Research, Technology and Culture, 2017.

[22] R. Rahim and A. Ikhwan, “Cryptography Technique
with Modular Multiplication Block Cipher and
Playfair Cipher,” Int. J. Sci. Res. Sci. Technol., vol. 2,
no. 6, pp. 71–78, 2016.

[23] M. S. Hossain Biswas et al., “A systematic study on
classical cryptographic cypher in order to design a
smallest cipher,” Int. J. Sci. Res. Publ., vol. 9, no. 12,
pp. 507–11, 2019.

[24] M. Shumay and G. Srivastava, “PixSel: Images as
book cipher keys an efficient implementation using
partial homophonic substitution ciphers,” Int. J.
Electron. Telecommun., vol. 64, no. 2, pp. 151–158,

2018.
[25] G. Zhong, “Cryptanalysis of Homophonic

Substitution Cipher Using Hidden Markov Models,”
2016.

[26] P. E. Coggins and T. Glatzer, “An Algorithm for a
Matrix-Based Enigma Encoder from a Variation of
the Hill Cipher as an Application of 2 × 2 Matrices,”
Primus, vol. 30, no. 1, 2020.

[27] J. Liu et al., “The Reincarnation of Grille Cipher: A
Generative Approach,” Cryptogr. Secur., pp. 1–27,
2018.

[28] A. Singh and S. Sharma, “Enhancing Data Security
in Cloud Using Split Algorithm, Caesar Cipher, and
Vigenere Cipher, Homomorphism Encryption
Scheme,” in Emerging Trends in Expert Applications
and Security, 2019, vol. 841, pp. 157–166.
https://doi.org/10.1007/978-981-13-2285-3_20

[29] I. Gunawan, Sumarno, H. S. Tambunan, E. Irawan,
H. Qurniawan, and D. Hartama, “Combination of
Caesar Cipher Algorithm and Rivest Shamir
Adleman Algorithm for Securing Document Files
and Text Messages,” J. Phys. Conf. Ser., vol. 1255,
2019.

[30] D. Gautam, C. Agrawal, P. Sharma, M. Mehta, and P.
Saini, “An Enhanced Cipher Technique Using
Vigenere and Modified Caesar Cipher,” in 2nd
International Conference on Trends in Electronics
and Informatics, ICOEI 2018, 2018.
https://doi.org/10.1109/ICOEI.2018.8553910

[31] F. Anwar, E. H. Rachmawanto, C. A. Sari, and de
Rosal Ignatius Moses Setiadi, “StegoCrypt Scheme
using LSB-AES Base64,” in International
Conference on Information and Communications
Technology, ICOIACT 2019, 2019, pp. 85–90.

[32] A. R. Pathak, S. Deshpande, and M. Panchal, “A
Secure Framework for File Encryption Using Base64
Encoding,” in Computing and Network
Sustainability, vol. 75, Springer Singapore, 2019, pp.
359–366.

[33] R. Rahim, S. Sumarno, M. T. Multazam, S. Thamrin,
and S. H. Sumantri, “Combination Base64 and
GOST algorithm for security process,” J. Phys. Conf.
Ser., vol. 1402, 2019.
https://doi.org/10.1088/1742-6596/1402/6/066054

[34] M. Maxrizal and B. D. Aniska Prayanti, “Application
of Rectangular Matrices: Affine Cipher Using
Asymmetric Keys,” CAUCHY –Jurnal Mat. Murni
dan Apl., vol. 5, no. 4, pp. 181–185, 2019.

[35] T. M. Aung and N. N. Hla, “A Complex
Polyalphabetic Cipher Technique Myanmar
Polyalphabetic Cipher,” in 2019 International
Conference on Computer Communication and
Informatics, ICCCI 2019, 2019, pp. 1–9.

[36] O. Laia, E. M. Zamzami, Sutarman, F. G. N. Larosa,
and A. Gea, “Application of Linear Congruent
Generator in Affine Cipher Algorithm to Produce
Dynamic Encryption,” J. Phys. Conf. Ser., vol. 1361,
no. 1, pp. 1–6, 2019.

[37] I. B. Venkateswarlu and J. Kakarla, “Password
security by encryption using an extended ADFGVX
cipher,” Int. J. Inf. Comput. Secur., vol. 11, no. 4–5,
pp. 510–523, 2019.
https://doi.org/10.1504/IJICS.2019.101938

[38] R. Mahendran and K. Mani, “Generation of Key

Jan Carlo T. Arroyo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3249 – 3255

3255

Matrix for Hill Cipher Encryption Using Classical
Cipher,” 2nd World Congr. Comput. Commun.
Technol. WCCCT 2017, pp. 51–54, 2017.

[39] G. Lasry, I. Niebel, N. Kopal, and A. Wacker,
“Deciphering ADFGVX messages from the Eastern
Front of World War I,” Cryptologia, vol. 41, no. 2,
pp. 101–136, 2017.
https://doi.org/10.1080/01611194.2016.1169461

[40] P. Kumar and S. B. Rana, “Development of modified
AES algorithm for data security,” Optik (Stuttg)., vol.
127, no. 4, pp. 2341–2345, 2016.

[41] J. S. Prasath, U. Ramachandraiah, and G.
Muthukumaran, “Modified Hardware Security
Algorithms for Process Industries Using Internet of
Things,” J. Appl. Secur. Res., pp. 1–14, 2020.

[42] L. R and K. M, “Enhancing the security of AES
through small scale confusion operations for data
communication,” Microprocess. Microsyst., vol. 75,
p. 103041, 2020.

[43] F. Patel and M. Farik, “A New Substitution Cipher -
Random-X,” Int. J. Sci. Technol. Res., vol. 5, no. 11,
pp. 125–128, 2015.

[44] K. Al Harthy, F. Al Shuhaimi, and K. K. J. Al
Ismaily, “The upcoming Blockchain adoption in
Higher-education: Requirements and process,” in 4th
MEC International Conference on Big Data and
Smart City, ICBDSC 2019, 2019, pp. 1–5.
https://doi.org/10.1109/ICBDSC.2019.8645599

[45] P. Kuppuswamy, R. Banu, and N. Rekha,
“Preventing and securing data from cyber crime
using new authentication method based on block
cipher scheme,” in 2nd International Conference on
Anti-Cyber Crimes, ICACC 2017, 2017, pp.
113–117.

[46] R. Beck, M. Avital, M. Rossi, and J. B. Thatcher,
“Blockchain Technology in Business and
Information Systems Research,” Bus. Inf. Syst. Eng.,
vol. 59, no. 6, pp. 381–384, 2017.
https://doi.org/10.1007/s12599-017-0505-1

[47] S. Cho, Y. Jeong, and C. Oh, “An efficient
cryptography for healthcare data in the cloud
environment,” J. Converg. Inf. Technol., vol. 8, no. 3,
pp. 63–69, 2018.

[48] J. F. Dooley, History of Cryptography and
Cryptanalysis. 2018.

[49] “Frequency Analysis Tool,” Retrieved from
https://www.dcode.fr/frequency-analysis. .

[50] G. Grigas and A. Juškevičienė, “Letter Frequency
Analysis of Languages Using Latin Alphabet,” Int.
Linguist. Res., vol. 1, no. 1, pp. 18–31, 2018.
https://doi.org/10.30560/ilr.v1n1p18

[51] D. Kahn, Codebreakers. Macmillan and Sons, 1967.

