
Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1678

ABSTRACT

We target the problem of software effort estimation from a

classification perspective. Our main goal is to build a

classifier that can predict the required effort for a new project

and assign it into one of the four classes: small,

small-medium, medium-large, and large. A criterion is

proposed for the aforementioned categorization and based on

the amount of required effort. We study data sets that are

based on three different categories: function points-based data

sets, COCOMO-based data sets, and project

characteristics-based data sets. Feature sets are prepared and

fed to the multilayer perceptron (MLP) neural network

algorithm. A hold-out test is implemented and ROC curve is

used as a measure of the performance of the algorithm. In

addition, we identify the important features for building the

classification models across various data sets. Generally,

MLP shows good performance across the six data sets.

Moreover, there is a stability of performance within each

category of data sets or across different categories with no

dramatic differences in results. However, the performance of

MLP seems to decrease with data sets that are based on

project characteristics.

Key words: Software effort estimation, multilayer

perceptron, neural network, function points, COCOMO

1. INTRODUCTION

A successful software project is a project that meets its

objectives, desired budget, and scheduled deadline.

According to the Standish Group International, only 29% of

projects in the year 2015 were considered successful with the

rest of projects being failed or cancelled [1]. In a study of

Oxford’s university, it was shown that 66% of large software

projects overrun scheduled budget and 33% of projects are

over schedule [2-3].

A key to success is proper estimation of the required effort,

resources, time, and the cost for carrying out the project.

Among the aforementioned, accurate effort estimation is

crucial as it helps in resources allocation and good

management of quality and budget. Overestimating the

required effort and hence, the duration and cost of the project,

may result on a company losing its contracts or wasting its

resources [4], whereas underestimation may result on

understaffing problem, having a low quality product, setting a

tight schedule, and losing money [5].

A variety of software estimation techniques have been

proposed in the literature for supporting project managers in

estimating effort. Generally, estimation techniques analyze a

new project’s data and compare it to historical data sets of

previous projects containing measurements of relevant

metrics and the related effort [6]. Overall, software estimation

techniques are based on three main approaches: 1) expert

judgment by analogy, 2) formal models such as function

points analysis and Constructive Cost Model (COCOMO),

and 3) machine learning approaches.

Among the aforementioned approaches, machine learning

approaches attracted large attention. They include tree-based

models [7-11], ensemble methods [4], [9], and nonlinear

methods such as neural networks [4],[9],[12]. The main aim is

to predict the exact value of the required effort for a new

software project, a regression problem. Machine learning

algorithms proved to be useful for this problem.

In this paper, we target this problem but from a classification

perspective rather than a regression perspective. The aim is to

assign a new project’s required effort into one of the four

classes: small, small-medium, medium-large, and large,

depending on the amount of the required effort for this

project. For this purpose, we examine the performance of

multilayer perceptron (MLP) classification algorithm on three

different categories: function points-based data sets,

COCOMO-based data sets, and project characteristics-based

data sets. The MLP is chosen as it has proved to be successful

within this domain.

We believe that this classification is useful in the initial

planning stage of the project to give a general indication of the

amount of effort and hence, the duration and resources

required of the new project. If the project is approved and

within the constraints of the stakeholder, it is taken to another

Software Effort Classification with Multilayer Perceptron Neural Networks

Ahmed Fawzi Otoom1, Alaa Alzaben2, Razan Tlailan 3, Maen Hammad 4
1Department of Software Engineering, The Hashemite University, Jordan, aotoom@hu.edu.jo

2 Department of Software Engineering, The Hashemite University, Jordan, Alaaalzaben1995@itc.hu.edu.jo
3 Department of Software Engineering, The Hashemite University, Jordan, Razan94@itc.hu.edu.jo
4 Department of Software Engineering, The Hashemite University, Jordan, mhammad@hu.edu.jo

 ISSN 2278-3091

Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse119922020.pdf

https://doi.org/10.30534/ijatcse/2020/119922020

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse119922020.pdf
https://doi.org/10.30534/ijatcse/2020/119922020

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1679

stage of detailed planning and detailed estimation. The

research contributions of this paper can be summarized as

follows:

 Analyzing six software effort data sets of three different

categories: function points-based data sets,

COCOMO-based data sets, and project

characteristics-based data sets.

 Categorization of software effort into four predefined

classes: small, small-medium, medium-large, and large.

 Building a classifier with multilayer perceptron (MLP)

neural network algorithm and analyzing its classification

results on three different categories of data sets.

 Identification of the important features in building the

classification models and for each category of the data

sets.

The rest of this paper is organized as follows: in section 2, we

discuss the related work. Section 3 presents the approach. In

section 4, we discuss the results. Finally, section 5 concludes

our work and suggests future work.

2. RELATED WORK

The area of software effort estimation has gained attention

from researchers’ worldwide because of its importance in the

planning stage of the software project management lifecycle.

The first approach for estimating software development is

expert judgment by analogy approach. In this approach, an

expert in the domain of the project applies a prior experience

for estimating the required effort of a new project. A Delphi

technique can also applied where the effort estimation is

decided by a set of independent experts and the median of

these estimates can be used as the final effort [6].

In recent years, there has been a focus on other techniques for

effort estimation such as Function Points’ Analysis [13] and

Constructive Cost Models [14-15]. In function points’

analysis, the size of a new project is calculated in function

points (FP) and as a multiplication between two terms: UFP

and TCF. UFP refers to unadjusted function points and is

calculated based on metric assigns complexity to five

components of the product (inputs, outputs, inquires, master

files, and interfaces). The other term, TCF refers to technical

complexity factor and it assigns complexities to fourteen

factors that are related to the performance, maintainability and

other issues of the system. Once the size in FPs of the new

product is calculated, the estimation of the effort is carried out

and based on historical data sets [16].

Another widely applied method for software effort estimation

is Intermediate Constructive Cost Model (COCOMO). Effort

is calculated based on the development mode of the project

and a set of effort multipliers that are assessed on a specific

metric [16]. The COCOMO model is flexible and applicable

to different types of project [17].

More recently, there has been a focus on the application of

machine learning techniques for the purpose of predicting the

effort of a new project. These techniques include tree-based

models [7-11], ensemble methods [4],[9], and nonlinear

methods such as neural networks [4],[9],[12].

Tree-based models have attracted attention from researchers

for estimating software effort. For example, the authors in [7]

compared the effort estimation performance of decision trees,

or Classification And Regression Trees (CART), and the

performance of decision tree forest, or random forest. The two

algorithms are examined on ISBSG and Desharnais data sets,

with random forest outperforming the performance of CART.

A similar approach was implemented by the authors in [11]

with an examination on higher number of data sets that

include: ISBSG, COCOMO, Tukutuku, Desharnais, and

Albrecht. Two techniques are used: random forests and

regression trees. The two techniques seem to perform well on

the data sets with random forests performance outperforming

that of regression trees on the five data sets.

Within this context, there has been a focus on another type of

trees, M5P trees. M5P implements both regression and model

trees. For example, the authors in [9] studied the performance

of M5P trees on two data sets NASA and Desharnais. It

performs well with comparable results with other regression

methods. However, when the algorithm is integrated within a

bagging algorithm, it provided the highest performance

results on the NASA data set. In the work of [10], M5P was

among the best two algorithms when tested on COCOMO’81

data set.

The aforementioned bagging algorithm, in [9], is a type of

ensemble classification algorithms which have been

implemented widely for software effort estimation. For

example, the authors in [4] compared the performance of

single learners (MLP, RBF and regression tress) and

ensembles learners that include bagging and random trees.

Bagging with MLP seems to be among the best classifiers

when tested on a number of data sets from PROMISE and the

ISBSG data set. In [10], a voting approach for combination of

learners is applied on three data sets with COCOMO related

data. The finding indicates no enhancement of multiple

learners’ performance compared to that of single learners’

performance. On other hand, neural networks models have

got a lot of popularity within this field. For example, the

authors in [12] tested the performance of multilayer

perceptron (MLP) algorithm on Desharnais data set and

compared it with other algorithms that include linear

regression model, k-nearest neighbor, and support vector

machine for the purpose of software effort estimation. The

dimensionality of the Desharnais data set is reduced based on

Pearson correlation approach. The reduced data is then fed to

the classifiers. MLP provided the best performance results. In

the works of [4] and [9], MLP was among the best algorithms

when tested on different software estimation data sets.

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1680

Moreover, in the work of [18], MLP proved successful when

experimented on the COCOMO’81 data set with low relative

error when compared to the actual effort that is calculated

with COCOMO II. Also, MLP has proved successful of the

same aforementioned data set in the work of [19].

3. THE APPROACH

The proposed approach consists of three main stages: data

collection, data preparation, and classification.

3.1 Date Collection

We use six well-known software effort estimation data sets.

Three of these data sets are from PROMISE software

engineering repository [20]: COCOMO’81, COCOMO

NASA 2, and Desharnais. The other three data sets are:

Albrecht [21], China [21] and ISBSG data set. We divide the

data sets into three categories depending on the measurements

of different metrics: function points-based data sets,

COCOMO-based data sets, and project characteristics-based

data sets. Albrecht and China data sets are function

points-based data sets. They describe projects based on

function points’ related information. Albrecht data set

presents data related to 24 projects with 7 features describing

numerical numbers in relation to number of files, inputs,

outputs, inquiries and other information. China data set

expresses 499 projects with similar features to that of

Albrecht but with addition of other features that are related to

resources, duration, and numbers of changes, added and

modified files, ending up in 18 features.

COCOMO’81 and COCOMO NASA 2 data sets are

COCOMO-based data sets that characterize projects based on

COCOMO multipliers. COCOMO’81 data set presents data

related to 63 projects with effort measured in calendar months

of 152 hours. The data set is represented with 16 features that

reflect 15 COCOMO multipliers and the lines of code (LOC)

feature. The COCOMO NASA 2 presents information for 93

NASA projects from different centers with effort measured in

calendar months of 152 hours. The data set is represented with

23 features that reflect 15 COCOMO multipliers and other

features related to development mode, category of

application, year of development, and other information.

Desharnais and ISBSG data sets are project

characteristics-based data sets that depend on different

characteristics of the projects. Desharnais data set describes

81 projects with 11 features that are related to team and

manger experience, language used, length of the project and

other information. The ISBSG data set is one of the popular

data sets in this domain. We use the ISBSG data set Release

12. It presents variety of information in relation to

organization type, application type, development platform,

productivity, schedule features, effort information and others

with a total of 69 features.

3.2 Date Preparation

After analyzing the data sets, data preparation is carried out as

follows:

 Albrecht data set: the feature RawFPCounts is omitted as

there is another feature AdjFP which reflects very

similar information, to end up with 6 features.

 China data set: the following features are omitted:

project ID, development type as it has only one value,

and N-effort as it reflects very similar information to

effort, to end up with 15 features.

 COCOMO’81 data set: no modification to the original

data set.

 COCOMO NASA 2 data set: the following features are

omitted: project ID, project name, and year of

development, to end up with 20 features.

 Desharnais data set: the project ID is deleted to end up

with 10 features.

 ISBSG: we studied this data set and consulted software

engineering experts in regard to the important features

that have influence on the effort, to end up with the

following features: data quality rating, industry sector,

organization type, application type, development type,

language type, functional size, FP standard, and the used

methodology. For the projects with too many missing

values, they are excluded from the data set, to end up

with 2294 projects and a dimensional space of 10

dimensions (features).

Table 1 shows a summary of the data sets before and after

preparation. Moreover, tables (2-7) show a short description

of the features in each data set.

Table 1: Data sets before and after preparation

Category Data set # Features # Instances

before after before after

Function-

points

based data

sets

Albrecht 7 6 24 24

China 18 15 499 499

COCOMO

–based

data sets

COCOMO’81 16 16 63 63

COCOMO

NASA 2

23 20 93 93

Project

characteris

tics-based

data sets

Desharnais 11 10 81 81

ISBSG 69 10 6009 2294

Table 2: Albrecht data set

Feature Description

Input Function points of input

Output Function points of output

Inquiry Function points of external enquiry

File Function points of internal logical files

FPAdj Normalized Adjusted function points

AdjFP Adjusted function points

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1681

Table 3: China data set

Feature Description

AFP Adjusted Function points (FP)

Input, output, inquiry,

file
Description in Table 2

Interface FPs for external interface added

Added FPs of added function

Changed FPs of changed function

Deleted FPs of deleted function

PDR_AFP Productivity delivery rate – AFP

PDR_UFP Productivity delivery rate –

unadjusted FP

NPDR_AFP Normalized Productivity delivery

rate – AFP

NPDU_UFP Normalized PDR – unadjusted FP

Resource Team type

Duration Duration of the project

Table 4: COCOMO'81 data set

Feature Description

rely Required software reliability multiplier

data Database size multiplier

cplx Process complexity multiplier

time Time constraint for CPU multiplier

stor Main memory constraint multiplier

virt Machine volatility multiplier

turn Turnaround time multiplier

acap Analysts capability multiplier

aexp Application experience multiplier

pcap Programmer capability multiplier

vexp Virtual machine experience multiplier

lexp Language experience multiplier

modp Modern programming practices multiplier

tool Use of software tools multiplier

sced Schedule constraint multiplier

loc Lines of code

Table 5: COCOMO NASA2 data set

Feature Description

cagetory_of_application

(category)
Application type

flight_or_ground_system

(system)

A flight or a ground

system

which_nasa_center (center) The NASA center

developmen_mode (dev_mode) Mode: organic,

embedded or

semidetached

The COCOMO 15 multipliers Description in Table 4

equivphyskloc_real (Kloc) Kilo Lines of code

Table 6: Desharnais data set

Feature Description

TeamExp Team experience in years

ManagerExp Manager’s experience in years

YearEnd Year of completion

Length Length of project

Transactions Count of basic logical transactions

Entities The number of entities in the systems

data model

PointsAdjust Size of project measured in adjusted

function points

Envergure Function points complexity adjustment

factor

PointsNonAjust Unadjusted FP

Langage The used programming language

Table 7: ISBSG data set

Feature Description

rating Rating of the quality of data

Sector The sector for the application

Organisation_Type

(Org_type)

The type of the organization that

submitted the project

Application_Type

(App_type)

The type of the application

being addressed by the projects

Development_Type

(Dev_type)
Primary development platform

Development_Platform

(Dev_plat)

The number of entities in the

systems data model

Language_Type

(lang_type)
The language type

Functional_Size (size) Unadjusted FP

Standard The used function size metric

Methodology The used methodology

For each data set, we assign class labels as follows: first, we

calculate the minimum, maximum, and median values of the

effort across all projects, we refer to it as MED. Then, we

calculate the median between the minimum value of the effort

and MED, we refer to it as M1. After that, we calculate the

median between MED and the maximum value of the effort,

we refer to as M2. The effort classes are assigned as follows:

𝐸𝑓𝑓𝑜𝑟𝑡

= {

 𝑠𝑚𝑎𝑙𝑙, 𝑚𝑖𝑛 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀1
 𝑠𝑚𝑙 − 𝑚𝑒𝑑, 𝑀1 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀𝐸𝐷
𝑚𝑒𝑑 − 𝑙𝑟𝑔, 𝑀𝐸𝐷 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀2
 𝑙𝑎𝑟𝑔𝑒, 𝑀2 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 ≤ 𝑚𝑎𝑥

}
(1)

Where sml-med refers to small-medium category, and med-lrg

refers to medium-large category. The number of instances of

each class and across the six data sets is illustrated in table 8.

Table 8: Number of instances across classes

Data set small sml-

med

med-

lrg

large Total

Albrecht 7 5 7 5 24

China 126 124 124 125 499

COCOMO’81 17 15 16 15 63

COCOMO

NASA 2 24 23 23 23 93

Desharnais 21 26 14 20 81

isbsg 668 351 335 940 2294

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1682

3.3 Classification

Once the feature sets are prepared, they are fed into an MLP

neural network for supervised learning and classification.

MLP is chosen as it proved to be successful with this domain

[4],[9],[12], [18], [19] and other research areas [22-23]. An

MLP is a class of feedforward artificial neural network

(ANN) that consists of a network of neurons arranged in three

layers: input layer, a hidden layer(s), and an output layer.

Each neuron processes its inputs and generates one output

value using a transfer function that is transmitted to the

neurons in the subsequent layer [6],[24].

The output of hidden neuron i is calculated by processing the

weighted inputs and its bias term 𝑏𝑖
(1)

 as follows

 ℎ𝑖 = 𝑓(1) (𝑏𝑖
(1)

+ ∑ 𝑊𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (2)

Where𝑊𝑖𝑗 is the weight connecting input j to hidden unit i.

For the output layer, it is calculated as follows

 𝑧 = 𝑓(2) (𝑏(2) + ∑ 𝑣𝑗ℎ𝑗

𝑛ℎ

𝑗=1

) (3)

Where nh is the number of hidden neurons and vj is the

weight connecting hidden unit j to the output layer [6],[24].

Figure 1 shows an MLP neural network example for one of

the studied data sets, Desharnais. The data feeds forward from

the input layer through the hidden layer to the output layer.

From this figure, we can notice that the input layer consists of

ten unites, excluding the bias unit. There is also one hidden

layer with two units. Moreover, there is a dependent variable,

effort, in the output layer, with four units corresponding to the

four classes. The hidden layer transfer function in this

example, and for other data sets, is Hyperbolic Tangent

function. It links the weighted sums of units in the hidden

layer to the values of units in the output layer. For the output

layer, the transfer function is Softmax.

For validation, we run holdout test, where almost 2/3 of the

data is used for training the classifier and building the

classification model. Then, the rest of the data is tested where

the model predicted samples are compared with the original

ones and the accuracy is calculated as follows:

Figure 1: MLP neural network example

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1683

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑚𝑎𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(4)

For further analysis of the data, we present the receiver

operating characteristics (ROC) curves across the six data

sets. ROC curves feature true positive rate (sensitivity) on the

y-axis and false positive rate (1-specifity) on the x-axis.

Moreover, we illustrate the confusion matrices associated

with the MLP performance on each data set. In these matrices,

the rows represent the ground truth classes and the columns

represent the predicted classes. The cells blue-levels visually

encode the performance percentages from 0%=pale blue to

100%=dark blue.

4. RESULTS AND ANALYSIS

Experiments are conducted to evaluate the performance of

MLP on the six data sets. We present the experiments’ results

in terms of accuracy, ROC curve, and confusion matrix. We

discuss results based on the three categories of data sets. Table

9 presents the accuracy results across the three categories.

Moreover, figure 2 illustrates the ROC curves for various data

sets.

Table 9: Accuracy results across different data sets

Category Data set Accuracy(%)

Function-points

based data sets
Albrecht 83.3

China 89.7

COCOMO-based

data sets
COCOMO’81 76.5

COCOMO

NASA 2

85.7

Project

characteristics-based

data sets

Desharnais 70.0

ISBSG 61.4

4.1 Function-points based data sets

As it is clear from Table 9, MLP classification algorithm

provides very good accuracy results on both data sets where

the classification performance on China data set outperforms

that on Albrecht data set. The resources and duration features

are expressed in the China data set, in addition to the other

function points –based features. This seems to provide a value

in classification performance.

For further analysis of the data and for better understanding

for the performance of MLP on both data sets, we provide in

figure 2 (a-b), the receiver operating characteristics (ROC)

curves across both data sets.

The ROC curve for the Albrecht seems to be ideal with the

curves being plotted on the upper left corner. In this data set,

the testing data set is small with only six instances. As clear

from the confusion matrix in figure 3(a), three classes are

classified with 100% accuracy: small, med-lrg, and large. The

sml-med class has one instance in the testing data which is

classified wrongly. It is misclassified as small instead of

sml-med.

In regard to the China data set, the ROC curve looks excellent

with high values of true positive rates and low values of false

positive rate and this clear in the confusion matrix as shown in

figure 3 (b) with excellent percentages across the diagonal of

the matrix.

4.2 COCOMO-based data sets

As it is clear from Table 9, MLP performs well on both data

sets with the performance on COCOMO NASA 2

outperforming that on COCOMO’81. In the former data set,

COCOMO NASA 2, there exists additional information such

as the category of the application and the development mode.

This information seems to be important for building a more

accurate classifier. In figure 2 (c-d), the ROC curves on both

data sets are illustrated.

As seen from figure 2 (c) and for the COCOMO’81 data set,

MLP performance is excellent for the large and small classes

and seems to perform well for the classification of the med-lrg

class. However, the classification of the class sml-med is not

so good as clear from figure 3 (c). It is noted that all the

samples of this class are misclassified with half of them being

classified wrongly as small class and the other half as med-lrg

class.

For the COCOMO NASA 2 data set, MLP performance seems

to perform well on the all classes and as clear in figure 2 (d).

However, by looking at the confusion matrix in figure 3 (d),

we notice that the large classes has been excluded from the

testing sample as one or more cases in the testing sample have

variable values that do not occur in the training sample.

4.3 Project characteristics-based data sets

As it is clear from Table 9, MLP provides acceptable results

on both data sets. On ISBSG data set, with the increasing size

of the testing data set, the accuracy results decreases slightly.

In figure 2 (e-f), the ROC curves on both data sets are

illustrated.

For the Desharnais data set, and as seen from Figure 2 (e),

MLP performs well for the small and large classes. As clear

from figure 3 (e), majority of the tested samples in the small

class are classified correctly and all in the large class are

classified correctly. However, all the samples of the med-lrg

class are classified wrongly as sml-med or large class.

For the ISBSG data set, MLP seems to perform well on the

large and small data sets only as clear in figure 2 (f) and figure

3 (f). The number of instances in these two classes is much

higher than that of the other two classes. This seems to be

helpful of better training of these two data sets.

Overall, MLP shows good performance across the six data

sets. Moreover, there is a stability of performance across

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1684

 (a) Albrecht (b) China

 (c) COCOMO’81 (d) COCOMO NASA 2

 (e) Desharnais (f) ISBSG

Figure 2: ROC curves for the six data sets

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1685

 (a) Albrecht (b) China

 (c) COCOMO’81 (d) COCOMO NASA 2

 e) Desharnais (f) ISBSG

Figure 3: Confusion matrices for the six data sets

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1686

Figure 4: Feature importance across the six data sets

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1687

different types of data sets with no dramatic differences in

results. However, the performance of MLP seems to decrease

with data sets that are based on project characteristics,

Desharnais and ISBSG.

4.4 Feature importance

For further analysis and to check the importance of features in

building the classification model, we explain in figure 4 the

features’ importance and normalized importance across the

six data sets.

In this figure, and for each data set, the normalized importance

is calculated as follows: first, the importance of each feature is

calculated as the relative importance of each feature in

determining the classification model, with the sum of values

across all the features is equal to (1.0).

Then, each feature importance value is divided on the

maximum importance value across all features and the result

is multiplied by 100% resulting by the normalized importance

value.

In each data set, if we will consider the top two features in

normalized importance as the most important features; it can

be noted from figure 4 that managers should give more

attention to the function points of output, the adjusted

functions points, and the productivity delivery rate when

estimating the required effort for the project that is based on

function points.

From this figure, it can be noted that features like number of

lines of code, and certain multipliers like, the turnaround time

and application experience are important for projects that use

COCOMO for its estimation.

Moreover, it can be noted that features like functional size,

envergure, and language type are very important to be

estimated right for a more accurate classification of a new

projects’ effort and based on project’s characteristics.

5. CONCLUSION AND FUTURE WORK

From a managerial perspective, developing a software project

requires three main stages: planning, implementation, and

control. In the planning stage, the manager develops a project

plan that identifies a roadmap for the development of

successful project. Implementation and control stages are run

in parallel to ensure that the software product is being built as

it is planned to.

Proper planning is crucial for a successful project. A good

plan requires accurate estimation of software effort. In the

literature, there has been large number of approaches for

estimating effort that are mainly based on 1) expert judgment,

2) function points and COCOMO models, and 3) machine

learning approaches.

In the first approach, an expert's knowledge is applied to

estimate the required effort for a new project and based on the

expert's past experience with similar projects. In the function

points' approach, a metric is applied for calculating the size of

a new project in terms of function points and then the effort is

calculated based on the knowledge of past projects with

similar size. The COCOMO model calculates effort based on

the development mode of the project and a set of multipliers.

On the other hand, machine learning approaches attracted

large attention in recent years for the purpose of effort

estimation. Existing software projects' effort data is fed to a

machine learning algorithm for the purpose of prediction of a

new project software effort.

In this work, we investigated the problem of effort estimation

from a classification perspective where the effort of a new

project is assigned into one of four classes: small,

small-medium, medium-large, and large. This is helpful for

initial estimation of required time, resources and cost. This

initial estimation gives project managers an indication of the

required effort for the new project where a decision can be

made to go further with detailed planning or not.

For this purpose, we examined six well-known data sets with

three main categories; function points based data sets,

COCOMO-based data sets, and project characteristics-based

data sets. Three of these data sets are from PROMISE

software engineering repository: COCOMO’81, COCOMO

NASA 2, and Desharnais. The other three data sets are:

Albrecht, China and ISBSG data set.

The MLP neural networks classification algorithm is

implemented. MLP is implemented as it proved to be

successful within this domain. The performance of the

classifier is evaluated with hold-out test and using the

accuracy measure where the number of correctly classified

samples is divided by the total number of tested sample. For

further analysis of the data, ROC curves and confusion

matrices are used.

The accuracy results are encouraging with the highest

reported accuracies are as follows; for the function points–

based data sets, MLP provided accuracy close to 90.0% on

China data set. For the COCOMO– based data sets, MLP

provided an accuracy of 85.7% on the COCOMO NASA 2

data set. For the project characteristics -based data sets, MLP

scored an accuracy of 70.0% on Desharnais data set. The ROC

curves across the six data sets are generally good.

Overall, MLP performs well on different types of data sets

with no dramatic differences in accuracy results. However,

the performance of MLP seems to decrease with data sets that

are based on project characteristics, Desharnais and ISBSG.

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1688

For further analysis of the data, we studied the importance of

features in building the classification model and identified the

important features that can contribute to better classification

performance. It is noticed that features such as: the function

points of output, the adjusted functions points, and the

productivity delivery are important when estimating projects

based on function points. On the other hand, it is noticed that

features like number of lines of code, and certain multipliers

like, the turnaround time and application experience are

important for projects that use COCOMO for its estimation.

For the project’s characteristics-based data sets, it can be

noted that features like functional size, envergure, and

language type are very important to be estimated right for a

more accurate classification of a new project.

In the future, we plan to experiment with other neural

networks types and compare its performance with that of

MLP. Moreover, we plan to integrate an MLP with an

ensemble learning algorithm for a possible enhanced

performance.

REFERENCES

1. Chaos Report., 2015. The Standish Group International

Inc.

2. Chandrasekaran, S., Gudlavalleti, S. and Kaniyar, S.,

2014. Achieving success in large complex software

projects. McKinsey & Company, pp.1-5.

3. Altuntas, T.U. and Alptekin, S.E., 2017. Software

Development Effort Estimation by Using Neural

Networks-A Case Study. International Journal of

Computers, 2.

4. Minku, L.L. and Yao, X., 2011, September. A principled

evaluation of ensembles of learning machines for

software effort estimation. In Proceedings of the 7th

International Conference on Predictive Models in

Software Engineering (pp. 1-10).

https://doi.org/10.1145/2020390.2020399

5. Mustapha, H. and Abdelwahed, N., 2019. Investigating

the use of random forest in software effort estimation.

Procedia computer science, 148, pp.343-352.

https://doi.org/10.1016/j.procs.2019.01.042

6. Dejaeger, K., Verbeke, W., Martens, D. and Baesens, B.,

2011. Data mining techniques for software effort

estimation: a comparative study. IEEE transactions on

software engineering, 38(2), pp.375-397.

https://doi.org/10.1109/TSE.2011.55

7. Nassif, A.B., Azzeh, M., Capretz, L.F. and Ho, D., 2013,

June. A comparison between decision trees and

decision tree forest models for software development

effort estimation. In 2013 Third International

Conference on Communications and Information

Technology (ICCIT) (pp. 220-224). IEEE.

8. Baskeles, B., Turhan, B. and Bener, A., 2007, November.

Software effort estimation using machine learning

methods. In 2007 22nd international symposium on

computer and information sciences (pp. 1-6). IEEE.

https://doi.org/10.1109/ISCIS.2007.4456863

9. Braga, P.L., Oliveira, A.L. and Meira, S.R., 2007,

September. Software effort estimation using machine

learning techniques with robust confidence intervals.

In 7th international conference on hybrid intelligent

systems (HIS 2007) (pp. 352-357). IEEE.

https://doi.org/10.1109/ICHIS.2007.4344078

10. Kocaguneli, E., Kultur, Y. and Bener, A., 2009,

November. Combining multiple learners induced on

multiple data sets for software effort prediction. In

20th international symposium on software reliability

engineering (ISSRE).

11. Zakrani, A., Hain, M. and Namir, A., 2018. Software

Development Effort Estimation Using Random

Forests: An Empirical Study and Evaluation.

International Journal of Intelligent Engineering and

Systems, 11(6), pp.300-311.

https://doi.org/10.22266/ijies2018.1231.30

12. Shukla, S. and Kumar, S., 2019, July. Applicability of

Neural Network Based Models for Software Effort

Estimation. In 2019 IEEE World Congress on Services

(SERVICES) (Vol. 2642, pp. 339-342). IEEE.

https://doi.org/10.1109/SERVICES.2019.00094

13. Albrecht, A.J. and Gaffney, J.E., 1983. Software

function, source lines of code, and development effort

prediction: a software science validation. IEEE

transactions on software engineering, (6), pp.639-648.

https://doi.org/10.1109/TSE.1983.235271

14. Bohem, B., 1981. Software Engineering Economics

1981 Prentice Hall. Inc., Englewood Cliffs, New Jersey,

7632.

15. Boehm, B.W., Madachy, R. and Steece, B., 2000.

Software cost estimation with Cocomo II with Cdrom.

Prentice Hall PTR.

16. Schach, S.R., 2007. Object-oriented and classical

software engineering (Vol. 6). New York:

McGraw-Hill.

17. Al Asheeri, M.M. and Hammad, M., 2019, September.

Machine Learning Models for Software Cost

Estimation. In 2019 International Conference on

Innovation and Intelligence for Informatics, Computing,

and Technologies (3ICT) (pp. 1-6). IEEE.

https://doi.org/10.1109/3ICT.2019.8910327

18. Rijwani, P. and Jain, S., 2016. Enhanced software effort

estimation using multi layered feed forward artificial

neural network technique. Procedia Computer Science,

89, pp.307-312.

19. Reddy, C.S. and Raju, K.V.S.V.N., 2009. A concise

neural network model for estimating software effort.

International Journal of Recent Trends in Engineering,

1(1), p.188.

20. Boetticher, G., Menzies, T., and Ostrand, T., 2007.

PROMISE repository of empirical software

engineering data.

21. Yun, F. H., 2010. Effort estimation data sets,

http://doi.org/10.5281/zenodo.268446 .

22. Almaiah, M. A., 2020, Multilayer neural network

based on MIMO and channel estimation for

impulsive noise environments in mobile wireless

networks, International Journal of Advanced Trends in

Computer Science and Engineering, 9(1), 315-321.

https://doi.org/10.1145/2020390.2020399
https://doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.1109/TSE.2011.55
https://doi.org/10.1109/ISCIS.2007.4456863
https://doi.org/10.1109/ICHIS.2007.4344078
https://doi.org/10.22266/ijies2018.1231.30
https://doi.org/10.1109/SERVICES.2019.00094
https://doi.org/10.1109/TSE.1983.235271
https://doi.org/10.1109/3ICT.2019.8910327

Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678 – 1689

1689

https://doi.org/10.30534/ijatcse/2020/48912020

23. Mercaral, J. D., Delima, A. P., Vilchez, R., 2020,

Prediction of Employees' lateness Determinants using

Machine Learning Algorithms, International Journal of

Advanced Trends in Computer Science and Engineering,

9(1), 779-783.

https://doi.org/10.30534/ijatcse/2020/111912020

24. Nassif, A.B., Azzeh, M., Capretz, L.F. and Ho, D., 2016.

Neural network models for software development

effort estimation: a comparative study. Neural

Computing and Applications, 27(8), pp.2369-2381.

https://doi.org/10.1007/s00521-015-2127-1

https://doi.org/10.30534/ijatcse/2020/48912020
https://doi.org/10.30534/ijatcse/2020/111912020
https://doi.org/10.1007/s00521-015-2127-1

