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ABSTRACT 

 

We target the problem of software effort estimation from a 

classification perspective. Our main goal is to build a 

classifier that can predict the required effort for a new project 

and assign it into one of the four classes: small, 

small-medium, medium-large, and large. A criterion is 

proposed for the aforementioned categorization and based on 

the amount of required effort.  We study data sets that are 

based on three different categories: function points-based data 

sets, COCOMO-based data sets, and project 

characteristics-based data sets. Feature sets are prepared and 

fed to the multilayer perceptron (MLP) neural network 

algorithm. A hold-out test is implemented and ROC curve is 

used as a measure of the performance of the algorithm. In 

addition, we identify the important features for building the 

classification models across various data sets. Generally, 

MLP shows good performance across the six data sets. 

Moreover, there is a stability of performance within each 

category of data sets or across different categories with no 

dramatic differences in results. However, the performance of 

MLP seems to decrease with data sets that are based on 

project characteristics.   

Key words: Software effort estimation, multilayer 

perceptron,  neural network, function points, COCOMO 
 

 

1. INTRODUCTION 

 

A successful software project is a project that meets its 

objectives, desired budget, and scheduled deadline. 

According to the Standish Group International, only 29% of 

projects in the year 2015 were considered successful with the 

rest of projects being failed or cancelled [1]. In a study of 

Oxford’s university, it was shown that 66% of large software 

projects overrun scheduled budget and 33% of projects are 

over schedule [2-3].  

A key to success is proper estimation of the required effort, 

resources, time, and the cost for carrying out the project. 

Among the aforementioned, accurate effort estimation is  

 
 

 

crucial as it helps in resources allocation and good 

management of quality and budget. Overestimating the 

required effort and hence, the duration and cost of the project,  

may result on a company losing its contracts or wasting its 

resources [4], whereas underestimation may result on 

understaffing problem, having a low quality product, setting a 

tight schedule, and losing money [5]. 

A variety of software estimation techniques have been 

proposed in the literature for supporting project managers in 

estimating effort. Generally, estimation techniques analyze a 

new project’s data and compare it to historical data sets of 

previous projects containing measurements of relevant 

metrics and the related effort [6]. Overall, software estimation 

techniques are based on three main approaches: 1) expert 

judgment by analogy, 2) formal models such as function 

points analysis and Constructive Cost Model (COCOMO), 

and 3) machine learning approaches. 

Among the aforementioned approaches, machine learning 

approaches attracted large attention. They include tree-based 

models [7-11], ensemble methods [4], [9], and nonlinear 

methods such as neural networks [4],[9],[12]. The main aim is 

to predict the exact value of the required effort for a new 

software project, a regression problem. Machine learning 

algorithms proved to be useful for this problem.  

In this paper, we target this problem but from a classification 

perspective rather than a regression perspective. The aim is to 

assign a new project’s required effort into one of the four 

classes: small, small-medium, medium-large, and large, 

depending on the amount of the required effort for this 

project. For this purpose, we examine the performance of 

multilayer perceptron (MLP) classification algorithm on three 

different categories: function points-based data sets, 

COCOMO-based data sets, and project characteristics-based 

data sets. The MLP is chosen as it has proved to be successful 

within this domain.  

We believe that this classification is useful in the initial 

planning stage of the project to give a general indication of the 

amount of effort and hence, the duration and resources 

required of the new project. If the project is approved and 

within the constraints of the stakeholder, it is taken to another 
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stage of detailed planning and detailed estimation. The 

research contributions of this paper can be summarized as 

follows:  

 Analyzing six software effort data sets of three different 

categories: function points-based data sets, 

COCOMO-based data sets, and project 

characteristics-based data sets. 

 Categorization of software effort into four predefined 

classes: small, small-medium, medium-large, and large. 

 Building a classifier with multilayer perceptron (MLP) 

neural network algorithm and analyzing its classification 

results on three different categories of data sets.  

 Identification of the important features in building the 

classification models and for each category of the data 

sets.    

The rest of this paper is organized as follows: in section 2, we 

discuss the related work. Section 3 presents the approach. In 

section 4, we discuss the results. Finally, section 5 concludes 

our work and suggests future work. 

 

2.  RELATED WORK 

 

The area of software effort estimation has gained attention 

from researchers’ worldwide because of its importance in the 

planning stage of the software project management lifecycle.  

The first approach for estimating software development is 

expert judgment by analogy approach. In this approach, an 

expert in the domain of the project applies a prior experience 

for estimating the required effort of a new project. A Delphi 

technique can also applied where the effort estimation is 

decided by a set of independent experts and the median of 

these estimates can be used as the final effort [6].  

In recent years, there has been a focus on other techniques for 

effort estimation such as Function Points’ Analysis [13] and 

Constructive Cost Models [14-15].  In function points’ 

analysis, the size of a new project is calculated in function 

points (FP) and as a multiplication between two terms: UFP 

and TCF. UFP refers to unadjusted function points and is 

calculated based on metric assigns complexity to five 

components of the product (inputs, outputs, inquires, master 

files, and interfaces). The other term, TCF refers to technical 

complexity factor and it assigns complexities to fourteen 

factors that are related to the performance, maintainability and 

other issues of the system. Once the size in FPs of the new 

product is calculated, the estimation of the effort is carried out 

and based on historical data sets [16].  

 

Another widely applied method for software effort estimation 

is Intermediate Constructive Cost Model (COCOMO). Effort 

is calculated based on the development mode of the project 

and a set of effort multipliers that are assessed on a specific 

metric [16]. The COCOMO model is flexible and applicable 

to different types of project [17].  

More recently, there has been a focus on the application of 

machine learning techniques for the purpose of predicting the 

effort of a new project. These techniques include tree-based 

models [7-11], ensemble methods [4],[9], and nonlinear 

methods such as neural networks [4],[9],[12]. 

Tree-based models have attracted attention from researchers 

for estimating software effort. For example, the authors in [7] 

compared the effort estimation performance of decision trees, 

or Classification And Regression Trees (CART), and the 

performance of decision tree forest, or random forest. The two 

algorithms are examined on ISBSG and Desharnais data sets, 

with random forest outperforming the performance of CART. 

A similar approach was implemented by the authors in [11] 

with an examination on higher number of data sets that 

include: ISBSG, COCOMO, Tukutuku, Desharnais, and 

Albrecht. Two techniques are used: random forests and 

regression trees. The two techniques seem to perform well on 

the data sets with random forests performance outperforming 

that of regression trees on the five data sets.    

Within this context, there has been a focus on another type of 

trees, M5P trees. M5P implements both regression and model 

trees. For example, the authors in [9] studied the performance 

of M5P trees on two data sets NASA and Desharnais. It 

performs well with comparable results with other regression 

methods. However, when the algorithm is integrated within a 

bagging algorithm, it provided the highest performance 

results on the NASA data set. In the work of [10], M5P was 

among the best two algorithms when tested on COCOMO’81 

data set. 

The aforementioned bagging algorithm, in [9], is a type of 

ensemble classification algorithms which have been 

implemented widely for software effort estimation.  For 

example, the authors in [4] compared the performance of 

single learners (MLP, RBF and regression tress) and 

ensembles learners that include bagging and random trees. 

Bagging with MLP seems to be among the best classifiers 

when tested on a number of data sets from PROMISE and the 

ISBSG data set. In [10], a voting approach for combination of 

learners is applied on three data sets with COCOMO related 

data. The finding indicates no enhancement of multiple 

learners’ performance compared to that of single learners’ 

performance.  On other hand, neural networks models have 

got a lot of popularity within this field. For example, the 

authors in [12] tested the performance of multilayer 

perceptron (MLP) algorithm on Desharnais data set and 

compared it with other algorithms that include linear 

regression model, k-nearest neighbor, and support vector 

machine for the purpose of software effort estimation. The 

dimensionality of the Desharnais data set is reduced based on 

Pearson correlation approach. The reduced data is then fed to 

the classifiers. MLP provided the best performance results. In 

the works of [4] and [9], MLP was among the best algorithms 

when tested on different software estimation data sets. 



Ahmed Fawzi Otoom et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1678  – 1689 

1680 

 

 

Moreover, in the work of [18], MLP proved successful when 

experimented on the COCOMO’81 data set with low relative 

error when compared to the actual effort that is calculated 

with COCOMO II. Also, MLP has proved successful of the 

same aforementioned data set in the work of [19]. 

 

3.  THE APPROACH 

 

The proposed approach consists of three main stages: data 

collection, data preparation, and classification.  

 

3.1 Date Collection  

We use six well-known software effort estimation data sets. 

Three of these data sets are from PROMISE software 

engineering repository [20]: COCOMO’81, COCOMO 

NASA 2, and Desharnais. The other three data sets are: 

Albrecht [21], China [21] and ISBSG data set. We divide the 

data sets into three categories depending on the measurements 

of different metrics: function points-based data sets, 

COCOMO-based data sets, and project characteristics-based 

data sets. Albrecht and China data sets are function 

points-based data sets. They describe projects based on 

function points’ related information. Albrecht data set 

presents data related to 24 projects with 7 features describing 

numerical numbers in relation to number of files, inputs, 

outputs, inquiries and other information. China data set 

expresses 499 projects with similar features to that of 

Albrecht but with addition of other features that are related to 

resources, duration, and numbers of changes, added and 

modified files, ending up in 18 features.     

COCOMO’81 and COCOMO NASA 2 data sets are 

COCOMO-based data sets that characterize projects based on 

COCOMO multipliers. COCOMO’81 data set presents data 

related to 63 projects with effort measured in calendar months 

of 152 hours. The data set is represented with 16 features that 

reflect 15 COCOMO multipliers and the lines of code (LOC) 

feature. The COCOMO NASA 2 presents information for 93 

NASA projects from different centers with effort measured in 

calendar months of 152 hours. The data set is represented with 

23 features that reflect 15 COCOMO multipliers and other 

features related to development mode, category of 

application, year of development, and other information. 

Desharnais and ISBSG data sets are project 

characteristics-based data sets that depend on different 

characteristics of the projects. Desharnais data set describes 

81 projects with 11 features that are related to team and 

manger experience, language used, length of the project and 

other information.  The ISBSG data set is one of the popular 

data sets in this domain. We use the ISBSG data set Release 

12. It presents variety of information in relation to 

organization type, application type, development platform, 

productivity, schedule features, effort information and others 

with a total of 69 features. 

3.2 Date Preparation 

After analyzing the data sets, data preparation is carried out as 

follows:  

 Albrecht data set: the feature RawFPCounts is omitted as 

there is another feature AdjFP which reflects very 

similar information, to end up with 6 features.  

 China data set: the following features are omitted: 

project ID, development type as it has only one value, 

and N-effort as it reflects very similar information to 

effort, to end up with 15 features.  

 COCOMO’81 data set: no modification to the original 

data set.  

 COCOMO NASA 2 data set: the following features are 

omitted: project ID, project name, and year of 

development, to end up with 20 features.   

 Desharnais data set: the project ID is deleted to end up 

with 10 features.   

 ISBSG: we studied this data set and consulted software 

engineering experts in regard to the important features 

that have influence on the effort, to end up with the 

following features:   data quality rating, industry sector, 

organization type, application type, development type, 

language type, functional size, FP standard, and the used 

methodology. For the projects with too many missing 

values, they are excluded from the data set, to end up 

with 2294 projects and a dimensional space of 10 

dimensions (features).  

 

Table 1 shows a summary of the data sets before and after 

preparation. Moreover, tables (2-7) show a short description 

of the features in each data set. 

 
Table 1: Data sets before and after preparation 

Category Data set # Features # Instances 

before after before  after  

Function- 

points 

based data 

sets 

Albrecht 7 6 24 24 

China 18 15 499 499 

COCOMO 

–based 

data sets 

COCOMO’81 16 16 63 63 

COCOMO 

NASA 2 

23 20 93 93 

Project 

characteris

tics-based 

data sets 

Desharnais 11 10 81 81 

ISBSG 69 10 6009 2294 

  

Table 2: Albrecht data set 

Feature Description 

Input Function points of input 

Output Function points of output 

Inquiry Function points of external enquiry 

File Function points of internal logical files 

FPAdj Normalized  Adjusted function points 

AdjFP Adjusted function points 
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Table 3: China data set 

Feature Description 

AFP Adjusted Function points (FP) 

Input, output, inquiry, 

file 
Description in Table 2 

Interface FPs for external interface added 

Added FPs of added function 

Changed FPs of changed function 

Deleted FPs of deleted function 

PDR_AFP Productivity delivery rate – AFP 

PDR_UFP Productivity delivery rate – 

unadjusted FP 

NPDR_AFP Normalized Productivity delivery 

rate – AFP 

NPDU_UFP Normalized PDR – unadjusted FP 

Resource Team type 

Duration Duration of the project 

 

Table 4: COCOMO'81 data set 

Feature Description 

rely Required software reliability multiplier 

data Database size multiplier 

cplx Process complexity multiplier 

time Time constraint for CPU multiplier 

stor Main memory constraint multiplier 

virt Machine volatility multiplier 

turn Turnaround time multiplier 

acap Analysts capability multiplier 

aexp Application experience multiplier 

pcap Programmer capability multiplier 

vexp Virtual machine experience multiplier 

lexp Language experience multiplier 

modp Modern programming practices multiplier 

tool Use of software tools multiplier 

sced Schedule constraint multiplier 

loc Lines of code 

 

Table 5: COCOMO NASA2 data set 

Feature Description 

cagetory_of_application 

(category) 
Application type 

flight_or_ground_system 

(system) 

A flight or a ground 

system 

which_nasa_center (center) The NASA  center 

developmen_mode (dev_mode) Mode: organic, 

embedded or 

semidetached 

The COCOMO 15 multipliers Description in Table 4 

equivphyskloc_real (Kloc) Kilo Lines of code 

 

Table 6: Desharnais data set 

Feature Description 

TeamExp Team experience in years 

ManagerExp Manager’s experience in years 

YearEnd Year of completion 

Length Length of project 

Transactions Count of basic logical transactions 

Entities The number of entities in the systems 

data model 

PointsAdjust Size of project measured in adjusted 

function points 

Envergure Function points complexity adjustment 

factor 

PointsNonAjust Unadjusted FP 

Langage The used programming language 

 
Table 7: ISBSG data set 

Feature Description 

rating Rating of the quality of data 

Sector The sector for the application 

Organisation_Type 

(Org_type) 

The type of the organization that 

submitted the project 

Application_Type 

(App_type) 

The type of the application 

being addressed by the projects 

Development_Type 

(Dev_type) 
Primary development platform 

Development_Platform 

(Dev_plat) 

The number of entities in the 

systems data model 

Language_Type 

(lang_type) 
The language type 

Functional_Size (size) Unadjusted FP 

Standard The used function size metric 

Methodology The used methodology 

 

For each data set, we assign class labels as follows: first, we 

calculate the minimum, maximum, and median values of the 

effort across all projects, we refer to it as MED. Then, we 

calculate the median between the minimum value of the effort 

and MED, we refer to it as M1. After that, we calculate the 

median between MED and the maximum value of the effort, 

we refer to as M2. The effort classes are assigned as follows: 

 

 

𝐸𝑓𝑓𝑜𝑟𝑡

= {

         𝑠𝑚𝑎𝑙𝑙, 𝑚𝑖𝑛 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀1
 𝑠𝑚𝑙 − 𝑚𝑒𝑑, 𝑀1 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀𝐸𝐷
𝑚𝑒𝑑 − 𝑙𝑟𝑔,        𝑀𝐸𝐷 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 < 𝑀2
           𝑙𝑎𝑟𝑔𝑒, 𝑀2 ≤ 𝑒𝑓𝑓𝑜𝑟𝑡 ≤ 𝑚𝑎𝑥

} 
(1) 

Where sml-med refers to small-medium category, and med-lrg 

refers to medium-large category. The number of instances of 

each class and across the six data sets is illustrated in table 8. 
 

Table 8: Number of instances across classes 

Data set small sml- 

med 

med- 

lrg 

large Total 

Albrecht 7 5 7 5 24 

China 126 124 124 125 499 

COCOMO’81 17 15 16 15 63 

COCOMO 

NASA 2 24 23 23 23 93 

Desharnais 21 26 14 20 81 

isbsg 668 351 335 940 2294 
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3.3  Classification 

Once the feature sets are prepared, they are fed into an MLP 

neural network for supervised learning and classification. 

MLP is chosen as it proved to be successful with this domain 

[4],[9],[12], [18], [19] and other research areas [22-23]. An 

MLP is a class of feedforward artificial neural network 

(ANN) that consists of a network of neurons arranged in three 

layers: input layer, a hidden layer(s), and an output layer. 

Each neuron processes its inputs and generates one output 

value using a transfer function that is transmitted to the 

neurons in the subsequent layer [6],[24]. 

The output of hidden neuron i is calculated by processing the 

weighted inputs and its bias term 𝑏𝑖
(1)

 as follows  

 ℎ𝑖 = 𝑓(1) (𝑏𝑖
(1)

+ ∑ 𝑊𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (2) 

Where𝑊𝑖𝑗 is the weight connecting input j to hidden unit i. 

For the output layer, it is calculated as follows  

 𝑧 = 𝑓(2) (𝑏(2) + ∑ 𝑣𝑗ℎ𝑗

𝑛ℎ

𝑗=1

) (3) 

 

Where nh  is the number of hidden neurons and vj  is the 

weight connecting hidden unit j to the output layer [6],[24].  

 

Figure 1 shows an MLP neural network example for one of 

the studied data sets, Desharnais. The data feeds forward from 

the input layer through the hidden layer to the output layer.  

From this figure, we can notice that the input layer consists of 

ten unites, excluding the bias unit.  There is also one hidden 

layer with two units. Moreover, there is a dependent variable, 

effort, in the output layer, with four units corresponding to the 

four classes. The hidden layer transfer function in this 

example, and for other data sets, is Hyperbolic Tangent 

function. It links the weighted sums of units in the hidden 

layer to the values of units in the output layer. For the output 

layer, the transfer function is Softmax.   

For validation, we run holdout test, where almost 2/3 of the 

data is used for training the classifier and building the 

classification model. Then, the rest of the data is tested where 

the model predicted samples are compared with the original 

ones and the accuracy is calculated as follows: 

 

 

Figure 1: MLP neural network example 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑚𝑎𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 

(4) 

For further analysis of the data, we present the receiver 

operating characteristics (ROC) curves across the six data 

sets. ROC curves feature true positive rate (sensitivity) on the 

y-axis and false positive rate (1-specifity) on the x-axis. 

Moreover, we illustrate the confusion matrices associated 

with the MLP performance on each data set. In these matrices, 

the rows represent the ground truth classes and the columns 

represent the predicted classes. The cells blue-levels visually 

encode the performance percentages from 0%=pale blue to 

100%=dark blue. 

  

4.  RESULTS AND ANALYSIS 

 

Experiments are conducted to evaluate the performance of 

MLP on the six data sets. We present the experiments’ results 

in terms of accuracy, ROC curve, and confusion matrix. We 

discuss results based on the three categories of data sets. Table 

9 presents the accuracy results across the three categories. 

Moreover, figure 2 illustrates the ROC curves for various data 

sets. 

Table 9: Accuracy results across different data sets 

Category Data set Accuracy(%) 

Function-points 

based data sets 
Albrecht 83.3 

China 89.7 

COCOMO-based 

data sets 
COCOMO’81 76.5 

COCOMO 

NASA 2 

85.7 

Project 

characteristics-based 

data sets 

Desharnais 70.0 

ISBSG 61.4 

 

4.1 Function-points based data sets 

As it is clear from Table 9, MLP classification algorithm 

provides very good accuracy results on both data sets where 

the classification performance on China data set outperforms 

that on Albrecht data set. The resources and duration features 

are expressed in the China data set, in addition to the other 

function points –based features. This seems to provide a value 

in classification performance.  

For further analysis of the data and for better understanding 

for the performance of MLP on both data sets, we provide in 

figure 2 (a-b), the receiver operating characteristics (ROC) 

curves across both data sets.  

The ROC curve for the Albrecht seems to be ideal with the 

curves being plotted on the upper left corner. In this data set, 

the testing data set is small with only six instances. As clear 

from the confusion matrix in figure 3(a), three classes are 

classified with 100% accuracy: small, med-lrg, and large. The 

sml-med class has one instance in the testing data which is 

classified wrongly. It is misclassified as small instead of 

sml-med.  

In regard to the China data set, the ROC curve looks excellent 

with high values of true positive rates and low values of false 

positive rate and this clear in the confusion matrix as shown in 

figure 3 (b) with excellent percentages across the diagonal of 

the matrix.  

 

4.2  COCOMO-based data sets 

As it is clear from Table 9, MLP performs well on both data 

sets with the performance on COCOMO NASA 2 

outperforming that on COCOMO’81. In the former data set, 

COCOMO NASA 2, there exists additional information such 

as the category of the application and the development mode. 

This information seems to be important for building a more 

accurate classifier. In figure 2 (c-d), the ROC curves on both 

data sets are illustrated.   

As seen from figure 2 (c) and for the COCOMO’81 data set, 

MLP performance is excellent for the large and small classes 

and seems to perform well for the classification of the med-lrg 

class.  However, the classification of the class sml-med is not 

so good as clear from figure 3 (c). It is noted that all the 

samples of this class are misclassified with half of them being 

classified wrongly as small class and the other half as med-lrg 

class. 

For the COCOMO NASA 2 data set, MLP performance seems 

to perform well on the all classes and as clear in figure 2 (d). 

However, by looking at the confusion matrix in figure 3 (d), 

we notice that the large classes has been excluded from the 

testing sample as one or more cases in the testing sample have 

variable values that do not occur in the training sample.  

 

4.3  Project characteristics-based data sets 

As it is clear from Table 9, MLP provides acceptable results 

on both data sets. On ISBSG data set, with the increasing size 

of the testing data set, the accuracy results decreases slightly. 

In figure 2 (e-f), the ROC curves on both data sets are 

illustrated.   

For the Desharnais data set, and as seen from Figure 2 (e), 

MLP performs well for the small and large classes. As clear 

from figure 3 (e), majority of the tested samples in the small 

class are classified correctly and all in the large class are 

classified correctly. However, all the samples of the med-lrg 

class are classified wrongly as sml-med or large class.  

For the ISBSG data set, MLP seems to perform well on the 

large and small data sets only as clear in figure 2 (f) and figure 

3 (f). The number of instances in these two classes is much 

higher than that of the other two classes. This seems to be 

helpful of better training of these two data sets.  

Overall, MLP shows good performance across the six data 

sets. Moreover, there is a stability of performance across  
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                                   (a) Albrecht                                                                                                    (b) China 

 

                      

                                           (c) COCOMO’81                                                                                        (d) COCOMO NASA 2 

 

                          

                                         (e) Desharnais                                                                                                (f) ISBSG 

 

 

Figure 2: ROC curves for the six data sets 
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                                           (a) Albrecht                                                                                                              (b) China   

                                               

                                                               

                                          (c) COCOMO’81                                                                                                  (d) COCOMO NASA 2                                      

     

                                         

                                          e) Desharnais                                                                                                            (f) ISBSG 

Figure 3: Confusion matrices for the six data sets 
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Figure 4: Feature importance across the six data sets 
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different types of data sets with no dramatic differences in 

results. However, the performance of MLP seems to decrease 

with data sets that are based on project characteristics, 

Desharnais and ISBSG.  

 

4.4  Feature importance  

 

For further analysis and to check the importance of features in 

building the classification model, we explain in figure 4 the 

features’ importance and normalized importance across the 

six data sets.  

In this figure, and for each data set, the normalized importance 

is calculated as follows: first, the importance of each feature is 

calculated as the relative importance of each feature in 

determining the classification model, with the sum of values 

across all the features is equal to (1.0).  

Then, each feature importance value is divided on the 

maximum importance value across all features and the result 

is multiplied by 100% resulting by the normalized importance 

value.  

In each data set, if we will consider the top two features in 

normalized importance as the most important features; it can 

be noted from figure 4 that managers should give more 

attention to the function points of output, the adjusted 

functions points, and the productivity delivery rate when 

estimating the required effort for the project that is based on 

function points.  

From this figure, it can be noted that features like number of 

lines of code, and certain multipliers like, the turnaround time 

and application experience are important for projects that use 

COCOMO for its estimation.  

Moreover, it can be noted that features like functional size, 

envergure, and language type are very important to be 

estimated right for a more accurate classification of a new 

projects’ effort and based on project’s characteristics.  

 

5. CONCLUSION AND FUTURE WORK 

 

From a managerial perspective, developing a software project 

requires three main stages: planning, implementation, and 

control. In the planning stage, the manager develops a project 

plan that identifies a roadmap for the development of 

successful project. Implementation and control stages are run 

in parallel to ensure that the software product is being built as 

it is planned to.  

Proper planning is crucial for a successful project. A good 

plan requires accurate estimation of software effort. In the 

literature, there has been large number of approaches for 

estimating effort that are mainly based on 1) expert judgment, 

2) function points and COCOMO models, and 3) machine 

learning approaches.   

In the first approach, an expert's knowledge is applied to 

estimate the required effort for a new project and based on the 

expert's past experience with similar projects. In the function 

points' approach, a metric is applied for calculating the size of 

a new project in terms of function points and then the effort is 

calculated based on the knowledge of past projects with 

similar size. The COCOMO model calculates effort based on 

the development mode of the project and a set of multipliers. 

On the other hand, machine learning approaches attracted 

large attention in recent years for the purpose of effort 

estimation. Existing software projects' effort data is fed to a 

machine learning algorithm for the purpose of prediction of a 

new project  software effort.  

In this work, we investigated the problem of effort estimation 

from a classification perspective where the effort of a new 

project is assigned into one of four classes: small, 

small-medium, medium-large, and large. This is helpful for 

initial estimation of required time, resources and cost. This 

initial estimation gives project managers an indication of the 

required effort for the new project where a decision can be 

made to go further with detailed planning or not.  

For this purpose, we examined six well-known data sets with 

three main categories; function points based data sets, 

COCOMO-based data sets, and project characteristics-based 

data sets. Three of these data sets are from PROMISE 

software engineering repository: COCOMO’81, COCOMO 

NASA 2, and Desharnais. The other three data sets are: 

Albrecht, China and ISBSG data set. 

The MLP neural networks classification algorithm is 

implemented. MLP is implemented as it proved to be 

successful within this domain. The performance of the 

classifier is evaluated with hold-out test and using the 

accuracy measure where the number of correctly classified 

samples is divided by the total number of tested sample. For 

further analysis of the data, ROC curves and confusion 

matrices are used.   

The accuracy results are encouraging with the highest 

reported accuracies are as follows; for the function points– 

based data sets, MLP provided accuracy close to 90.0% on 

China data set. For the COCOMO– based data sets, MLP 

provided an accuracy of 85.7% on the COCOMO NASA 2 

data set. For the project characteristics -based data sets, MLP 

scored an accuracy of 70.0% on Desharnais data set. The ROC 

curves across the six data sets are generally good.  

Overall, MLP performs well on different types of data sets 

with no dramatic differences in accuracy results. However, 

the performance of MLP seems to decrease with data sets that 

are based on project characteristics, Desharnais and ISBSG.  
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For further analysis of the data, we studied the importance of 

features in building the classification model and identified the 

important features that can contribute to better classification 

performance.  It is noticed that features such as: the function 

points of output, the adjusted functions points, and the 

productivity delivery are important when estimating projects 

based on function points.  On the other hand, it is noticed that 

features like number of lines of code, and certain multipliers 

like, the turnaround time and application experience are 

important for projects that use COCOMO for its estimation.  

For the project’s characteristics-based data sets, it can be 

noted that features like functional size, envergure, and 

language type are very important to be estimated right for a 

more accurate classification of a new project. 

 

In the future, we plan to experiment with other neural 

networks types and compare its performance with that of 

MLP. Moreover, we plan to integrate an MLP with an 

ensemble learning algorithm for a possible enhanced 

performance. 
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