
 Siwoo Byun , International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1881 - 1885

1881


ABSTRACT

Edge computing refers to decentralized computing
technology to reduce cloud computing's overload or security
problems that redirect local data to a central data center. Edge
computing is emerging as a technology that complements
cloud computing in an IoT environment where huge amounts
of data are generated in real time.
This study introduces architectures of IoT sensor network,
data control schemes, fog computing and edge computing
technology. This study also reviews the requirements of IoT
service from the aspects of transmission, storage and
computing, and analyzes data balancing and data recovery.
This paper also proposes a data management scheme called
DaRM, utilizing dual IoT gateways to provide efficient and
stable data service in IoT environment. DaRM exploits both
edge gateway and fog gateway to improve data reliability and
communication efficiency. DaRM can transmit compressed
sensor data by reducing overhead in advance through delayed
replication and column-based data compression.

Key words : IoT edge gateway, sensor data, column-based
compression, resource management, fog computing

1. INTRODUCTION

Recently, IoT(Internet of Things) sensor network has received
significant attention in smart system areas[1-4]. Small IoT
devices can be designed with on-board calculations, wireless
communications and sensor detection abilities(Figure 1).
Recent work has also begun exploring the potential
applications for measuring various IoT environments.

Figure 1: Examples of Tiny Sensor Nodes

IoT applications include energy usage monitoring and
planning energy conservation in buildings, military and

private surveillance, natural habitats monitoring for
understanding environmental dynamics, and collecting data
for learning environments.
IoT sensor network is different from the traditional stable
networks since IoT applications automatically operate
unattended and IoT sensor devices use limited battery and
narrow wireless channel.
Most IoT applications are data-centric since sensor nodes are
designed from the point of measured data rather than
identified data such as ip address of conventional networks.
That is, measured data is most important in sensor networks.
From this architectural point of view, sensor network is
treated as a huge database called sensor database.

2. RELATED WORKS

2.1 Components of IoT network environment
In general, an IoT network consists of three components: a
sensor device, an IoT gateway, and a cloud network, each
meaning a data source, a data communication network, and
data processor[5,6].
1) Sensor device: Many sensors are placed in wide areas of
IoT environment. These sensors produce huge volume of
measured data which is a core part of IoT services. The device
serves as a human-computer interface that delivers users'
requirements to IoT network. These sensors and devices are
all be interconnected so that they send sensor data and provide
various IoT application services.
2) IoT gateway: IoT gateway collects measured data from
sensor devices and forwards it to cloud servers. The sensor
devices need to preprocess measured data before they send the
data to cloud servers. For example, IoT gateway performs
preprocessing of measured data to reduce data redundancy
and unnecessary communication overhead.
3) Cloud network: In general, cloud servers have enough
resources such as CPU, memory and storages to support IoT
applications. The cloud server receives sensor data and user
requirements and sends the service results back to the end
user after required data processing.

2.2 IoT Edge Computing
Figure 2 shows the base architecture of IoT edge computing
[7-9]. IoT Edge computing servers are closer to end users than
cloud servers which is located far away. Although IoT edge
computing servers provide weaker computing power than

Gateway-based Resource Control for Reliable IoT Environments

Siwoo Byun1
1Dept. of Software, Anyang University, South Korea, swbyun@anyang.ac.kr

 ISSN 2278-3091

Volume 8, No.5, September - October 2019
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse11852019.pdf
https://doi.org/10.30534/ijatcse/2019/11852019

 Siwoo Byun , International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1881 - 1885

1882

cloud servers, but better quality of service (QoS) and lower
network latency for end users. In general, the structure of IoT
edge computing can be divided into three types: front-end,
near-end and far-end [6], as shown in Figure 2.

Figure 2: Architecture of edge computing networks

1) Front-End: The end devices such as sensors and actuators,
are placed at the front-end in IoT edge computing. Front-end
computing can provide end users with more interaction and
better responsiveness. Because of the limited capacity of the
end devices, most of the requirements cannot be met at the
front-end, so the end devices must forward the request to the
server.
2) Near-End: Gateway located in the near-end supports most
network services. Edge servers have a various requirements
such as real-time data processing, data caching, and
computation offloading. Migrating most of the data
processing and storage capabilities to this near-end
environment allows users to achieve even better performance
on data computing and storage with a slight increase in
latency.
3) Far-End: Since the server is located far from the end
device, the transfer delay is severe. On the other hand, far-end
servers can provide much more computing power and storage.
For example, far-end servers can provide massive parallel
data processing, big data mining, replicated data
management and machine learning.

2.3 Compression for IoT data
Traditional row(record) based storage systems have to read a
lot of unrelated data from data repository, so they have
performance limitations when handling a number of
concurrent, diverse queries. In contrast, in column-based
storage systems, only the columns related to the query need to
be taken from the data repository which is densely
compressed to improve read efficiency[10,11].
In particular, column-wise storing skill enables significant
improvements in data compression, reduces the number of
storage drives while maintaining high performance. As a
simple example, each city name, such as Los Angeles, can be
mapped to an integer value such as 1397, which requires

storage of two bytes instead of 11 bytes. Run-length encoding
is another simple compression technique that uses counts of
repetitions, which can be used to reduce space needs [10].
Compared to simple row-oriented databases, column storage
methods need to be reconstructed for most database access
standards (e.g., ODBC, JDBC). However, the overheads can
be mitigated by some techniques, such as memory buffering,
tuple movement, and partition merging. Moreover, regarding
the computational efficiency of pipeline query or vectored
query processing, the column storage method is much more
suitable to take advantage of the advanced functions such as
pipeline CPU, CPU branch prediction, CPU cache. In fact,
column storage systems show superior CPU and cache
performance in benchmarks such as TPC-H [11].

2.4 Replication for IoT Data
Although current database can be applied to general network
or mobile environment, it is difficult to apply it to IoT sensor
network environment that has incomplete characteristics.
That is, IoT-based applications can suffer from unreliable and
delayed services because sensor networks have unreliable
wireless channels and narrow bandwidth. One traditional way
to reduce the potential for this undesirable data service is to
replicate data across multiple nodes.
As an important example, if body heat is detected in an
emergency disaster recovery area, the location data of the
survivors should be quickly sent to the control center
regardless of any disturbance (wireless communication
failure, sensor failure, etc.). In this situation, data replication
of sensors can contribute to improving data availability.
Traditional replica management exploits eager or lazy
approaches. While the eager approach uses a synchronous
technique, lazy approach uses asynchronous technique that
can spread the renewal operation to all other node sites after
the local renewal is completed. Traditional eager approaches
include a primary copy technique based on main site consent
and a quorum consensus technique. Quorum consensus is a
coordination technique that proceeds renewals after obtaining
the necessary consent, and is recently used in blockchain
applications[12,13].

3. PROPOSED SCHEME

3.1 IoT Performance Demands
1) Transmission: The total response time is the sum of the
transfer time and the processing time. Since IoT devices
generate huge amounts of data continuously, excessive
network delays are not allowed. Specific examples are
vehicle-vehicle communication and vehicle-infrastructure
communication, and the related response time is very critical.
Unlike traditional clouds such as Google Cloud, IoT edge
computing offers numerous distributed nodes and is close to
end users. Thus, IoT application can take advantage of the
shorter transfer times of edge computing gateways.
2) Storage: Since IoT data is the most important part of big

 Siwoo Byun , International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1881 - 1885

1883

data generation, it should be uploaded to edge or cloud
storage. The benefits of uploading to edge storage is the short
upload time, but it has some drawbacks. That is, edge nodes
are difficult to ensure security, integrity of the original data,
and information protection. Moreover, as compare to the
cloud centers, the edge nodes have no long-lived storage.
3) Computation: Most IoT devices have limited computation
and energy resources. Thus, IoT devices transmit the data to
more powerful computing nodes to analyze the data. Since the
computation power is severely limited, edge nodes reduces the
CPU workloads by the offloading the computation tasks.

3.2 IoT Data Management
Cloud computing-based storage is implemented as
multi-layer systems which combine commercial server and
disk drive groups. To meet QoS requirements, edge-based
storage also utilizes load balancing and fault recovery
technologies. In particular, failover techniques are essential
to cope with data failures from multiple sources (e.g.,
software, hardware, packet loss, noise, and power problems).
1) Storage balancing: Since IoT devices have very limited
storage space, all data collected or generated should be sent to
the storage server. If all devices simultaneously transfer data
to cloud storage, this will be a significant burden to the
network. Instead, sending data to several edge storage based
on the characteristics of the edge topology reduces the
long-distance traffic.
For this, load balancing and resource allocation technologies
for edge-based storage are essential. It monitors different
storage demand rates and uses data replication for traffic and
storage balancing. Additionally, selecting the nearest edge
storage node and weighted data control, can reduce the
storage access time.
2) Recovery policy: Typically, periodic pinging or heartbeat
is conducted by monitoring systems to check storage system
health and availability of edge nodes. For example, network
devices may not be available, the operating system of the edge
node may be damaged, the storage hardware may fail, the
system recovery process may shut down the entire system for
maintenance. Nonetheless, in edge storage systems, the other
available edge nodes will act as redundant storage.
In the IoT environment, a huge number of devices generate
intensive request for storage. Clearly, correctness of sensitive
data such as personal health data, energy consumption
records, speed of smart vehicles is essential.
Distributed storage systems use replication to increase
reliability. In a distributed storage system, the data is divided
into several pieces and the pieces of data overlap each other.
As a result, the data stored in each piece can be reconstructed
from other relevant pieces. Edge storage is essentially a
distributed storage system and not only logically distributed,
but also physically distributed. Thus, edge storage
architecture significantly mitigates the risk of data loss.

3.3 Efficient Data Management using IoT gateway
IoT edge-gateway shares fast local network with front-end
sensor devices. Thus, IoT edge gateways provide much faster
transmissions as compared to cloud servers connected to the
slow Internet. However, the IoT edge gateway has limited
memory and storage space as compared to the cloud servers.
Therefore, it is important to design efficient data management
by taking advantage of superior network conditions, taking
into account limited resource conditions.
In particular, storage devices lead to heavy system workloads
because they constantly have to store large amounts of data
regardless of its importance from many sensor devices.
Therefore, the burden of storing this intensive data can be
greatly reduced by offloading unnecessary data in advance. In
other words, if non-critical data is not prevented from being
put into the next operation, the overloaded storage operations
degrade edge-gateway performance severely.
However, although the gateway may determine the
importance of the data right away, the strategic judgment of
the cloud should be included. Therefore, proposed scheme
prefers not to use immediate removing strategy, but to use
delayed removing strategy that waits the confirmation of the
cloud. For example, all the sensor data is kept in a gateway's
bulk storage such as hard disk during one day at very low cost,
and the data that is not needed later is linked to garbage places
such as trash cans. That is the invalidated data is transferred
to the waste repository, erased at idle time, and recycled later.
Although most sensor data are initially processed with the
maximum I/O performance, but if the storage device or
memory becomes overloaded, the following data is not
processed at that speed. Therefore, it is needed to prevent this
overloading and to keep data availability and reliability. Our
approach aims to increase data distribution speed across the
entire network and to increase data availability and reliability
by adding an IoT gateway called fog-gateway in the entry
point of the cloud servers.
Edge gateway and fog gateway have similar hardware design
and specification, but have different placement locations.
While edge gateways are connected to local network which
has broad bandwidth, their storage efficiency is low since the
acquired data are stored without compression. Fog gateways,
on the other hand, utilize data compression for high storage
efficiency, while they are connected to slow Internet.
If the edge and fog gateways are efficiently combined, they
provide faster network transmission and higher data
efficiency for overall IoT network. That is, it is effective to
increase the communication efficiency of edge gateways, to
increase the storage efficiency of fog gateways, to offload
sensor data that is not needed on edges, and to send it to the
cloud.
In this respect, this study proposes a new management
framework called DaRM (Data-aware Resource
Management) to improve the availability and reliability of
IoT data (Figure 3).

 Siwoo Byun , International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1881 - 1885

1884

 Figure 3: Data-aware Resource Management Model

First, edge gateways perform data-aware offloading to reduce
system overheads such as I/O delay, severe transmission
delay, memory shortage, and CPU overload. If the
unnecessary data are not offloaded in advance, they can
eventually result in the traffic congestion due to excessive
data workload.
Next, to enhance the data availability and reliability, the edge
gateways are interconnected to the fog gateways below the
cloud layer.
DaRM analyzes the compression ratio of sensor data and
recognizes the compression characteristics. Then, the sensor
data are classified to two classes, compressible and
incompressible, according to the compression efficiency.
DaRM also controls the transfer rate according to the queue
length of a task in edge gateway. DaRM utilizes
column-based compression skill, and uses a real-time data
compression library called lzo which is not only easy to
handle source code but also controls compression ratio and
speed by changing compression levels. If DaRM exploits
more advanced algorithms, data compression performance
can be improved much more.
Data classification is divided into two categories depending
on the compression ratio. This means that the characteristics
of the sensor data stream are classified into compressible class
such as text data, and incompressible class such as voice
signals that are not already compressed.
For critical data that need to be replicated, the same data is
maintained on both edge and fog gateways. Among the
replication management techniques, the delayed methods
have the disadvantage of less data consistency due to their
asynchronous nature. On the other hand, eager techniques
ensure strong consistency.

Although eager protocols are possible under stable
conditions, they are not suitable in unstable IoT environment
which consists of unstable devices and wireless network. In
particular, delayed protocol is advantageous in IoT network
which needs to transmit data over the long distance Internet.
In this respect, this study exploits a delayed technique called
lazy replication in DaRM scheme(algorithm 1).

Algorithm 1: Handling proposed DaRM scheme

1) Upon the receipt of sensor data generated by sensor
device in the front-end area, DaRM inserts the sensor
data into the log storage such as bulk hard disk. After
the predefined period, if offloading process has reached
to confirm-state, DaRM remove the sensor data marked
as ‘remove’.

2) DaRM reads the log of the sensor data one by one, and
fetches the compression ratio of the column attribute
related to the data.

3) DaRM inserts the sensor data into the tail of
replication-queue with its compression ratio.

4) If the mark of the data in replication-queue is
high-compressive type, DaRM executes FOG_SEND. If
the type of the operation is low-compressive type,
DaRM executes EDGE_WRITE.

5) FOG-SEND:
5.1) DaRM finds the location of fog gateway related to the

copy operation by reading the column info in edge
gateway.

5.2) DaRM forwards the sensor data to Lzo-Manager.
The Lzo Compressor returns the compressed
version of the data to DaRM

5.3) DaRM forwards the compressed sensor data to fog
gateway.

6) EDGE-WRITE:
6.1) DaRM finds the location of fog gateway related to the

copy operation by reading the column info in edge
gateway.

6.2) DaRM reads the Q-Length of work-queue in edge
gateway.

6.3) If the Q-Length is less than QL-Congest, then insert
the sensor data into the data storage of the edge
gateway.

6.4) If the Q-Length is greater than QL-Congest, then
perform 5)FOG-SEND process.

DaRM prioritizes the sensor data so that it can be sent to the
fog gateway or can be stored first. Urgent IoT service such as
health care needs priority classification. High-priority class
device has ensured priority on system resources such as
network bandwidth and storage space as followings.

 high-priority class: {ECG, heart rate, blood pressure},
 mid-priority class: {body-temperature, battery level},
 low-priority class: {room-temp., humidity, luminance}

 Siwoo Byun , International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1881 - 1885

1885

In addition, for reliable and guaranteed data transfer, the
network bandwidth between the two gateways should be
guaranteed. DaRM maintains each priorities and minimum
bandwidth, ensuring that urgent class of data are reliably sent
even in the event of communication congestion.

4. CONCLUSION
This research introduced recent IoT network and sensor data
control technology. Among them, this paper analyzed the two
emerging technologies, fog and edge computing. In detail, the
requirements for new IoT computing were analyzed in terms
of transmission, storage and computing, and then data load
balancing and data recovery methods were presented.
This paper proposed a data management scheme called
DaRM, utilizing dual gateways to provide efficient and stable
data service in IoT environment. DaRM exploits both edge
gateway and fog gateway to improve data reliability and
communication efficiency. DaRM can transmit compressed
sensor data by reducing overhead in advance through delayed
replication and column-based data compression.

ACKNOWLEDGEMENT
This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology(2018R1D1A1B07044418)

REFERENCES
1. https://www.ics.uci.edu/~dsm/ics280sensor/readings/dat

a/02-771.pdf, Feb. 25 (2019).
2. P. Bonnet, J. Gehrke, and P. Seshadri, Towards Sensor

Database Systems, in Proc. 2nd International
Conference on Mobile Data Management, Hong Kong,
January 2011, pp.3-14.
https://doi.org/10.1007/3-540-44498-X_1

3. S. Yeon, J. Park, IoT Platform Analysis and Issues, in
ETRI Insight Report, vol.27, pp.1-56, 2016.

4. S.V.R.K.Rao, M.Saritha Devi, A.R.Kishore, Praveen
Kumar, Wireless sensor Network based Industrial
Automation using Internet of Things (IoT),
International Journal of Advanced Trends in Computer
Science and Engineering, vol.7, no.6, pp.82-86, 2018.
https://doi.org/10.30534/ijatcse/2018/01762018

5. A. ElSharif Karrar, M. Fadl Idris Fadl, Security
Protocol for Data Transmission in Cloud Computing,
International Journal of Advanced Trends in Computer
Science and Engineering, vol.7, no.1, pp.1-5, 2018.
https://doi.org/10.30534/ijatcse/2018/01712018

6. Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher,
Chao Lu, Jie Lin, Xinyu Yang, A Survey on the Edge
Computing for the Internet of Things, IEEE Access,
vol.6, pp.6900-6919, Nov. 2017.
https://doi.org/10.1109/ACCESS.2017.2778504

7. S. Yi, Z. Hao, Z. Qin, and Q. Li, Fog Computing:
Platform and Applications, in Proc. 3rd Third IEEE
Workshop on Hot Topics in Web Systems and
Technologies,2015, pp.73-78

8. Gopika Premsankar, Mario Di Francesco, and Tarik
Taleb, Edge Computing for the Internet of Things: A
Case Study, IEEE Internet Of Things Journal, vol.5,
No.2, 2018.
https://doi.org/10.1109/JIOT.2018.2805263

9. Amir M. Rahmani, T. Nguyen Gia, B. Negash, A.
Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting
smart e-Health gateways at the edge of healthcare
Internet-of-Things: A fog computing approach,
Future Generation Computer Systems, vol. 78, no.2, pp.
641-658, 2018.
https://doi.org/10.1016/j.future.2017.02.014

10. S. Byun, and S. Jang. Asymmetric Index Management
Scheme for High-capacity Compressed Databases,
Journal of Korea Academia-Industrial, vol.17, no.7,
pp.293-300, 2016.

11. S. Ahn, and K. Kim, A Join Technique to Improve the
Performance of Star Schema Queries in
Column-Oriented Databases, Journal of Korean
Institute of Information Scientist and Engineers, vol. 40,
no.3, pp.209-218, 2013.

12. E. Tavares de Camargo, E. P. Duarte Jr., F. Pedonez, A
Consensus-based Fault-Tolerant Event Logger for
High Performance Applications, in Proc. Euro-Par
2017: Parallel Processing, 2017, pp.415-427.
https://doi.org/10.1007/978-3-319-64203-1_30

13. C. Cachin and M Vukolic, Blockchain consensus
protocols in the wild, in Technical Report
arXiv:1707.01873, IBM Research - Zurich, July 2017.
https://doi.org/10.1109/EDCC.2017.36

