
Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2638

ABSTRACT

Data replication provides an efficient mechanism in dealing
with data (or storage that hold these data) in large-scale
distributed systems. Generally, data replication is one of the
optimization strategies which have been implemented in the
distributed systems including database communities where
several copies of data are kept at two or more resource sites to
achieve performance at high level, availability and reliability
of the distributed systems. Consequently, it is realized that the
resource selection process (as part of resource management) is
tightly coupled with data replication strategies and resource
management in distributed systems. Accordingly, this paper
discusses of the existing data replication techniques in
distributed systems, in particular distributed DBMS, Data
Grids and Cloud computing environments. Further, a review
of resource management in distributed systems is also
provided, with specific focus on both Grids and Cloud
computing.

Key words: Replication of Data, Grid and Cloud Computing,
Resource Management, Utility Computing.

1. DATA REPLICATION IN DISTRIBUTED SYSTEMS

To give a better understanding of data replication in
distributed systems, a simple example of data replication
environment is provided and is shown in Figure 11, which is
adopted from [1]. In this example, there are n resource sites
with { nSSS ,,, 21 } geographically distributed and
connected through middleware architecture. Further, assume
that Object X represents data stored at 1S and replicated to
all other sites. For simplicity, let assume that the distance
shown in the figure be directly proportional to the cost of
access for Object X. Therefore, if User 1 would like to access
an Object X, he or she can obtain a cheaper cost when this
object is accessed at either 2S or 3S , since 2S and 3S are

closer to the user as compared to 1S , where the data was
originally stored. In such a situation, the benefits of

replication are apparent where it increases the performance
(access cost) of distributed system and the data is still
accessible despite of 3 out of 4 sites are fails (and therefore
improving the reliability and availability).

Numerous replication schemes have been developed for
different distributed system architectures such as Distributed
Database Management System (DDBMS), Peer-to-Peer (P2P)
systems, Data Grids/Grid Computing, World Wide Web
(WWW), etc. Among them, both DDBMS and Data Grids can
be considered to be the most active research domains in
distributed systems in recent years. Furthermore, while Grid
Computing is the predecessor for both Enterprise Grid and
Cloud computing (as discussed in Chapter 1), it is realized
that database replication (in particular, DDBMS) plays a
pivotal role in supporting a transactional online application
which may exist in both Enterprise Grids and Cloud
computing systems [2]. With this regards, the discussions
focus on the existing data replication techniques in DDBMS
and Data Grid environments in section II and III,
respectively, before a survey on resource management in
Distributed Systems is provided in section IV.

1S
2S

3S

nS

Figure 1: An example scenario of “Object X” being replicated at all

resource sites [1].

2. DATA REPLICATION IN DISTRIBUTED DBMS

Replication of data in the area of distributed DBMS has been
discussed for many years [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15]. Indeed, preserving the consistency
and ensuring the correctness of replicated data is one of the
major issues in this type of distributed system. Many

A Survey on Data Replication and Resource Management in

Distributed Systems

Wan Nor Shuhadah Wan Nik1, Bing Bing Zhou2
1Faculty of Informatics and Computing, University Sultan Zainal Abidin, Terengganu, Malaysia

wnshuhadah@unisza.edu.my
2School of Computer Science, University of Sydney, Sydney, Australia

bing.zhou@sydney.edu.au

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse117852019.pdf

https://doi.org/10.30534/ijatcse/2019/117852019

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2639

replication approaches have been developed to address this
issue. Generally, these approaches can be generally
categorized into two categories: asynchronous replications
and synchronous replications.
Update transactions are propagated before commit to provide
consistency guarantees among data which has been replicated
in synchronous replications (or eager replication). The design
of this type of replication must satisfy a property called
one-copy-serializability (1SR) [16]. This property ensures the
strict consistency among replicated data where the
intermittent executions that are involved in replicated
database need to establish a view of a one-copy database. In
order to guarantee serializability, conflicts are usually
resolved by using a mechanism called concurrency control
protocol, which is defined as a process of managing
simultaneous operations in the distributed database without
having them interfere with one another [17]. Locking
methods (e.g., two-phase locking (2PL)) and time-stamping
methods are the two most well-known approaches which have
been used for concurrency control. In locking methods, when
one operation is accessing the database, a lock may deny
access to other operations to avoid incorrect results. On the
other hand, time-stamping-based methods ensure the
correctness and the seriliazability of interleaved operations by
using a unique identifier that indicates the start time of an
operation. This identifier is used to order operations in such a
way that operations with a smaller timestamp get priority to
be executed in the event of conflict. In other words, the order
of operations that are conflicting need to be preserved the
scheduling of job operations is done [17].

In asynchronous replications, also known as lazy replication,
a replica can proceed with the execution of write operations
without delay. In such, other replicas are allowed to get the
updated value from this updated replica via update
propagation when this updated replica has committed the
operation. In other words, asynchronous replications do not
have to satisfy strict consistency as in 1SR property.

3. DATA REPLICATION IN DATA GRIDS

Applications in Grid environments may involve many events
and different scenarios of access patterns. Two main
categories of the scenarios of replication can be generally
categorized: (1) operations of read-only, and (2) operations of
update (or write) [1]. Accordingly, for applications that
involve read-only queries, the strategies of data replication
can further be categorized into two main streams: dynamic
and static replication. Meanwhile, with regard to
update-intensive applications, data replication strategies are
adopted from the distributed DBMS community, i.e.,
synchronous replication and asynchronous replication. These
categorizations are illustrated in

Figure2. However, replication technology used in Grid
environments is mostly targeted for read-only applications,
where the main goal is to ensure the minimization on the

latency of access and also the consumption of bandwidth are
achieved. Most importantly, replication is done on
coarse-grained data, i.e., flat data files rather than
fine-grained data such as datasets from databases [18], [19],
[20], [21], [22].

Figure 2: Categorization of data replication strategies which may

involves in Data Grids environment

3.1 Data Grid Replication Strategies in Read-Only
Queries
For a request that does not amend the value of data (i.e.
read-only query), the data consistency is not an issue because
the replicated data can be read by an operation without need to
concern on data correctness. Typically, the data may be
created at some resource node and can be accessed (and not
modified) by other resource nodes. These data can be safely
kept at other replicated resources. Dynamic replication
approaches can tolerate changes in a pattern of user requests,
the bandwidth and the capacity of storage, and able to create
new replicas on new nodes as well as removing replicas that
are no longer needed, which is depends on the global
information available in the Data Grid system. A Grid
Component such as Replica Manager (RM) is responsible to
make decision on the removal and creation of replica. This
functionality is usually a part of the data/replica management
system [23], [24], [21], [25]. Further, [26] provides the most
recent comprehensive survey on dynamic data replication in
the area of Data Grids.

In contrast, the strategy of static replication means that a
static number of replicas is determined at the beginning of the
life cycle; where no other replicas are migrated or created
later on [27], [19], [20], [28], [29]. With this static approach,
data are replicated in advance to make as many resource sites
as possible that is sufficient for job operations. For example,
the implementation of well-known Data Grid services such as
Globus [27], [19], [20], [28], [29] and the EUDataGrid [30],
[31] are designed in such a way that the indices of replica
location is preserved throughout the systems by a dedicated
nodes. Indeed, this replication strategy offers a centralized
and static approach in managing replicas on Data Grids.

It is apparent that dynamic, rather than static, replication
strategy has been receiving more attention among existing
researchers in the Grid environment as it able to make smart

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2640

decisions on data placement which is depends on the
information that is available in the Grid environment.
However, both dynamic and static replications come with the
price of their own disadvantages. Despite of the advantages
offers by the dynamic approach, this strategy also comes with
the price of the creation of new replicas while continuous
assessment on the availability of the resources.
Notwithstanding this, the static replication strategy has
several advantages such as faster job scheduling, improved
fault-tolerance, with no latency which usually occurred in
dynamic data replication [32].

3.2 Data Grid Replication Strategies in Update Request
Special consideration needs to be concerned in designing data
replication for update request. As compared to read-only
queries, an update request may modify data which further
compromise data consistency. A replica is modified locally in
the synchronous model. In this case, synchronization among
all other replicas is achieved via a replica propagation
protocol. However, the concept of data replication in
distributed DBMS is also applied in this case, especially when
local replicas at other nodes are being modified and/or
updated. If conflict occurs in such cases, it is crucial to
re-done the job must with the latest or updated replica.

With regard to asynchronous replication in the area of Data
Grid, very few researchers have discussed the asynchronous
model such as in [33]. In this research, different levels of
consistency are considered, including possible inconsistent
copy (consistency level -1), consistency file copy (consistency
level 0) and consistent transactional copy (consistency level
1). The authors argue that because of the latency caused by
locking process in strict consistency requirement, the strategy
is not practical for a Grid computing environment. They
propose that data consistency with various levels should be
supported by Grid consistency services. The work is primarily
focused on data sources with the flat file. The concept of
database transaction theory which includes locking for
establishing consistent data becomes the primary reference on
their discussions.

Meanwhile, in [34], two Grid replication protocols have been
proposed, namely aggressive copy and lazy copy. In later
concept (i.e. lazy copy), the replica content is synchronized
with the primary replica only when Grid sites requests an
operation. Otherwise, replicas are inconsistent for some time
until the request for operation is made. Meanwhile, an
aggressive copy strategy provides full consistency at all time.
This strategy is similar to synchronous replication method.

3.3 Data Grid Replication in Cloud Computing
Environments
Similar to Grids, Cloud applications also benefit data
replication to get high performance, availability and
reliability of the Cloud computing systems. However, while

Data Grids merely deal with files where very rare update
operations are involved, data replication schemes developed
for Cloud applications usually deals with replicated data
which are vulnerable for frequent updates. In such cases,
issues of data consistency become a focus. In other words,
Cloud systems share a similar characteristic with distributed
DBMS in terms of data replication, where the consistency
issue is paramount and needs to be addressed when dealing
with data replication.

However, this issue becomes more complex and it is
undoubtedly difficult to managed, i.e. ACID (atomicity,
consistency, isolation, and durability) properties in Cloud
computing environment as compared to traditional
distributed DBMS. This is due to the nature of Cloud
characteristics in which data may be replicated across large
geographic distance [35]. The CAP theorem found in [36]
proves that a replicated system can only choose at most two
out of three properties: consistency, availability and
fault-tolerance. That is, when data are replicated over a wide
area, the trade-offs between “Consistency” (which is part of
ACID) and availability for a system are typically
compromised [35].

Further, research in [37] proposed a new transaction scheme
paradigm on replicated data for Cloud applications. The
concept called Consistency Rationing is introduced in order
to achieve an optimal cost of runtime for a system database in
the Cloud when inconsistencies introduce a penalty in terms
of monetary cost. The basic concept of the idea in this
research is to allow applications to achieve a sufficient level of
consistency at the very minimum cost as possible. That is,
consistency requirements are categorized into three types, A,
B and C. Strong consistency is guaranteed at the very high
monetary cost per transaction in an A category. The C
category represents a scheme similar to the one in SimpleDB
and Yahoo PNUTS, that is, eventual/timeline/session
consistency; this result an inconsistencies despites its
minimum transaction cost. Meanwhile in a B category,
depending on the specified requirement, data is managed with
either session or strong consistency. The authors show the
practicality of the proposed scheme through extensive
experiments implemented on Amazon S3 Cloud storage
running the TPC-W benchmark.

In [38], the authors proposed a method that exploits lazy
(asynchronous) update propagation strategy for data updates
of data replicas in Cloud computing. The fundamental idea of
this research is to differentiate the updating data replica
process and data access in Cloud in order to preserve the
consistency of data replicas while preserving the availability
and accessibility and of data services in Cloud systems. In
other words, the proposed method allows the update
propagation to be done before the local copy of the replica at
the server on the master site commits. The rationale behind
this approach is to avoid inconsistencies in case updating at

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2641

the master or primary site fails while it may succeed at the
secondary or slave site.

Other research on dealing with data consistency in Cloud
application are found in [39], [40], [41] and [42]. In these
studies, another variant of asynchronous update protocol on
replicated data is proposed in the Cloud computing
environment. The authors proposed a scheme called
Re:GRIDiT which is developed to deal with distributed
update transaction on replicated data. This approach
addresses the requirements of novel data-intensive e-Science
applications in Grid by eliminating the need of a global
coordinator to synchronize updates on multiple replicas.
Later, in [42], the same authors enhance the Re:GRIDiT
approach with strategies on deciding an optimal replica
placement locations to address the load balancing issue
among replicas before a refined version, called. Re:FRESHiT
[43], is developed. Similar to the one proposed in [38], these
schemes seem to be excellent to be implemented in the Cloud
environment on their own advantages. However, none of
these researches addresses the issue of monetary cost incurred
on executing jobs by resources (which host the replica data
required by jobs), which is a trademark characteristic of
Cloud systems.

4. RESOURCE MANAGEMENT IN DISTRIBUTED
SYSTEMS.

When data replication is considered, two main entities of the
resource management system are replica placement and
replica selection. In other words, the efficient strategies on
the placement and the selection of replica (or resource that
holds this replica) is of prime importance in order to ensure
that jobs are served with the most appropriate resources to
meet the goals of the distributed system. From here onward
throughout this thesis, the term “resource” will be used to
refer to the replica or physical resource (storage) that holds
this replica data in distributed systems. Therefore, with
regard to the scope of this research, the following will review
the existing resource management in the area of Data Grid
and Cloud storage systems in order to give a better insight on
the significant challenge of resource management, which
includes resource selection, in both Grid and Cloud system
environments.

4.1 Resource Management in Data Grids
Generally, the Resource Management Systems (RMS) as a
central unit in Grid systems is responsible to address many
issues in order to ensure the efficiency of Grid in supporting
various applications. These issues include (a) scalability,
extensibility and adaptability, (b) preserving site autonomy
while allowing systems with various policies on
administrative to inter-operate, (c) resource co-allocations,
(d) QoS support, and (e) comply with constraint of
computational cost.

These issues must be addressed in addition to matters such as
stability and fault-tolerance [44]. Figure3 illustrates the
general RMS system context in a Grid environment [44].
Based on this diagram, the implementation of user
applications is done via a usage of Grid toolkits services. This
toolkit presents an abstraction of suitable application via
services offered by the RMS. One of the most well-known
RMS architectures in the Data Grid area is the one developed
for the EUDataGrid project [45], [46]. The main components
of RMS considered in this project are shown in Figure4 [45].
From this figure, it is obvious that replica selection is an
optimization process that must be considered in the replica
management service in the area of Data Grid.

Figure 3: General RMS system context in Grid environment [44].

Figure 4: The main entities in Replica Management System in

EUDataGrid project [45].

Also based on the EUDataGrid project [45], [47], the
simulation tool called OptorSim can be considered as one of
the most well-known simulation packages which have been
designed to investigate the efficiency of algorithms for replica
optimization in Data Grid environment. This is especially
true when many existing researches in replication
optimization in the area of Data Grid have been working with
this simulation tool such as in [48], [49], [50]. The
architecture of this simulator is illustrated in Figure5 [51].
The construction of the simulator was guided by the
assumption that Grids are composed of two or more sites.
These sites may provide storage resources and computational
resources when jobs are submitted. User Interface in a Grid
systems is used by the user to submit jobs. Each of these sites
may equipped with zero or more Storage Elements (SE) and
zero or more Computing Elements (CE). CE is responsible to
execute jobs which may used the data which are kept in SE.

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2642

The job scheduling to CE is controlled by the Resource
Broker (RB). Network nodes or routers are represented by the
sites with no SE or CE. Replica Manager (RM) is a
component that is responsible to decide the movement of data
together with their jobs between sites. Another component
that is within RM is called Optor, which control the decision
on the creation and deletion of replicas. Replica optimization
algorithm is the main function of Optor. OptorSim performs
two different types of optimizations: (1) the RB uses the
scheduling algorithms for job allocation, and (2) the RM at
each site uses replication algorithms to make decision on
which data (file) to replicate, which data to delete and when to
replicate a data [52], [53]. The ultimate goal is to minimize
the execution time for jobs, together with the efficient use of
resources in Grid system.

Figure 5: Architecture of simulated Data Grid architecture

(OptorSim) [51].

Indeed, the design of resource management in the Data Grid
area is tightly coupled with the implementation of replication
strategies employed in the respective Grid systems. That is,
replica (or the resource that hosts the replica) management is
a Grid service which has a replica manager to delete or create
the replicas in the storage systems. Therefore, the
replacement, creation and selection of replicas together with
the maintenance are all considered in replica management.
However, only the first three functionalities (i.e. replica
creation, placement and deletion) are considered as a main
function of replica management. Based on different strategies
of replacements, creations and selection of replicas, the
replica management can be classified into several types as
shown in Figure 66 [54], [55]. Based on this classification and
due to the dynamic nature of Grid environment, the simple
replica management strategy is not suitable for such
environment as it frequently replicate data which may
introduce high overhead. A model in hierarchical form is
designed for EUDataGrid [30], [31], [23] and is not suitable
for the structure of hybrid and P2P network. The main
problem for economic model lies on its complexity on the
evaluation of computing. Further, many other aspects are also
considered by other replica policies.
Li et al. [56] propose a scalable method on replica location
where the determination of effective location for various
replicas of the same data is used by home nodes. Also in this

method, the local replica is used to support local query for
replica.

Figure 6: Replica Management Strategies in Data Grid [54], [55].

4.2 Resource Management in Cloud Storage
Resource management in Cloud storage deals with the issue
to provide durability, high data availability, and
cost-efficiency both for Cloud storage providers and Cloud
users. Similar to Data Grids, the goals of achieving this high
quality of system service are usually gained via an indirect
replication (i.e. customer intervention or request is not
required as an automatic data replication) in Cloud storage
systems. In such situations, it is realized that replica
placement and/or resource selection are also paramount in
resource management in Cloud storage systems.

Replica placement in the management of replication has
become an active research focus in Cloud storage. A scheme
of replication management that is cost-effective has been
proposed in [57], named CDRM, for a Cloud storage cluster.
Two main issues have been addressed in this research: system
availability and load balancing. In terms of availability, the
fundamental concept of the proposed approach lies in the
relationship between the number of replica and availability
[58]. That is, more replicas creation will increase the system
availability as it can mask any resource failure which allows
the operation of distributed systems to continue despite this
interruption. However, this comes with the price of higher
resource management cost when the number of replicas is
increasing. Therefore, the proposed CDRM scheme is
leveraged in order to calculate and maintain the minimum
number of replicas for a given availability requirement, which
further minimizes the resource management cost while
preserving good system availability for Cloud storage
systems. Meanwhile, with regards to load balancing issues,
this research proposed a new scheme of replica placement in
order to distribute load efficiently across data nodes clusters.
Similarly to [57], research done in [59] adapts replica
placement strategy described in [58] by expressing
availability as a function of replication degree in order to
improve the availability of data, its reliability and the
utilization of network bandwidth, while minimizing the

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2643

trade-offs between data availability and resource management
cost. The main difference brought by this research is that it
developed a PC cluster-based Cloud storage system (cheaper
than the high performance server), which is implemented
with Hadoop Distributed File System (HDFS) [60] by
enhancing replication management schemes in order to
provide inexpensive storage.

Further, research in [61] proposed a Cloud storage
management service called ecStore, an elastic Cloud storage
system to support automatic data replication and partitioning,
efficient range query, load balancing, and transactional
access. The proposed system is part of a project called epiC
(elastic power-aware data-intensive Cloud) [62] , which is
developed to support OLTP and analytical workloads.
Specifically, the design of ecStore provides dealing with
consistency issues of load-balancing and data replication
problems in ranged-partitioned systems. The system handles
two categories of issue in data replication, namely, which data
should be replicated, and where to replicate data. A two-tier
replication mechanism is used in order to improve load
balancing and data availability for ecStore. Two kinds of
replicas are considered for each data object – slave and
secondary e replicas – in addition to its primary copy. The
first tier of replication represents K level of replication for all
data objects. The objective of the replication scheme at tier 1
is similar to the one in [59], which is to maintain the
minimum replica creation and named secondary replicas,
together with the primary copy for the data reliability
requirement. Meanwhile, at the second tier, the additional
replicas, called slave replicas, are associated with popular
data objects in order to support frequently accessed objects for
load balancing. When a flash crowd (a sudden increase in
query requests) is faced by primary copy or secondary replica,
the scheme will create slave replicas to help support the
dynamic nature of workload pattern. By doing this, the
minimization of all possible replication cost can be preserved.
These costs may include replica consistency maintenance cost
and replica storage cost. In addition, Figure7 illustrates the
stratum architecture of the transactional Cloud storage
considered in [61]. In ecStore, the storage system consists of
three main stratums: a transaction management layer, a a
replication layer and a distributed storage layer. The bottom
stratum (storage nodes) is organized as a balanced
tree-structured overlay and assigns a data range for each
storage node based on BATON [63]. Meanwhile, in the
middle layer, the structure of BATON is extended with a
two-tier partial replication strategy, as previously discussed.
Finally, the optimistic and multi-version protocol for
concurrency is implemented in the transaction management
module on the top stratum of this architecture.

Figure 7: Stratum architecture of transactional cloud storage [61].

Similar concerns on both system availability and
cost-efficiency are the focus in research work done in [64].
Specifically, this research proposed a new scheme on
managing data replication in Cloud storage systems which
can dynamically allocate the resources of a data Cloud to
several applications in a cost-efficient and fair way. Three
objective functions are simultaneously defined to address the
problems in hand: (1) maximizing data availability, (2)
minimizing communication cost, and (3) maximizing net
benefit. With regard to the first objective, the proposed
scheme provides high data availability by placing all replicas
of any particular data to a set of different storage resources
(servers) which may be geographically diverse. Further, to
address the issue of high communication cost induced by this
diversity, the second objective is achieved by maximizing data
proximity among distributed replicas. Meanwhile, the last
objective function is defined based on the fact that the
operational cost of a server is influenced mainly by the query
processing and communication overhead, its physical
hosting, quality of the hardware, its storage, and the access
bandwidth allocated to the server. That is, the net benefit is
minimized by replacing expensive servers with cheaper ones,
while maintaining a certain minimum data availability
promised by SLAs to clients. The experimental results
demonstrate the feasibility, the effectiveness and the low
communication overhead of the proposed model.

5. SUMMARY AND REMARKS.

In this paper, a survey of data replication and resource
management in distributed system is presented. In particular,
we provide insight on the importance and how both data
replication and resource management are facing their
challenges in distributed systems, especially in the area of
Grid and Cloud computing systems.

From the perspective of replication technique, we show that
asynchronous replication is more desirable than synchronous
replication in a highly dynamic large-scale distributed
environment as it allows weaker consistency and is not
required to satisfy 1-copy-serializability (1SR) property.
Meanwhile, from the resource management point of view, we
show that resource selection is insufficiently addressed in the

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2644

utility-based computing environment, both in the area of
Enterprise Grid and Cloud systems.

ACKNOWLEDGEMENT

This work is partially supported by Fundamental Research
Grant Scheme (FRGS, Grant No: RR268,
FRGS/1/2018/ICT03/UNISZA/02/1) under the Ministry of
Education (MOE) and Universiti Sultan Zainal Abidin
(UniSZA), Malaysia. The authors are also grateful and wish
to acknowledge the support of all members of Centers for
Distributed and High Performance Computing at University
of Sydney and all staff of the Faculty of Informatics and
Computing, Universiti Sultan Zainal Abidin who have
provided a vibrant and intellectually stimulating environment
for this research.

REFERENCES

1. Goel, S. and R. Buyya, Data Replication Strategies in
Wide Area Distributed Systems,” Enterprise Service
Computing: From Concept to Deployment. 2006: Idea
Group Inc.

2. Jiménez-Peris, R., M. Patiño-Martínez, and B. Kemme,
Enterprise Grids: Challenges Ahead. Journal of Grid
Computing, 2007. 5(3): p. 283-294.
https://doi.org/10.1007/s10723-007-9071-y

3. Amza, C., A.L. Cox, and W. Zwaenepoel, Distributed
versioning: consistent replication for scaling back-end
databases of dynamic content web sites, in Proceedings of
the ACM/IFIP/USENIX 2003 International Conference
on Middleware. 2003, Springer-Verlag New York, Inc.:
Rio de Janeiro, Brazil. p. 282-304.
https://doi.org/10.1007/3-540-44892-6_15

4. Breitbart, Y. and H.F. Korth, Replication and
consistency: being lazy helps sometimes, in Proceedings
of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. 1997,
ACM: Tucson, Arizona, United States. p. 173-184.

5. Elnikety, S., F. Pedone, and W. Zwaenepoel. Database
replication using generalized snapshot isolation. in 24th
IEEE Symposium on Reliable Distributed Systems, 2005
(SRDS 2005). . 2005.

6. Irún-briz, L., et al. Madis: A slim middleware for database
replication. in Proc. 11th Euro-Par, LNCS 3648. 2005:
Springer.
https://doi.org/10.1007/11549468_41

7. Kemme, B. and G. Alonso. Don't be lazy, be consistent:
Postgres-R, A new way to implement Database
Replication. in International Conference on Very Large
Data Bases (VLDB2000). 2000.

8. Lin, Y., et al., Middleware based data replication
providing snapshot isolation, in Proceedings of the 2005
ACM SIGMOD International Conference on
Management of Data. 2005, ACM: Baltimore, Maryland.
p. 419-430.

https://doi.org/10.1145/1066157.1066205
9. Pacitti, E. and E. Simon, Update propagation strategies

to improve freshness in lazy master replicated databases.
The VLDB Journal, 2000. 8(3-4): p. 305-318.

10. Pape, C.L., S. Gancarski, and P. Valduriez. Refresco:
Improving Query Performance through Freshness
Control in a Database Cluster. in In Int. Conf. On
Cooperative Information Systems (CoopIS). 2004.
https://doi.org/10.1007/978-3-540-30468-5_13

11. Patiño-martínez, M., et al., Middle-R: Consistent
Database Replication at the Middleware Level. ACM
Transaction and Computational System, 2005. 23.

12. Pedone, F., et al., The Database State Machine Approach.
Distrib. Parallel Databases, 2003. 14(1): p. 71-98.

13. Plattner, C. and G. Alonso, Ganymed: scalable
replication for transactional web applications, in
Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware. 2004, Springer-Verlag New
York, Inc.: Toronto, Canada. p. 155-174.
https://doi.org/10.1007/978-3-540-30229-2_9

14. R¨ohm, U., et al., FAS: A Freshness-Sensitive
Coordination Middleware for a Cluster of OLAP
Components, in Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB). 2002,
VLDB Endowment: Hong Kong, China. p. 754-765.

15. Wu, S. and B. Kemme, Postgres-R(SI): Combining
Replica Control with Concurrency Control Based on
Snapshot Isolation, in Proceedings of the 21st
International Conference on Data Engineering. 2005,
IEEE Computer Society. p. 422-433.

16. Bernstein, P.A., V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database Systems.
1987, Massachusetts: Addision-Wesley Publishers.

17. Connolly, T. and C. Begg, Database Systems - A Practical
Approach To Design, Implementation, and Management.
2005: Addison Wesley.

18. Stockinger, H., et al., File and Object Replication in Data
Grids. Cluster Computing, 2002. 5(3): p. 305-314.
https://doi.org/10.1023/A:1015681406220

19. Tatebe, O., et al. Grid Datafarm Architecture for
Petascale Data Intensive Computing. in 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 2002. . 2002.

20. Chervenak, A., et al. Giggle: A Framework for
Constructing Scalable Replica Location Services. in
Conference on High Performance Networking And
Computing. 2002: IEEE Computer Society Press.
https://doi.org/10.1109/SC.2002.10024

21. Lamehamedi, H., et al. Simulation of dynamic data
replication strategies in Data Grids. in Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS 2003) 2003.

22. Lamehamedi, H., et al. Data replication strategies in grid
environments. in Fifth International Conference on
Algorithms and Architectures for Parallel Processing,
(ICA3PP 2002) 2002.

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2645

23. Ranganathan, K. and I. Foster. Design and Evaluation of
Dynamic Replication Strategies for a High-Performance
Data Grid. in International Conference on Computing in
High Energy and Nuclear Physics. 2001.

24. Yuan, Y., et al., Dynamic Data Replication based on
Local Optimization Principle in Data Grid, in
Proceedings of the Sixth International Conference on
Grid and Cooperative Computing. 2007, IEEE Computer
Society. p. 815-822.

25. Byoung-Dai, L. and J.B. Weissman. Dynamic replica
management in the service grid. in Proceedings of 10th
IEEE International Symposium on High Performance
Distributed Computing, 2001. . 2001.

26. Amjad, T., M. Sher, and A. Daud, A survey of dynamic
replication strategies for improving data availability in
data grids. Future Generation Computer Systems, 2012.
28(2): p. 337-349.
https://doi.org/10.1016/j.future.2011.06.009

27. Chervenak, A.L., et al., Performance and Scalability of a
Replica Location Service, in Proceedings of the 13th
IEEE International Symposium on High Performance
Distributed Computing (HPDC '04). 2004, IEEE
Computer Society. p. 182-191.

28. Vazhkudai, S. and J.M. Schopf. Using Disk Throughput
Data in Predictions of End-to-End Grid Transfers. in
Proceedings of the third International Workshop on Grid
Computing. 2002.

29. Vazhkudai, S. and J.M. Schopf, Using Regression
Techniques to Predict Large Data Transfers.
International Journal of High Performance Computing
Applications, 2003. 17.

30. Bosio, D., et al., Next-Generation EU DataGrid Data
Management Services Computing, ed. H.E.P.C. 2003).
2003.

31. Hoschek, W., et al., Data Management in an International
Data Grid Project, in Proceedings of the First IEEE/ACM
International Workshop on Grid Computing. 2000,
Springer-Verlag. p. 77-90.

32. Uroˇs ˇ Cibej, Boˇstjan Slivnik, and B. Robiˇ, The
complexity of static data replication in data grids.
Parallel Comput., 2005. 31(8+9): p. 900-912.
https://doi.org/10.1016/j.parco.2005.04.010

33. Dullmann, D., et al. Models for replica synchronisation
and consistency in a data grid. in Proceedings. 10th IEEE
International Symposium on High Performance
Distributed Computing (HPDC '01) 2001.

34. Yuzhong, S. and X. Zhiwei. Grid replication coherence
protocol. in Proceedings. 18th International Parallel and
Distributed Processing Symposium (IPDPS '04) 2004.

35. Abadi, D.J. (2009) Data Management in the Cloud:
Limitations and Opportunities.

36. Gilbert, S. and N. Lynch, Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 2002. 33(2): p. 51-59.

37. Tim, K., et al., Consistency rationing in the cloud: pay
only when it matters. Proc. VLDB Endow., 2009. 2(1): p.
253-264.

38. Aiqiang, G. and D. Luhong. Lazy update propagation for
data replication in cloud computing. in 5th International
Conference on Pervasive Computing and Applications
(ICPCA), 2010 2010.

39. Voicu, L.C., et al. Re:GRIDiT - Coordinating distributed
update transactions on replicated data in the Grid. in
10th IEEE/ACM International Conference on Grid
Computing, 2009 2009.

40. Voicu, L.C. and H. Schuldt, How replicated data
management in the cloud can benefit from a data grid
protocol: the Re:GRIDiT Approach, in Proceeding of the
first international workshop on Cloud data management.
2009, ACM: Hong Kong, China.
https://doi.org/10.1145/1651263.1651272

41. Voicu, L.C., et al., Replicated data management in the
grid: the Re:GRIDiT approach, in Proceedings of the 1st
ACM workshop on Data grids for eScience. 2009, ACM:
Ischia, Italy. p. 7-16.

42. Voicu, L.C. and S. Heiko, Load-Aware Dynamic
Replication Management in a Data Grid R. Meersman, T.
Dillon, and P. Herrero, Editors. 2009, Springer Berlin /
Heidelberg. p. 201-218.

43. Voicu, L.C. Flexible Data Access in a Cloud Based on
Freshness Requirements. in IEEE 3rd International
Conference on Cloud Computing. 2010. Miami, Florida
https://doi.org/10.1109/CLOUD.2010.75

44. Krauter, K., R. Buyya, and M. Maheswaran, A taxonomy
and survey of grid resource management systems for
distributed computing. Software: Practice and
Experience, 2002. 32(2): p. 135-164.

45. Guy, L., et al., Replica Management in Data Grids. 2002,
Global Grid Forum Informational Document, GGF5.

46. Cameron, D., et al., Replica Management in the European
DataGrid Project. Journal of Grid Computing, 2004.
2(4): p. 341-351.

47. The DataGrid Project - The Data Grid Architecture.
2001; Available from:
http://eu-datagrid.web.cern.ch/eu-datagrid/.

48. AL-Mistarihi, H.H.E. and C.H. Yong, Response Time
Optimization for Replica Selection Service in Data Grids.
Journal of Computer Science, 2008. 4(6): p. 487-493.
https://doi.org/10.3844/jcssp.2008.487.493

49. Rahman, R.M., R. Alhajj, and K. Barker, Replica
selection strategies in data grid. Journal of Parallel and
Distributed Computing, 2008. 68(12): p. 1561-1574.

50. Husni Hamad, E.A.L.M. and Y. Chan Huah, On Fairness,
Optimizing Replica Selection in Data Grids. IEEE Trans.
Parallel Distrib. Syst., 2009. 20(8): p. 1102-1111.

51. Bell, W.H., et al., Simulation of Dynamic Grid
Replication Strategies in OptorSim, in Proceedings of the
Third International Workshop on Grid Computing. 2002,
Springer-Verlag. p. 46-57.

52. Cameron, D.G., et al., Analysis of Scheduling and Replica
Optimisation Strategies for Data Grids Using OptorSim.
Journal of Grid Computing, 2004. 2(1): p. 57-69.

53. Cameron, D.G., et al., Evaluating Scheduling and Replica
Optimisation Strategies in OptorSim, in Proceedings of

Wan Nor Shuhadah Wan Nik et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2638- 2646

2646

the 4th International Workshop on Grid Computing.
2003, IEEE Computer Society. p. 52.

54. Chervenak, A., The data grid: Towards an architecture
for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer
Applications, 2000. 23(3): p. 187-200.

55. Zhong, H., Z. Zhang, and X. Zhang, A Dynamic Replica
Management Strategy Based on Data Grid, in
Proceedings of the 2010 Ninth International Conference
on Grid and Cloud Computing. 2010, IEEE Computer
Society. p. 18-23.

56. Dongsheng, L., et al. Dynamic self-adaptive replica
location method in data grids. in Proceedings. 2003
IEEE International Conference on Cluster Computing
(CLUSTER '03). 2003.
https://doi.org/10.1109/CLUSTR.2003.1253345

57. Qingsong, W., et al. CDRM: A Cost-Effective Dynamic
Replication Management Scheme for Cloud Storage
Cluster. in IEEE International Conference on Cluster
Computing (CLUSTER), 2010. 2010.

58. Jalote, P., Fault tolerance in distributed systems. 1994:
Prentice-Hall, Inc. .

59. Myint, J. and T.T. Naing, Management of Data
Replication for PC Cluster Based Cloud Storage System.
International Journal on Cloud Computing: Services and
Architecture(IJCCSA), 2011. 1(3): p. 31-41.

60. Shvachko, K., et al. The Hadoop Distributed File System.
in IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), 2010 2010.

61. Vo, H.T., C. Chen, and B.C. Ooi, Towards elastic
transactional cloud storage with range query support.
Proc. VLDB Endow., 2010. 3(1-2): p. 506-514.

62. epiC project. Available from:
http://www.comp.nus.edu.sg/~epic/overview.html.

63. Jagadish, H.V., B.C. Ooi, and Q.H. Vu, BATON: a
balanced tree structure for peer-to-peer networks, in
Proceedings of the 31st international conference on Very
large data bases. 2005, VLDB Endowment: Trondheim,
Norway. p. 661-672.

64. Bonvin, N., T.G. Papaioannou, and K. Aberer, A
self-organized, fault-tolerant and scalable replication
scheme for cloud storage, in Proceedings of the 1st ACM
symposium on Cloud computing. 2010, ACM:
Indianapolis, Indiana, USA. p. 205-216.
https://doi.org/10.1145/1807128.1807162

