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ABSTRACT 

 

The conjugate gradient (CG) methods are iterative procedures 

for unconstrained optimization problem. Many variants and 

alterations have been done lately to develop this method. In this 

research, we suggest a new hybrid CG coefficient  by 

combining a modified Hestenes-Steifel (HS) formula with 

Fletcher and Reeves (FR). Theoretic proves has shown that the 

new technique achieves sufficient descent condition if inexact 

line search (strong Wolfe-Powell) is used. Besides, most of the 

numerical outcomes show that our technique is very efficient 

when compared to HS, FR and some famous hybrid CG for 

given standard test problems. The numerical outcomes also 

displayed that the new coefficient   performs better than the 

original HS and FR methods. 

 

Key words: Hybrid CG, unconstrained optimization, inexact 

line search, sufficient descent condition. 

 

1. INTRODUCTION 

 

The CG method (CGM) is among the efficient methods for 

solution of unconstrained optimization problems. Its 

convergence properties and simplicity make it one of the best 

methods in real life application like economics, health and 

physics. The CG method is designed to solve problem in the 

form: 

 

                                               (1) 

 is smooth and its first derivative is defined by  

  The nonlinear CGM obtain a sequence by using 

the following recurrence formula;  

       

                                      (2)  

        where  is the step size computed by a method called line 

search,  is the current iterate and  is the direction of search 

determined by. 

                                                                                              

                (3)  

 

 

 
 

The step size  in CGM is computed to satisfy some form of 

Wolfe conditions [1].  The standard Wolfe condition is: 

                    (4) 

                                                              (5)                

 

where  . While order CG method are computed to 

satisfy the strong Wolfe Powell (SWP) is computed by (4) and 

                                    (6)                                     (6) 

 

In the linear CGM or nonlinear CGMs the parameter  is called 

CG coefficient [2], Some of the famous CG formula for   are: 

      (Hestenses and Stiefel [3]) 

               (Fletcher and Reeves [4]) 

         (Polak, Ribiere and Polyak [5, 6])                                                                              

               (Conjugate Descent [7]) 

         (Liu and storey [8],) 

       (Dai and Yuan, [9]) 

 

The convergence analysis of these algorithms with different  

was studied by several academics. (see Zoutendijk [10], Powell 

[11,12], Z. Wei [13], Zhi- Feng Dai [14], Al-Baali [15], Dai and 

Yuan [16], Narene et al., [29]).  

 

However, the convergence analysis is yet to be proved for PRP, 

LS and HS methods under all stated line searches [30, 31]. The 

foremost purpose is that they cannot guarantee the decency of 

values of objective function at every iteration [17].  

 

Some well-known CGMs methods have strong convergence 

property like FR, DY, and CD, but they may not perform well. 

Others like PRP, HS, and LS perform well but they may not 

converge. So, the hybrid CGMs are formulated to combine the 

attractive features of the well-known CGMs. 

 

Recently, Touati and Storey [18] improve AL-Baali’s [15] 

formula for the FR method  

                                         

and propose the first hybrid CG algorithm  
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Motivations by this, Gilbert and Nocedal [19] extended 

Al-Baali’s formula for  

 

                                                                                                                                              

 

to propose the formula 

 

.                                                                                                    

 

Hu and Storey [20] further suggested an improved CG formula 

as follows: 

 

             .      

 

Dai and Yuan [21], propose a family of CGM that are globally 

convergent and defined by 

 

                                                                                                          

 

where  is parameter and  .   

 

Recently, Xiao and Kong [22], combine  and , as 

follows. 

    

 

 

More recently, a new hybrid CG is considered by Djordjevic 

[23]. The CG parameter which is a combination of    and  

 : 

                                                                      

       

where the conjugacy condition is satisfied if the parameter  is 

computed in such away. 

 

2. A NEW FORMULA FOR   

 

Numerous researchers have tried to improve the conjugate 

gradient methods. This has led to the development of many 

variants of CG algorithms. For instance, a modification of the 

PRP algorithm known as WYL method was proposed by Wei et 

al. [24]. Recently Zhang [17] extended the work of WYL to 

propose a variant of PRP known as NPRP that fulfilled descent 

condition and satisfied the global convergence property under 

inexact line search. More so, Dai and Wen [14] suggested the 

DPRP method which is an efficient modification of the NPRP 

method. 

Motivated by nice convergence properties and efficient 

numerical results of these methods [18, 24], we suggest a new 

formula for  called , where  indicates Hybrid Tala’t 

and Mustafa.  

 

            (7)  

 

where the new  is modification of HS method as follow: 

 

 
 

The algorithm of the proposed method is defined as follows. 

 

 Algorithm (Algorithm for HTM) 

  

Stage 1: Initialization. let  and   set  . If   

 then stop. 

Stage 2: Calculate the stepsize    by (SWP) line search. 

Stage 3: Set   if   

  then stop. 

Stage 4: Calculate   by (7), and produce   by (2). 

Stage 5: Let   go to Stage 2. 

 

   Lately Wei et al. [26] introduce a variation of PRP 

coefficient referred to the WYL method.  

 

 
 

  Enlightened by preceding ideas [3], [26], we introduce our 

  which is identified as  ,where  symbolizes Tala’t 

and Mustafa. The new  is a variation of HS method which is 

as follows: 

 

                   (5)  

 

The algorithm of the proposed coefficient is as follows: 

 

Algorithm 1 

Stage 1: Initialization. Given   set     if   

  then stop. 

Stage 2: Compute    by (3). 

Stage 3: Let             

if     then stop. 

Stage 4: Calculate   by (5), and produce   by (4). 

Stage 5: let   go to Stage 2. 

 either SI (MKS) or CGS as primary units. (SI units are strongly 

encouraged.) English units may be used as secondary  

3.  CONVERGENCE ANALYSIS 

 

The convergence analysis is among important condition to 

consider when developing a new conjugate gradient coefficient. 

In addition to numerical performance, the proposed method 

should be able to satisfy the sufficient descent condition defined 

by 
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                           (8) 

 

where 1). 

 

In this section, we need to show that the proposed method 

satisfies the sufficient descent condition. The following 

Theorem is very important in the proof. 

 

Theorem  

Suppose that the sequences  and  are derived by a 

method of the form (2), (3) and (7), and  is computed by the 

SWP line search defined by (4) and (6), if   , then (8) 

holds. 

 

Proof 

The HTM method in (7) can be considered in two cases: 

 

Case I: If  , , then  

automatically returns . Then the sufficient descent condition 

given in (8) holds [4]. 

 

Case II: If , then . To 

prove that the sufficient descent condition given in (8) holds, we 

need to simplify  to ease the theoretical proof. From (6), we 

have 

 

 
 

 
 

Hence, we obtain  

                                                         (9) 

Using (6) and (9), we get                   

                  (10)  

From (3)    

                            (11) 

 

By induction, we can prove the descent property of . Since
 

 , now suppose that  

 are descent directions, i.e  
 

 

  

From (10), we have                        

 

 

 

From (11),                      

 
 

By repeating this procedure and the fact , we 

get 

 
Since,           

 
then, (12) is rewritten as 

 
 

Restricting 
 
, we obtain . Let   , 

then  and (13) become  

 
 

  

    

This implies that (8) holds. The proof is complete. □ 

4. NUMERICAL RESULTS 

To ascertain the effectiveness of the proposed , we compare 

 method with the methods of FR, HS, HHUS and HGN 

using 33 randomly selected test functions considered from 

Andrei [25]. The initial points are chosen randomly beginning 

from a point near to the solution point to points far away with 

dimensions . In certain cases, the computations fail to 

obtain the step size and thus, the method is unsuccessful [27, 28]. 

Numerical outcomes are compared based on CPU time and 

number of iteration (NOI) and the performance analyzed using 

performance profile by Dolan and More [26] as in Figure 1 and 

Figure 2. All computations are carried out on an Intel (R) Core 

TM i3-M350 (2.27GHz) CPU processor, with 4 GB RAM 

memory. 

 

 
 

Table 1: List of test problems 
N

O 

Function Dim Initial point 

1 SIX HUMP 2 (0.5,0.5), (8,8), (40,40) 

2 THREE HUMP 2 (-1,1),(-2,2),(2,-2) 

3 LEON 2 (2,2),(4,4),(8,8) 

4 QUADRATIC  

QF1 

2 (3,3),(5,5),(10,10) 

5 MATYAS 2 (5,5),(10,10),(15,15) 

6 DIAGONAL 2 2 (1,1),(5,5),(15,15) 

7 BOOTH 2 (10,10),(25,25),(100,100) 

8 RAYDAN 2 (3,3),(13,13),(22,22) 

9 ZETTL 2 (5,5),(20,20),(50,50) 

10 TRECANNI 2 (5,5),(10,10),(50,50) 
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11 NONDIA 2 (10,10),(20,20),(35,35) 

12 HAGER 2 (7,7),(15,15),(20,20) 

13 EXTENDED 

MARATOS 

2 (10,10),(60,60),(120,120) 

14 EXTENDED 

PENALTY 

2 (40,40),(80,80),(100,100) 

15 GENERLIZED 

TRIDIAG 1 

2 (3,3),(21,21),(90,90) 

16 QUADRATIC 

QF2 

2 (4,4),( 40,40),(80,80) 

17 CLOVILLE 4 (2,..,2),(4,..,4),(10,..,10) 

18 EXTENDED 

WOOD 

4 (5,..,5),(20,..,20),(30,..,30) 

19 DIXON & 

PRICE 

2 

4 

(6,6),(18,18),(60,60) 

(6,.,6),(18,..,18),(60,..,60) 

20 ARWHEAD 2 

10 

(8,8),(24,24),(32,32) 

(8,.,8),(24,..,24),(32,..,32) 

21 GENERRALIZE

D QUARTIC 

2 

10 

(7,7),(70,70),(140,140) 

(7,..,7),(70,..,70),(140,..,140) 

22 FLETCHCR 2 

10,100,1000 

(12,12),(15,15),(35,35) 

(12,..,12),(15,..,15),(35,..,35) 

23 ROSENBROCK 2 

10,100,1000 

(3,3),(15,15),(75,75) 

(3,..,3),(15,..,15),(75,..,75) 

24 SHALLOW 2 

10,100,1000 

(2,2),(12,12),(200,200) 

(2,..,2),(12,..,12),(200,..,200) 

25 EXTENDED 

WHITE & 

HOLST 

2 

10,100,1000 

(3,3),(6,6),(10,10) 

(3,..,3),(6,..,6),(10,..,10) 

26 EXTENDED 

BEALE 

2 

10,100,1000 

(-4,-4),(-1,-1),(4,4) 

(-4,..,-4),(-1,..,-1),(4,..,4) 

27 PERTURBED 

QUADRATIC 

2 

10,100,1000 

(1,1),(5,5),(10,10) 

(1,..,1),(5,..,5),(10,..,10) 

28 EXTENDED 

TRIDIAGONAL 

1 

2 

10,100,1000 

(25,25),(50,50),(75,75) 

(25,..,25),(50,..,50),(75,..,75) 

29 DIAGONAL 4 2 

10,100,1000 

(1,1),(20,20),(40,40) 

(1,.,1),(20,..,20),(40,..,40) 

30 EXTENDED 

HIMMELBLAU 

2 

10,100,1000 

(10,10),(50,50),(125,125) 

(10,..,10),(50,..,50),(125,.,12

5) 

31 EXTENDED 

DENSCHNB 

2 

10,100,1000 

(5,5),(30,30),(50,50) 

(5..,5),(30,..,30),(50,..,50) 

32 EXTENDED 

BLOCK DIAG 

BD1 

2 

10,100,1000 

(1,1),(5,5),(10,10) 

(1,..,4),(5,..,5),(10,..,10) 

33 SUM SQUARES 2 

10,100,1000 

(1,1),(5,5),(10,10) 

(1,..,1),(5,..,5),(10,..,10) 

In [26] Dolan and More suggested an ideal to assess and equate 

the performance of the set of solvers  on a test set of problems 

. Assuming  solvers and   problems exists, then for each 

problem  and solver , they defined 

  = computing time (NOI. or CPU time) necessary to solve 

problems  by solver . Wanting a fixed form for evaluations, 

they equated the performance of problem  by solver 𝑠 with the 

finest performance for any solver to the same problem using the 

ratio 

 
 

Assume that a parameter        is selected, and  

  iff solver  does not solve problem . The 

performance of solver  on any given problem could be of 

concern, but since we want to achieve a general valuation of the 

performance of the solver, it was defined 
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Figure 1: Performance profile based on NOI  
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Figure 2: Performance profile based on CPU time 

 

In Figure 1 and Figure 2, the performances of HTM is compared 

to the known methods of HS and FR and hybrid methods of 

HHUS and HGN. The results show that new hybrid method has 

shown considerable improvements from the FR and HS methods 

by while retaining their attractive featuress. Besides, it can be 

said that HTM succeeds to outperforms HHUS and HGN. In 

summary, the figures indicate that HTM is robust and 

competitive to other CGMs. 

5. CONCLUSION 

In this paper, we studied a new hybrid method for unconstrained 

optimization problems. We showed that the suggested method 

achieves the sufficient descent condition under inexact (SWP) 

line search. The outcome of the numerical tests shows that the 

new method is efficient when compared with other CGMs. The 

authors recommend testing this method under other line searches 

in future research.  
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