
Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

75

ABSTRACT

The PC framework has been advanced from a solid PC gadget
to a significantly more perplexing customer worker condition
in earlier years. One of those recently evolved advancements
is Mobile Agent. A Mobile Agent is a creation of program and
information that can (move) starting with one PC then
migrates onto the next node and proceeds with its execution
on the goal PC. As a general rule, the portable operator is the
code/object moving which goes in its itinerary inside the
system of associated hubs. In this work, the best way in
insignificant time is found by relocating the Mobile Agent
from the source hub to the goal hub utilizing the numerical
procedure and streamlining strategy. This work centers
around how to locate the best way to utilize the Ant Colony
Optimization calculation (ACO), then figuring out the best
path, the path will be compared with those of similar works
that used the master-slave design pattern with the Genetic
algorithm and Node Compression Algorithm

Key words: Mobile Agent, Ant Colony Optimization
Algorithm (ACO), Itinerary Design Pattern

1. INTRODUCTION

Mobile Agent technology is a way to build an intelligent
generation of highly distributed systems because of its
flexibility, capability, adaptability, and independency.
However, there are issues that are not yet fully resolved by
developers, such as reliability and safety.
Mobile agents work on a clear scenario, so users have only
laptops with a network connection.
A mobile operator can work and move without staying on a
mobile device, which means he can go to the Web sites to get
information from the same vendor, the results obtained are
then sent to the mobile device.

Mobile agents support flexible and adaptive load transfer
from host to host, depending on bandwidth and other
available resources. So the mobile agent technology is good
for wired and wireless networks.
A migration strategy is a push-all data strategy. It is a strategy
through which the code is fully transferred to all the nodes
that the agent visits, not to the next node only.
Design patterns are very good in the process of improving the
object-oriented system, the use of design patterns are intended
to improve application development and identifying elements
of reusable good designs for mobile agent applications.
There are different types of design patterns for agent moving,
one of the design patterns used is the so-called Itinerary
pattern, which objectifies agents’ itineraries and their
navigation among multiple destinations.
When agent tracking is complete, the results will be returned
to the master, through this migration, pathways are formed to
calculate the best path using one of the artificial intelligence
algorithms; Ant Colony Optimization algorithm (ACO).

The ACO differs from the classical ant system in the sense
that here the pheromone trails are updated in two ways. First,
when ants construct a tour they locally change the amount of
pheromone on the visited edges by a local updating role, after
that, all the ants have built their individual tours, a global
updating rule is applied to modify the pheromone level on the
edges that belong to the best tour found so far.

2. RELATED WORK

Many researchers introduce mobile agents and design
patterns with set of algorithms to optimize the time route
amongst several paths,[2], proposed master-slave design and
genetic algorithm (GA) patterns to find the best path in
minimal time is found by migrating the mobile agent from the
source node to the destination node using the mathematical
model and optimization technique.[1], proposed a set of
performance improvement patterns for use in mobile agent
systems. These patterns are utilized to study agent behavior

Development of Optimized Itinerary Agent Design Pattern

Using Ant-Colony Algorithm
Fawwaz Al-Refa’e 1, Faiz Al-Shrouf 2 , Shadi R.-Masadeh 3

1 Talal Abu Gazaleh, Java Developer, Amman-Jordan,
fawazalrefai@hotmail.com

2Isra University, Faculty of Information Technology, Department of Computer Science, Amman-Jordan,
Fayez.shrouf@iu.edu.jo

3Isra University, Faculty of Information Technology, Department of Computer Information Systems and Cyber
Security, Amman-Jordan

Corresponding Author: shadi.masadeh@iu.edu.jo

ISSN 2278-3091
Volume 10, No.1, January - February 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse111012021.pdf

https://doi.org/10.30534/ijatcse/2021/111012021

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

76

and characteristics, in addition to the interaction between
factors supported by the mathematical approach and models
which support improved mobility performance. A set of
master-slave samples were used to work with a group of
mobile agents using the Aglet platform, the Tahiti server, and
the Java Execution Environment (JEE). By sending a group of
messages from master to slave and recording message
response times in milliseconds, improved time is achieved
with two types of design patterns (V-agent and P-agent, [5]
introduced a comparative analysis of the most successful
methods of optimization techniques inspired by Swarm
Intelligence (SI): Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO), a comparative analysis
is carried out to endow these algorithms with fitness sharing,
aiming to investigate whether this improves performance
which can be implemented in the evolutionary algorithms,[7],
proposed Ant colony optimization and artificial potential
field were used respectively as global path planning and local
path planning methods. Some modifications were made to
accommodate ant colony optimization to path planning.
Pheromone generated by ant colony optimization was also
utilized to prevent the artificial potential field from getting
the local minimum. Simulation results showed that the hybrid
algorithm could satisfy real-time demand. The comparison
between ant colony optimization and the genetic algorithm
was also made.

3. MOBILE AGENTS

Mobile agents can be defined as mobile codes that sent to a
destination from a source (PCs) for a specific task [4]. Mobile
agents are autonomous programs that can be transferred in a
network, at a predefined time, starting with one PC then onto
the next, places of their choice. By transporting to the
destination, the running program is preserved. The program
will be resumed and processed in the preserved state at the
destination. For a few reasons, Mobile agents can convey an
appropriate, vigorous, and productive framework for applying
brilliant conditions and circulated tasks. These incorporate
enhancements to the inertness and data transfer capacity of
client-server applications, just as a diminishing weakness to
interferences and disconnections in the network. “In fact, in
both smart and distributed environments, mobile agents have
numerous benefits in developing different services” [3]. A
mobile agent is a software entity that migrates between host
and host, performing data collection and configuration tasks
on a user’s behalf. “It migrates between agent runtime
environments (AREs) and computers”.

4. ITINERARY DESIGN PATTERN
Itinerary design pattern as shown by Figure 1, that shows
overall scheme [4] (i.e. the structural relationship of
participants itinerary design pattern). This scheme is
arranged into the following categories:
 Intent

The Itinerary design pattern externalizes agents' routes and
their routes among various destinations.
 Motivation
Being a self-sufficient mobile element, an agent is equipped
for navigating itself autonomously to numerous hosts. In
particular, it ought to have the option to deal with special
cases, for example, obscure hosts while attempting to dispatch
itself to new goals or make a composite visit (e.g., come back
to destinations it has just visited). It may even need to change
its itinerary dynamically.
Therefore, it is likely desirable over independent the
treatment of route from the agent's behavior and message
dealing with, in this way advancing measured quality of each
part. The Itinerary design pattern allows you to do as such.
The key thought is to move the duty regarding route from the
agent article to an Itinerary object. The itinerary class will
give an interface to keep up change the agent's itinerary and to
dispatch it to new destinations. An agent object and an
Itinerary object will be associated as follows: The agent will
make the Itinerary object and instate it with, the first step is a
roster of destinations to be visited consecutively and the
second step a reference to the agent. At that point, the
specialist will utilize the go method to dispatch itself to the
following accessible destination in its schedule or back to its
source, respectively. To support the abovementioned, it is
fundamental that the Itinerary object is moved along with the
agent, and that their references to one another be kept up at
each destination.
 Applicability
 Utilize this pattern when you desire to:
1. Conceal the specifics of interest of an agent's visit from its
behavior to advance modularity of the two sections.

2. Give a uniform interface to consecutive heading out of
agents to different hosts.
3. Define tours that can be taken by agents.
 Participants
 Itinerary. Defines an interface for navigating with an agent.
1. ConcreteItinerary. Implements the Itinerary interface and
keeps track of the current destination of the agent.
2. Agent. A base class of a mobile agent.
3. ConcreteAgent. A subclass of the Agent class that
maintains a reference to a ConcreteItinerary object.
 Collaboration
1. ConcreteItinerary object keeps track of the current
destination of the ConcreteAgent and can dispatch it to new
destinations.
2. Whenever the ConcreteAgent is dispatched to a new
destination, the ConcreteItinerary is also transformed, and
their references to each other are restored at the target
destination. Figure 2 shows collaboration of itinerary design
pattern.
 Consequences

 This pattern has three main consequences:
It bolsters variations in navigation. For instance, an alternate
special case dealing with routine can be characterized if an
agent neglects to dispatch itself to another destination: drop

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

77

the visit and come back to the starting point, attempt to go to
another destination, and later attempt once more. This
pattern makes it simple to give such varieties by essentially
supplanting one Itinerary object with another or by
characterizing Itinerary subclasses. The agent class isn't
adjusted.

1. It encourages the sharing of visits by various agents. For
instance, two agents may utilize a similar visit to multiple
users’ desktops, one to plan a gathering between all clients
and the other to convey them notice messages. This pattern
empowers agents to share visits by sharing itinerary objects,
although not simultaneous.

2.It streamlines the usage of successive tasks. Errands can be
typified in exceptional Task objects while an Itinerary class is
reached out with an interface to relate Task objects with
destinations. The itinerary object monitors the current tasks to
perform. At whatever point the operator is dispatched to
another destination, it triggers the execution of the current
undertaking spared by its itinerary object. In Java-based agent
frameworks, for example, Aglets and Odyssey in which
agents are moved with just their code and information, and
not with their whole execution express, the Itinerary design
forestalls the need to physically monitor the execution
condition of an agent (i.e. what the agent should do) when it

travels.

Figure 1: Structural Relationship of Itinerary Design Pattern

5.ANT-COLONY OPTIMIZATION ALGORITHM

The Ant Colony framework or the essential thought is
developed by [5], [6], [7], as shown in Figure 2. The ants
move in an orderly fashion to the food. The center picture
represents the circumstance not long after an obstruction is

embedded between the home and the food. To keep away from
the impediment, at first, every subterranean ant decides to
turn left or right indiscriminately. Let us expect that ants
move at a similar speed keeping pheromone in the path
consistently. Nonetheless, the ants that, by some coincidence,
decide to turn left will arrive at the food sooner, while the ants
that circumvent the hindrance turning right will follow a
more drawn-out way, thus will set aside longer effort to dodge
the deterrent. Thus, pheromone collects quicker in the shorter
way around the obstruction. Since ants want to follow trails
with bigger measures of pheromone, in the long run, all the
ants join the shorter way around the hindrance.

Figure 2: The Behavior of Real Ant

An artificial Ant Colony System (ACS) is an agent-based
framework, which reproduces the regular conduct of ants and
creates instruments of participation and learning. ACS was
proposed by (M., Dorigo and L.,Gambardella, 1997) as
another heuristic to take care of combinatorial improvement
issues. This new heuristic, called Ant Colony Optimization
(ACO) has been seen as both hearty and adaptable in taking
care of a wide scope of combinatorial advancement issues.

The principle thought of ACO is to show an issue as the quest
for a base cost way in a chart. Fake ants as though stroll on
this chart, searching for less expensive ways. Every
subterranean insect has fairly basic conduct fit for finding
generally costlier ways. Less expensive ways are found as the
emanant after effect of the worldwide participation among
ants in the state. The conduct of fake ants is roused from
genuine ants: they lay pheromone trails (clearly in a scientific
structure) on the chart edges and pick their way as for
probabilities that rely upon pheromone trails. These
pheromone trails dynamically decline by vanishing. Also,
counterfeit ants have some additional highlights not found in
their partner in genuine ants. Specifically, they live in a
discrete world (a chart) and their moves comprise of advances
from hubs to hubs.

The ACO varies from the traditional subterranean ant
framework as in here the pheromone trails are refreshed in
two different ways. Firstly, when ants develop a visit, they
locally change the measure of pheromone on the visited edges
by a local updating role. Secondly, after all the ants have
manufactured their visits, a global updating rule is applied to

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

78

adjust the pheromone level on the edges that have a place with
the best subterranean insect visit found up until now.

5. PROPOSED METHODOLOGY

Proposed methodology as given by Figure 3, is to create a
mobile agent, that moves between a set of hubs in the network
to perform a task. Then, we created the itinerary pattern,
which concerned with routing among multiple destinations
and always knows where to go next and finally return to
resource. The second step was to calculate the time needed to
process the data between each hub and the other hubs from the
source to the destination by using the push-all data migration
strategy. In the migration process, a variable data size was
used to calculate the change that affects the process. We then
take a test case, which is seven test cases for each case, and we
collect and take the average among them. The third stage
computing the shortest path from the source to the destination
by sending number of ants then the route that most ants take is
the shortest path.

Figure 3: The Proposed Methodology

5.1 Creating Mobile Agent
In the primary stage, the mobile agent is created, which is an
autonomous code that moves starting with one PC then onto
the next in a similar network. Likewise, this code is portrayed
by different highlights, including the progress starting with
one hub then onto the next to do undertakings without client
intercession. The assignment actualized in our work is
handling information in hubs from the beginning stage to the

interface and afterward restoring the outcomes to the source.

5.2 Creating Itinerary Design Pattern
The first step is to create an “ItineraryAgent”, whose type is
“Agent”. This agent triggers “Itinerarybehaviour”, whose
type is “OneShotBehaviour”, that sets the itinerary theat
agent
must follow, and begins the relocation. The agent execution is
constrained by two main methods “beforeMove” and
“afterMove” that controls the relocation and permits the
execution of the activity, individually. The operator work is
executed in “JobBehaviour” (of type “OneShotBehahviour”)
class, added to the agent at whatever point it shows up to the
new goal. A significant detail: before moving, the specialist
confirms, through agent management system, if the goal
compartment exists. If it doesn't exist, it attempts to relocate
to the following goal in its schedule. This check is given in
class “GetAvailableLocationBehaviour” which is accessible
in the model codes given by the framework.

5.3 Push All Data Migration Strategy
In the subsequent stage, the time between every hub and the
other is determined by utilizing the push-all information
movement strategy. This relocation system depends on the
formation of a diagram dependent on the schedule from the
beginning hub to the end hub, through the middle of the road
hub that moves information. Relocation is completed to all
goals that will be visited by the specialist, which requires the
operator to realize every one of its goals ahead of time. In the
three periods of this stage, time will be determined between
every two edges. Agent moved with three agent data
collections, the first with a small size of (10) KB and the
second with a medium size of (50) KB and the third with a
large size of (100) KB.

5.4 Implementing Ant Colony Optimization Algorithm
After pushing the data: first, when ants develop a visit, they
locally change the measure of pheromone on the visited edges
by a local updating role, second, after all the ants have
implemented their visits, a global updating rule is applied to
adjust the pheromone level on the edges that have a place with
the best visit found up until now, then determining the route
that most ants take to determine the shortest path.

6. ANALYSIS OF RESULTS

Results are reported according to three different stages: the
first stage concerned with creating the agent and itinerary
design pattern using Java Agent Development Environment
(JADE) as shown in Figure 4. After running the mobile
agent and the itinerary design pattern, the time taken
between all edges in the network is calculated using the
push-all data strategy, where variable data was taken to
calculate the time between a set of edges from the source to
the destination. The time is calculated in milliseconds. It is
noted that implementation has taken place on personal

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

79

computer with the following specifications: Processor:
Inter(R) Core (TM) i7-3632QM CPU @ 2.20 GHz. (RAM):
16.0 GB. System Type: 64-bit Operating System. The
implementation resents the case when the agent’s size is 10
KB., 50 KB, and 100 KB respectively.

Figure 4: Running Agents on JADE Platform

The time is calculated and comparison was conducted
between this research which uses itinerary design pattern
and Ant Colony Algorithm (ACO) and results reported from
implementing master-slave design pattern and Genetic
Algorithm (GA), as shown in Table 1.

Table 1: Calculating time using ACO and GA

Start N
ode

End N
ode

Time by the size of data in MS

10 KB 50 KB 100 KB

ACO GA ACO GA ACO GA

1 2 1112 1175 2755 2910 2723 2877

1 3 1084 1145 2582 2728 2487 2627

1 4 1243 1313 2836 2996 2641 2790

2 4 764 807 1260 1331 832 879

3 4 934 987 1441 1522 851 899

3 6 415 438 1871 1547 1748 1847

2 5 426 450 1464 1977 2407 2543

6 9 500 528 3381 1764 1947 2057

5 8 924 976 3596 3799 4425 4675

5 11 768 811 3135 3312 3932 4154

4 7 691 730 1670 3572 4462 4714

7 8 926 978 2377 2511 2410 2546

8 10 941 994 1760 1859 1366 1443

8 13 868 917 2770 2926 3154 3332

9 13 1128 1192 2369 2503 2062 2178

10 11 736 778 2662 2812 3196 3376

10 12 926 978 2591 2737 2763 2919

10 13 1122 1185 2379 2513 2088 2206

12 19 878 928 2898 3061 3351 3540

14 19 685 724 2400 2535 2475 2615

13 16 771 815 2261 2389 2847 3008

11 14 892 942 2619 2767 2866 3028

12 15 809 855 2228 2354 2371 2505

15 19 748 790 2998 3167 3732 3943

15 17 789 834 2348 2481 2590 2736

16 17 954 1008 2259 2386 2168 2290

17 20 766 809 2500 2641 2880 3042

17 18 777 821 2735 2889 3249 3432

18 20 1016 1073 2540 2683 2529 2672

19 20 1076 1137 2471 2610 2315 2446

To determine the shortest path at this stage, the NetBeans
Platform is used the artificial intelligence technique to
calculate the shortest path by optimization the execution time.
For this purpose, an ACO algorithm was used, then a specific
number of artificial ants are sent, and the ants follow their
path according to the pheromone, which depends based on the
total weight of all edges, then calculate the time taken for the
optimal path in the case of the algorithm mentioned.

The case is used with the following parameters:
Q: 0.0005

The parameter is used to justify the amount of pheromone
deposited.

RHO: 0.2

The parameter used for varying the level of pheromone
evaporation.

ALPHA: 0.01

The parameter used for controlling the importance of the
pheromone trail.

BETA: 9.5

The parameter used for controlling the importance of the
distance between source and destination.

NUMBER_OF_ANTS: 500

The parameter used for the number of ants that were sent.

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

80

 Results are extracted from this case that shows the path
picked with minimal weight. The implementation for this
situation is given in Figure 5.

Figure 5: Time Calculation using ACO Algorithm

7. CONCLUSIONS

Figure 6 shows a comparison in computation of time in
milliseconds between two different algorithms implemented
previously namely Node Compression Algorithm (NCA),
Genetic Algorithm (GA) and Ant Colony Algorithm. We
carry out independent iterations and reporting results.
Results concluded that time computed using ACO gives best
results comparing to other two algorithms (NCA) and (GA).

Figure 6: Comparison Results for Time Computation using NCA,

ACO, and GA

8. FUTURE WORK

In this research, a model based on mobile agent and
Itinerary design pattern has been proposed to calculate the
shortest path for the mobile agent migration from source to

destination in the minimum time using the push all-data
strategy as well as one of the artificial intelligence
algorithms called the ACO algorithm. We have used the
ACO algorithm because it provides good features in
choosing the shortest path among a set of alternative paths.
By comparing the results of the ACO algorithm with the GA
algorithm and with the NCA algorithm, the ACO has proved
to be more effective. Finally, the proposed model was
designed based on the JADE in the Java Devel The
researchers suggest some important research points that
should take into considerations for future work including,
the following research areas:

 Implementing another agent design pattern that explores
the agent's behavior.

 Using another platform for implementation to carry out
computations.

 Suggesting another development algorithm such as the
Dijkstra algorithm and comparing its results with those of
similar works.

 Applying the pull-all data strategy which is the opposite of
the push-all data strategy.

ACKNOWLEDGEMENT

The authors owe thanks to Scientific Research Deanship at
Isra University for facilitating procedures of conducting this
research and its financial support for this research.

REFERENCES

1. F. Al-Shrouf,A.Turani, A. Abu Baker, A.Al Omari.

Analysis of Mobile Agent Optimization Patterns,
British Journal of Applied Science & Technology, Vol. 4,
No. 12, pp. 1841-1857, 2014.

2. R. Allawi, A. Al-Hroob, F.Al-Shrouf. Development of
Optimized Mobile Agent Design Pattern using
Push—All Strategy. MS.c Thesis, Faculty of
Information Technology, Department of Software
Engineering, Isra University, Amman- Jordan, 2019.

3. F. Al-Shrouf, Sh. Masadeh, F. Al-Zyoud. Mathematical
Model for Comparing Performance Evaluation of
Mobile Agent Platforms, International Journal of
Theoritical and Applied Information Technology, Vol.
98, No.2, pp. 338-348, 2020.

4. Y. Aridor, D. Lange. Agent Design Patterns: Elements
of Agent Application Design”. In Proceedings of 2nd
International Conference on Autonomous Agents,USA,
pp. 108-115.1998.

Fawwaz Al-Refa’e et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 75 – 81

81

5. V. Selvi, R. Umarani. Comparative Analysis of Ant
Colony and Particle Swarm OptimizationTechniques,
International Journal of Computer Application, Vol. 5,
No. 4, pp. 1-6,2010.

6. M.Dorigo, M. Birattari, T. Stuzle, Ant Colony
Optimization., IEEE Computational Intelligence, Vol.
1, No. 1, pp. 53-66. 2006.

7. H. Mei, Y. Tian, L. Zu, A Hybrid Ant Colony
Optimization Algorithm for Path Planning of Robot
in Dynamic Environment, International Journal of
Information Technology, Vol. 12, No. 3, pp.78-88, 2006.

