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 
ABSTRACT 
 
Due to time to market constraints, the application of Xilinx 
System Generator (XSG) and Matlab-Simulink which are 
consider as one of the rapid prototyping tools, has become 
increasingly important. In association with Field 
Programmable Gate Array (FPGA) devices, hardware 
co-simulation allows designers for evaluation, testing and 
validation of a new algorithm, a new component or a new 
prototype without damaging the actual system. This paper 
presents a new methodology for implementing linearization 
of nonlinear sensor for temperature measurements, using a 
real-time hardware co-simulation. This methodology helps to 
improve the design verification efficiency for such a system. 
The present paper demonstrate the application of XSG tool to 
verify a new linearizer to linearize a nonlinear sensor such as 
NTC Thermistor based on Adaptive Neuro Fuzzy Inference 
System (ANFIS). ANFIS based inverse modeling technique is 
used for linearization. In the present paper, an intensive study 
of the effect of the type, number of membership functions and 
training method on the training error has been reported. The 
number of epochs needed to linearize the sensor is also 
presented to bring out the convergence time of the technique. 
The presented results may be of great importance to design 
engineers.  
 
Key words : ANFIS, Hardware Co-Simulation, FPGA, 
Sensor linearization, XSG.  
 
1. INTRODUCTION 
 
Sensors are the fundamental elements which are used in most 
of the measurement circuits to monitor the physical quantity 
such as temperature, pressure, etc or to give feedback signals 
to the control unit. Sensors having low cost, better resolution, 
higher sensitivity and linear characteristics are required for 
industrial applications [1]. Generally Sensors gives analog 
output, which may sometimes shows nonlinear behaviour. 
This is due to natural nonlinear characteristic of sensor itself, 
environment’s dynamic nature, sensor’s inherent noise, aging 

 
 

and data loss due to transients or intermittent faults [2]. It is 
essential to have linear characteristics of the sensor as it will 
improve the system performance [3]. Linearization of this 
nonlinear behaviour of sensors has always been a designed 
challenge. Linearization of nonlinear sensor in the digital 
environment is a vital step in the instrument signal 
conditioning process [4]. 
 
Linearization of non-linear sensors characteristics is often a 
complex  and  difficult  task. It  is for  this reason, neuro-fuzzy 
systems are getting importance in the field of soft computing. 
This is because of their learning, intrinsic  parallelism  and 
adaptation capabilities. Results revealed that this artificial 
intelligence technique utilizing the neuro-fuzzy system, 
optimizes the objective function [5]. Two main systems  such 
as Mamdani-Zadeh (MZ) and Takagi–Sugeno–Kang (TSK) 
models have been developed [6], [7]. Among the two models, 
TSK system  is consider as more universal and robust with 
many modifications [8]-[10]. Neuro-Fuzzy system’s 
modeling capability was demonstrated by S. N. Engin et al. 
[11]. TakagiSugeno [12] studied the complete algorithms to 
shape the combinations of both Neural Networks and 
differential equations and thereafter the named it as ANFIS 
(Adaptive Neuro Fuzzy Inference Systems) [13].With the 
help of data acquired from mathematical model, a non linear 
system can be very accurately modelized by ANIFS [14]. 
 
Over the past decades, the popularity of FPGA has rapidly 
increased in embedded systems against microprocessors, 
microcontrollers or DSP. This is due to their parallel 
processing and increased number of gates [15]. Now days, for 
the prototyping of FPGA devices, Matlab - Simulink 
environment is most commonly used as compared to 
traditional design tools. This is because Matlab - Simulink 
environment doesn’t require the use of complicated Hardware 
Description Languages (HDLs). Fortunately, the advent of 
Xilinx’s XSG toolbox for Matlab - Simulink graphical 
environment, has made possible the hardware co-simulation 
of the system along with generation and implementation of 
HDL code in FPGA devices [15]-[17].This result in the 
reduction of time required between hardware implementation 
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and control design derivations. Within this environment, the 
software also provides hardware co-simulation [18], [19]. As 
compared to HDL based approach, this methodology provides 
easy verification and implementation of hardware. With 
respect to other methodologies, Matlab-Simulink simulation 
along with hardware co-simulation provides a more cost 
efficient solution [14]. The circuit is realized on Numato 
Lab’s Waxwing Spartan 6 FPGA Development Board.  
 
2. ACTUAL SYSTEM DESCRIPTION 
 
The actual system block diagram is shown in Figure 1 and 
Figure 2 shows actual implemented system. 
 

 
Figure 1: Actual System Block Diagram 

 

 
Figure 2: Actual System 

 
The NTC thermistor, 1K resistor and +5V voltage source are 
connected in series to form a voltage divider circuit whose 
schematic is shown in Figure 3.  
 

 
Figure 3: Schematic of voltage divider circuit 

 

The thermistor used in a voltage divider circuit is a NTC 
Thermistor whose resistance RT at temperature T can be 
modeled by 
 

1 1
eO

O
TR R xp

T T
  

  
  

  
                                                            (1) 

 
where the NTC thermistor used in this work has RO = 10,000 
ohms, is the resistance at a reference temperature TO = 298 K 
(25 °C) and β = 3950, with a tolerance of ±10%. The non 
linear analog voltage across 1K resistor is given to the ADC 
(MCP 3202). Further the digital output of ADC is given to the 
digital device named Waxwing Spartan 6 FPGA 
(XC6SLX45) Development Board. An ANFIS used for sensor 
linearization, for temperature measurements, is implemented 
in FPGA through hardware co-simulation. 
 
3.XSG DESIGN FLOW FOR FPGA 
IMPLEMENTATION 
 
High level programming languages like C, Matlab-Simulink, 
etc are used for modeling the given system. XSG comes along 
with Matlab-Simulink software packet. XSG is a predefined 
block set which is used to implement system defining 
algorithms [18]. The accuracy of the algorithms can also be 
verified using these high level technical programming 
languages. Matlab-Simulink provides an interactive 
environment for analyzing data, developing algorithm, 
numerical computation and data visualization [19]. For 
embedded systems, Matlab - Simulink provides model based 
design and multidomain simulation environment. Matlab - 
Simulink also provides an extensive library of 
parameterizable functions, event driven simulator and 
interactive graphical environment that allows designing, 
simulation, implementation and testing of time varying 
systems [19].  
 
In this application, XSG and Matlab-Simulink are used as a 
system level modeling tool (for facilitating FPGA hardware 
design) and a high level development tool respectively. It 
extends Matlab - Simulink by providing a hardware design, a 
well suited modeling environment. Xilinx’s ISE tools are 
used for synthesizing the result to Xilinx FPGA technology. 
FPGA implementation steps which includes synthesizing, 
translating, mapping, placing and routing are automatically 
executed for generation of programming bit file for FPGA 
devices. Figure 4 shows the actual XSG design flow. 
 
XSG automates the design process which includes debugging, 
implementation and verification of Xilinx’s FPGA. XSG 
provides a system-level resource estimation, high-speed 
hardware description language co-simulation interface, and 
accelerated simulation through hardware in the loop 
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co-simulation interfaces that boost the  simulation 
performance up to 1000x [21]. For the design of DSP FPGAs, 
XSG provides a system integration platform that brings 
together RTL components of a DSP system and Matlab – 
Simulink under one environment of simulation and 
implementation. XSG also provides black box block. With the 
help of black box block, Matlab - Simulink environment can 
import RTL and co-simulate it with the help of ModelSim or 
Xilinx ISE Simulator. 

 
Figure 4: System Generator design flow [17] 

 

4. ANFIS LINEARIZER MODELIZATION 
 
4.1 Elements of ANFIS Architecture 
 
As ANFIS is going to be hardware implemented, hence it is 
necessary to have a detailed knowledge of its architecture. 
Figure 5 shows the ANFIS architecture wherein the square 
nodes denotes the functions with parameters to be learnt 
whereas circular nodes represent fixed operations. 
 

 
Figure 5: ANFIS Architecture 

 
If x is A1 and y is B1 then according to Sugeno rule form 

f1 = p1x + q1y +r1                                                                              

(2) 
 
Here inputs x and y represents premise variables of the fuzzy 
rule. A1, B1 represents premise parameters and p1, q1 and r1 
represents consequence parameters. Using f1 and f2 functions 
and w1 and w2  weight values, the final output function F is 
given by (3). 

                

1 1 2 2
1 1 2 2

1 2

(3)
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 
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With reference to Fig. 5, ANFIS Linearizer shows five layers 
[14]. 
Layer 1: Every node is adaptive in this layer. Here 
fuzzification process takes place. Output of each node is given 
by (4).  

                     
 
 

i

i 2

1,i A

1,i

1, 2 (4)

3, 4B

O x for i

O x for i


  

  
    

 
Thus O1,i(x) represents membership grade for inputs x and y. 
The membership functions could be trapezoidal, triangular or 
any other type.  
Layer 2: In this layer, nodes are fixed and output of each node 
is given by (5) which represents a weight of the rule. 
 

   
i i2,i A 1, 2 (5)i BO w x y for i    

 
Layer 3: In this layer, nodes are fixed. The ratio of the ith rule's 
firing weight to the sum of all rules weights is computed and 
is given by (6). 

                          
3,

1 2

i
i i

w
O w

w w
 

                                  (6) 
Layer 4: In this layer, nodes operate as a function block, 
whose variables represents the input values and parameters 
are adaptive. Overall output (TSK output) of this layer is 
given by (7).  

 4,i (7)  i i i i i iO w f w p x q y r                            
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Here pi, qi and ri denotes consequent parameters to be 
determined. 
Layer 5: Output of this layer is the summation of all the input 
signals. The final output is given by (8). 
 

5, (8)
i i

i
i i i

i i
i

w
O

f
w f

w
 


 

 
In this work, ANFIS Linearizer is going to be hardware 
implemented. Analysis of the learning phase results presented 
in Table 2 guide us to choose the method highlighted in gray; 
two input triangle membership functions and two linear 
output membership functions with three parameters each one. 
ANFIS architecture for linearization of nonlinear sensor’s 
characteristic is illustrated by Figure 6. 

 

 
Figure 6: ANFIS architecture for linearization 

 
With reference to Fig. 6, the overall output is given by (9). 
Equation (10) gives the expression for Trii(x) function 
. 
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4.2 Generating Input and Target Data 
 
Input data is generated with the help of data sheet provided by 
the manufacturer of thermistor. The data sheet provides the 
values of thermistor resistance with respect to temperature. 
From these values the input data that is thermistor non linear 
voltage across 1k ohm resistor is calculated with the help of 
voltage divider formula. The non linear data generated that is 
V1K is then plotted with respect to temperature by taking the 
help of third party software. The temperature v/s input data 
plot is shown in Figure 7. Once again by taking the help of 

third party software, the linear fit is obtained along with the 
slope and intercepts values. The corresponding linear fit is 
shown in Figure 8.  From this input data, ANFIS is trained to 
generate the target data for sensor linearization. 

 
Figure 7: Temperature v/s Input Data Plot 

 

 
Figure 8: Linear Fit Plot 

 
4.3 Training ANFIS 
 
For linearization of nonlinear sensor’s characteristic, a 
neuro-fuzzy toolbox from Matlab-Simulink software was used 
for training the ANFIS linearizer. With the help of given i/p – 
o/p data set of modeled system, ANFIS creates a 
Takasi-Sugeno-Kang fuzzy inference system (TSK FIS). This 
makes fuzzy system to learn from data set of modeled system. 
The computation of membership parameters is assured by 
gradient vector. 

5. H/W & S/W CO-SIMULATION IN XSG 
Sometimes it is necessary to incorporate HDL modules to a 
XSG design. XSG’s black box block allows  the use of 
VHDL/Verilog HDL in XSG design. With the help of black 
box block, HDL modules can be incorporated into XSG 
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design. When black box blocks are compiled, XSG 
automatically wires the incorporated module and 
corresponding files into the surrounding netlist [18]. Figure 9 
shows the design of our architecture with XSG. The black box 
block contains the VHDL code defined for ANFIS linearizer 
used for linearization of nonlinear sensor’s characteristics. 
 

 
Figure 9: XSG Simulation Project 

 
HDL co-simulation process involves simulation of black 
boxes using HDL simulator, compilation of HDL, generation 
of additional HDL test benches, scheduling simulation events 
and handling exchange of data between HDL simulator and 
Matlab-Simulink. XSG supports hardware co-simulation 
feature in which a real time design executing on an FPGA 
chip can be directly imported into a Matlab - Simulink 
simulation environment. After hardware co-simulation 
compilation, a bitstream is automatically created and 
associated to a corresponding. Figure 10 shows the same. 
 

 
 

Figure 10: FPGA based Hardware-Software (HW-SW) co- 
simulation environment [18] 

 
When the simulation of design is carried out in 
Matlab-Simulink environment, the results are calculated in 
actual FPGA chip. This results in very fast simulation times 
while verifying hardware’s functionality correctness.XSG 
provides JTAG interface between Matlab – Simulink and 
FPGA hardware platform with the help of Xilinx 
programming cable. Model with hardware in the loop testing 
on FPGA Spartan 6 platform is shown in Figure 11. 

 
Fig. 11. XSG project for hardware co-simulation testing on 

Xilinx’s Spartan 6 FPGA devices 
 

Xilinx’s Spartan 6-XC6SLX45 FPGA device with a clock 
speed of 100 MHz is used. Table 1 shows the synthesis report 
for optimization setting. 
 

Table 1: Xilinx Synthesis Report 

Device Utilization Summary 
Slice Logic Utilization Used Availabl

e 
Utilizatio
n 

Number of LUTs 282 27,288 1% 
Number of occupied Slices 142 6,822 1% 
Number of MUXCYs 52 13,644 1% 
Number of bounded IOBs 65 218 29% 
Number of DSP48A1s 9 56 15% 

 
In practice, extra blocks are required for input/output 
interfaces, and synchronization.  
 
 
6. RESULT AND DISCUSSION 
 
With reference to Figure 1, ANFIS linearizer block has single 
input and single output. The block has to learn sensor’s 
inverse characteristic. Many different methods were analyzed 
by making changes in the type and number of input 
membership functions and the type of output membership 
function. Table 2 represents learning phase results for 
different approaches. The error between the ANFIS output 
and sensor's inverse characteristic output represents mean 
square errors (MSE). 
 

Table 2: Learning Phase Results 
 

Input Membership Training Method Output 
Membership  

Type 

Error Epoch 
Type Number 

 
 

Triangle 

2 Hybrid Constant 0.089562 500 
Linear 0.042277 200 

Back Propagation Constant 0.10639 500 
Linear 0.20319 500 

3 Hybrid Constant 0.065469 250 
Linear 0.069862 50 

Back Propagation Constant 0.073769 500 
Linear 0.066717 500 

4 Hybrid Constant 0.028184 100 
Linear 0.039662 20 

Back Propagation Constant 0.035134 500 
Linear 0.031191 500 



Rajesh T. Jadhav  et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2550 – 2556 

2555 
 

 

 
 

Trapeze 

2 Hybrid Constant 0.052064 300 
Linear 0.043712 200 

Back Propagation Constant 0.051347 500 
Linear 0.14182 500 

3 Hybrid Constant 0.043692 200 
Linear 0.018114 200 

Back Propagation Constant 0.044042 500 
Linear 0.040508 500 

4 Hybrid Constant 0.032136 200 
Linear 0.0081451 220 

Back Propagation Constant 0.034315 500 
Linear 0.029078 500 

 
 

Bell 
Shape 

2 Hybrid Constant 0.068148 500 
Linear 0.029257 500 

Back Propagation Constant 0.11602 500 
Linear 0.17479 500 

3 Hybrid Constant 0.014575 500 
Linear 0.0094959 230 

Back Propagation Constant 0.066668 500 
Linear 0.032527 500 

4 
 

Hybrid Constant 0.0080987 500 
Linear 0.0068352 120 

Back Propagation Constant 0.063041 500 
Linear 0.026443 500 

 
 

Gauss 

2 
 

Hybrid Constant 0.21132 500 
Linear 0.044937 500 

Back Propagation Constant 0.23609 500 
Linear 0.2041 500 

3 
 

Hybrid Constant 0.059039 500 
Linear 0.017174 420 

Back Propagation Constant 0.12191 500 
Linear 0.041409 500 

4 Hybrid Constant 0.018454 500 
Linear 0.010377 250 

Back Propagation Constant 0.12445 500 
Linear 0.036323 500 

 
 

Gauss2 

2 Hybrid Constant 0.074492 500 
Linear 0.027118 500 

Back Propagation Constant 0.11443 500 
Linear 0.17679 500 

3 Hybrid Constant 0.03082 500 
Linear 0.016948 100 

Back Propagation Constant 0.083049 500 
Linear 0.055935 500 

4 Hybrid Constant 0.0150537 500 
Linear 0.0089628 400 

Back Propagation Constant 0.062011 500 
Linear 0.030194 500 

 
Table 3 illustrates the parameters for input and output 
membership functions obtained in the learning phase for 
ANFIS architecture. 

 
Table 3:  Parameters for ANFIS architecture 

 
Input Membership Output Membership 

 
Tri1 

a -3.13  
f1 

p 0 
b -35 q 4.5 
c 5.169 r -0.03 

 
Tri2 

a 0.21  
f2 

p 0 
b 3 q 1.225 
c 6.305 r 0.5 

 
Figure 12 shows the result for real time hardware 
co-simulation of sensor linearization for temperature 
measurements. 

 
Figure 12:  Real Time Hardware Co-simulation of Sensor 

Linearization for Temperature Measurements 
 

7. CONCLUSION 
 
With the help of XSG hardware co-simulation feature, 
simulation and simultaneous verification of design hardware 
was greatly accelerated. The purpose of this paper was to 
design an ANFIS linearizer for linearization of nonlinear 
sensor. This design is implemented on a low cost Waxwing 
Spartan 6 FPGA (XC6SLX45) Development Board. Test 
results and analysis of an implemented architecture shows 
that the device does an accurate linearization. 
  
Future works include implementation of hardware 
co-simulation of some smart features like auto calibration of 
sensor, sensor drift compensation and sensor fault detection 
on Xilinx’s FPGA. 
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