
Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

165


ABSTRACT

The proliferation in the popularity of the cloud-based data
storage services motivated the data owners to store a huge
amount of confidential files on the remote servers in an
encrypted format. The users/clients can send their queries to
the database owner to retrieve the data files in the encrypted
database while protecting privacy of both the queries and the
database. The database owners can outsource their enormous
biometric data and identification tasks to the cloud server such
as Amazon to avoid high storage and computation costs.
However, this adds potential threats to the privacy of users.
This paper presents a combined Biometric-based Bucket
Encrypting Index Structure with Random Generator
(B2EIS-RG) for efficient and privacy-preserving biometric
identification outsourcing in the cloud. The encryption
process includes multi-keyword query processing along with
the conjunction and disjunction logic queries to ensure high
privacy guarantee against the keyword attacks. Experimental
evaluation over a large dataset demonstrates that the proposed
scheme can achieve modest time efficiency, and they are
practical for use in the huge encrypted database systems. The
proposed scheme is found to be highly secure even if the
attackers can forge the biometric identification requests.

Key words: Biometric identification, Bucket Encryption,
Cloud Computing, Data Outsourcing, Multi-Keyword Search,
Privacy Preserving.

1. INTRODUCTION

Database-as-a-Service (DaaS) allows a third party service
provider to host the database for the clients, to store and
access the cloud databases with the adequate storage resource
and low infrastructure cost [1, 2]. The third party provider is
in charge of the administrative and maintenance tasks. The
database owners can outsource their enormous biometric data
and identification tasks to the cloud server such as Amazon to
avoid high storage and computation costs. If the user or the
data owner opts for more authority over the database, this
option is available depending on the third party provider.
However, outsourcing the database also raises the data
confidentiality and privacy issues due to the loss of data
control by the data owner. Encryption of the confidential data

before outsourcing is a direct approach to ensure high privacy
for the sensitive data [3-8]. Encryption becomes a deterrent to
the data utilization capacity while providing strong end-to-end
privacy. Also, the users are also concerned about the query
privacy, while expecting that the database server should not
learn the data or query in the plaintext form.

To address these security and privacy issues, Song et al. [9]
introduced Searchable Symmetric Encryption (SSE) for
storing data on the mail servers and file servers. A SSE
scheme encrypts data in such a way that it can be privately
queried through the use of a query-specific token generated
with knowledge of the secret key. Kamara et al. [10]
proposed a dynamic SSE scheme for real-world cloud storage
system. Kamara et al. [11] developed a parallel and dynamic
SSE based on the red-black tree data structure. Cash et al. [12]
designed dynamic SSE scheme for efficient search of
server-held encrypted databases with billions of
record-keyword pairs by leveraging the dictionary structure.
This scheme shows high scalability while searching on the
datasets with billions of document-keyword pairs. Hahn et al.
[13] presented a searchable encryption scheme for cloud
storage. But, the dynamic SSE schemes do not achieve
forward privacy. The search time of these schemes is long
with the increase in the number of document-keyword pairs,
while updating multiple rounds of communication between
the server and client with high overhead.

This work applied a novel index design for processing the
queries over the encrypted cloud storage. Based on the
structure, two specific structures with privacy guarantee are
introduced. These structures make a tradeoff between the data
privacy and query efficiency. This design provides data
privacy guarantee including forward privacy. The proposed
solution has a compact index structure while supporting
multi-keyword queries and data updates with moderate
overhead. A bucket encrypting index structure with random
generator (BEIS-RG) is combined with biometric
identification system. Compared with the traditional
authentication methods based on the passwords and
identification cards, biometric identification is more reliable
and convenient [14].

In a biometric identification system, the database owner is
responsible to manage the biometric database and outsource
the enormous biometric data such as fingerprint, iris, voice
patterns, facial patterns, etc., to the cloud server to get rid of
the expensive storage and computation costs. However, the
biometric data has to be encrypted before outsourcing to

B2EIS-RG: Biometric-based Bucket Encrypting Index Structure
with Random Generator

Sudharani K1, Sakthivel N. K2 and Subasree S3
1Research Scholar, Bharathiar University, India, ksudharani.shagthi@gmail.com

2Vice Principal, Nehru College of Engineering and Research Centre, India, nksakthivel@gmail.com
3Professor and Head, CSE, Nehru College of Engineering and Research Centre, India, drssubasree@gmail.com

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse10822019.pdf

https://doi.org/10.30534/ijatcse/2019/10822019

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

166

preserve the data privacy [15]. The database owner encrypts
the user query and submits it to the cloud. The cloud performs
biometric-based identification operations over the encrypted
database and returns the result to the database owner. The
database owner computes the similarity between the query
data and the biometric data associated with the index, and
returns the query result to the user. The proposed scheme is
found to be highly secure even if the attackers can forge the
biometric identification requests.

1.1 Organization of the paper
The paper is systematized in the following order: Section II
describes a brief overview of the existing keyword based
encryption schemes and privacy preserving schemes. The
proposed B2EIS-RG approach and biometric identification
scheme are explained in Section III. The performance analysis
of the proposed B2EIS-RG approach with the existing scheme
is presented in Section IV. The concluding statements of the
proposed work are discussed in Section V.

2. RELATED WORKS

Fu, et al. [16] devised an effective encryption scheme that
supports the multi-keyword ranked search and parallel search
capabilities in the cloud. To improve search efficiency, a
tree-based index structure is designed to support parallel
search, improve the computational capacity and efficiently
utilize the cloud server resources. With the parallel search
algorithm, the search efficiency is improved. However, the
scheme does not focus on the semantics-based search scheme
over the encrypted data. Cao, et al. [17] proposed a
multi-keyword based ranked search over the encrypted data
for better privacy-preserving in the cloud computing
environment. The proposed scheme is improved to achieve
stringent privacy requirements in different threat models,
while requiring minimum computation and communication
cost. The integrity of the rank order in the search result is not
checked.
 Raghavendra, et al. [18] developed a most significant
single-keyword based Search algorithm that ensures efficient
and secure search in the cloud environment. The indexed
keywords are encrypted without incurring overhead from the
cloud service provider. Thus, the proposed scheme requires
lower computational overhead and time complexity. The
proposed algorithm shows significant reduction in the index
generation time, index storage space and keyword search
time. However, this scheme incurs high search time and index
storage space on multimedia. Sun, et al. [19] presented a
keyword search scheme based on the attributes with the
efficient user revocation for fine-grained authorization in the
cloud environment without always depending on the online
Trusted Authority (TA). This search scheme allows multiple
data owners to independently encrypt the data and outsource
the encrypted data to the cloud server. The proposed scheme
is selectively secure against chosen-keyword attack. But, the
computation cost is higher for this proposed search scheme.

Xia et al. [20] devised a secure multi-keyword ranked
search scheme over the encrypted data using Greedy
depth-first search algorithm. The secure k-Nearest Neighbor

(kNN) algorithm is utilized to encrypt the index and query
vectors and ensure accurate relevance score between
encrypted index and query vectors. The main drawback of this
scheme is dishonest users may distribute their secure keys to
the unauthorized ones. Fu et al. [21] proposed an efficient
multi-keyword fuzzy ranked search scheme based on the
Wang et al.'s scheme. Our proposed scheme enables efficient
file update, without requiring a predefined keyword set. A
keyword transformation based on the unigram is developed to
simultaneously improve the accuracy and create the ability to
handle other spelling mistakes. This scheme failed to achieve
the ideal state because of the keyword weight.

Dai et al. [22] proposed a verifiable single keyword top-k
search scheme that is highly secure against the insider attacks.
Data owners generate Verification Codes (VCs) for the
corresponding files, which embed the ordered sequence
information of the relevance scores between the files and
keywords. The interested keyword is returned to the data user
together with a VC. The file integrity is verified by the data
users through the reconstruction of a new VC on the received
files and comparing it with the received one. The proposed
scheme does not consider the verifiable multi-keyword based
search schemes. Chen et al. [23] developed a verifiable
keyword search scheme for the big-data based Mobile
healthcare Networks (MHNs) with fine-grained authorization
control. In the proposed scheme, while sending the search
request to the healthcare provider for the first time, the users
need to check whether they possess the right to search within
the encrypted data. Only the authorized users can generate
valid trapdoors for searching. The main drawback of this
scheme is computational overhead.

Peng et al. [24] introduced a tree-based ranked
multi-keyword search scheme for multiple data owners. A
novel search protocol based on the bilinear pairing is
constructed to enable different data owners to use different
keys to encrypt their keywords and trapdoors. The proposed
scheme needs more storage space for the index. However, this
is not a problem for the cloud platform. Ye and Ding [25]
proposed a controllable keyword search scheme to address the
file security issues. The files that the user has no right to
access cannot be retrieved, even if they contain the required
keyword. This scheme is useful and practical especially under
the circumstances with the hierarchical user groups.
Computational cost for decryption is quite high.

Ahmed and Khan [26] formulated a multi-keyword based
ranked search over the encrypted data based on the inner
product computation and similarity measure of the coordinate
matching. It matches with the multiple search results and
captures relevance of the data documents in response to the
search query. This scheme acquired low overhead on the
computation and communication cost. Miao et al. [27]
devised a verifiable multi-keyword based search over the
encrypted cloud data to protect the data confidentiality and
integrity. Through the rigorous security analysis, it is proven
that the proposed search scheme is highly secure against the
Keyword Guessing Attack (KGA) in the standard model. The
empirical experiments over real-world dataset show that the
proposed search scheme is efficient and feasible in the
practical applications. But, it does not support the expressive
search.

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

167

Miao et al. [28] created an attribute based multi-keyword
search scheme to support comparable attributes by utilizing
0-encoding and 1-encoding. Our proposed scheme can
drastically decrease both computational and storage costs.
However, the efficiency of the proposed scheme is low. Jiang
et al. [29] proposed a multi-keyword ranked search scheme
over encrypted cloud data to support search results
verification. To reduce the search complexity, the estimated
least frequent keyword is initially searched in the query to
significantly reduce the number of searching documents. The
common rule is applied to calculate the relevance scores of the
documents that match with a given search request. This
scheme does not verify the rank order of search results.

Wang et al. [30] devised a new ciphertext policy attribute
based encryption with the fast keyword search constructions
that preserved the fine-grained access control, while
supporting hidden policy and fast keyword search. Single
keyword search has to be expanded to multi-keyword search
without adding additional parameters. Fu et al. [31] designed
a novel central keyword scheme with the semantic extension
ranked scheme. By extending the central query keyword
instead of all keywords, this scheme makes a better tradeoff
between the search functionality and efficiency. Our proposed
schemes are efficient, effective, and secure. Cao et al. [32]
formulated image search schemes based on the Paillier's
encryption. A client stores the image data online for
convenient data access anywhere and anytime. The encrypted
data is uploaded to a cloud server and distance comparison has
to be made to represent the similarity scores of these vectors.

Guo et al. [33] proposed a secure multi-keyword ranked
search scheme for multiple data owners. A trusted third party
is imported to solve the key management issues. But, the
computation cost is high. Chen et al. [34] developed a secure
multi-keyword ranked search scheme that resists memory
leakage attack from inner or external attackers. The proposed
scheme utilizes Physically Unclonable Functions (PUFs) to
randomize the keywords and document identifiers. Due to the
noisy properties of PUFs, the secret keys are recovered using
Fuzzy Extractor (FE). To enhance the security of the proposed
scheme, an order-preserving function is selected to encode the
similarity scores. However, the efficiency of the proposed
scheme has to be improved.

Radke et al. [35] applied a hierarchical clustering method to
support more search methods and also to complete the
demand for fast cipher text search method for big data
environments. For the huge number of users and the data in
the cloud, it is important for the search method to include
multi keyword query. The problem of privacy preserving
multi keywords ranked search over the encrypted cloud data
can be solved. The main disadvantage is high overhead on
computation and communication. Li et al. [36] proposed an
Authorized and Ranked Multi-Keyword Search (ARMS)
scheme over the encrypted cloud data by leveraging the
ciphertext policy attribute-based encryption (CP-ABE) and
Symmetric Searchable Encryption (SSE) techniques. The
proposed ARMS scheme can achieve confidentiality of
documents, trapdoor unlinkability and collusion resistance.
The ARMS is more superior and efficient than existing
schemes in terms of functionalities and computational

overhead. But, the dynamic searchable encryption in cloud
computing should be explored.
Many security schemes have been proposed and are mainly
focusing on the SSE technique. However, they do not
consider the search authorization problem that requires the
cloud server only to return the search results to authorized
users. Most dynamic SSE solutions leaking information on
the updated keywords are vulnerable to the overwhelming
file-injection attacks. Dynamic SSE schemes cannot achieve
forward privacy. This work presents a combined B2EIS-RG
for efficient and privacy-preserving biometric identification
outsourcing in the cloud. The proposed work includes
multi-keyword query processing with the conjunction and
disjunction logic queries to ensure high privacy guarantee
against the keyword attacks.

3. PROPOSED WORK

In this work, three types of entities including the database
owner, users and the cloud. The database owner holds a large
size of biometric data such as fingerprint that is encrypted and
transmitted to the cloud for storage. When a user wants to
store the data or access the data in the cloud, a query request is
to be sent to the database owner for the identification of the
authorized user using the biometric details. After receiving the
request, the database owner generates a ciphertext for the
biometric trait and then transmits the ciphertext to the cloud
for identification. The cloud server figures out the best match
for the encrypted query and returns the related index to the
database owner. Finally, the database owner computes the
similarity between the query data and the biometric data
associated with the index, and returns the query result to the
user. The FingerCodes are used to represent the fingerprint. A
FingerCode consists of ‘n’ elements and each element is a
l-bit integer. If the Euclidean distance between two
FingerCodes is below a threshold, they are usually considered
as a good match. This means the two fingerprints belongs to
the same person. Figure 1 depicts the system model of the
proposed B2EIS-RG.

Figure 1: System model of the proposed B2EIS-RG

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

168

In the cloud-based database system, the data owner outsources
a huge collection of data files ݀ = (݀ଵ, … ,݀#ௗ) to the remote
database server in the encrypted form ܿ = (ܿଵ, … , ܿ#௖). The
data files ‘d’ can represent the text files or records in a
relational database. ݓ = ଵݓ) , … ௪) denotes the keyword#ݓ,
universe extracted from the data files. ݅݀൫ ௝݀൯ denotes the
identifier of the data file ௝݀ and ݅݀(݀) represents the identifier
of all data files. Given a vector ‘v’, the jth element of the vector
is referred as (݆)ݒ	ݎ݋	ݒ௝ ݒ݅݀ . ∈ {0,1}#ௗ denotes a Data
Identifier Vector (DIV), where the jth element of DIV is 1, if
௝݀ is included. Otherwise, it is zero. ݀݅ݒ௜ or ݀݅ݒ௪೔ denote all

data files that contain ݓ௜ . A multi-keyword query ݍ =
൛ݓଵ, … ௤ൟ is considered. ݀௤ represents the data files for the#ݓ,
conjuction and disjunction logic queries. If #ݍ = 1, then ‘w’
denotes the single-keyword query, i.e., ݍ = ௪ denotes݀ .{ݓ}
all the data files containing the single keyword ‘w’. Standard
bitwise Boolean operations are defined on the binary vectors
such as bitwise OR and bitwise AND operations.

3.1 BEIS-RG

An encoding approach is proposed based on the DIV to
identify the files that match with the general multi-keyword
queries. Initially, the keywords are mapped onto a line by
leveraging a collection of independent hash function and
place the corresponding DIVs into the hit buckets. After, both
the conjunctive and disjunctive logic queries are achieved by
applying arithmetic operations on the DIVs by the issued
search token. This is equal to post-processing of a sequence of
single keyword queries. The files are returned if the
connection of all hit bits in a row equals to one, for the
conjunctive logic queries. For the disjunctive logic queries,
the files are returned according to the similarity scores
computed on all hit bits in a row.
BEIS-I and BEIS-II schemes with privacy preservation are
proposed. BEIS-I covers the original bits of the DIVs with the
output of a Pseudo Random Function (PRF). A keyed function
F is called as a PRF if it is a polynomial-time computable
function that there exists no Probabilistic Polynomial-Time
(PPT) adversary can distinguish it from random functions
when the key is maintained secret. BEIS-II encrypts the bit
vectors using Paillier homomorphic cryptosystem. BEIS-I is
computationally efficient by using the symmetric encryption.
BEIS-II requires minimum communication cost as multiple
encrypted DIVs can be combined through the additively
homomorphic property by adopting the ciphertext packing
technique.

3.1.1 Probabilistic Coding Data Structure

Initialization
Key Generation 1௞: Given a security parameter ‘k’, a k-bit
string ݇ݏଵ is sampled uniformly at random, ݇ݏଵ ←
ܭ	ݐݑ݌ݐݑܱ.(1௞)݊݁ܩ.ܧܭܵ = ,ଵ݇ݏ) .(ଶ݇ݏ
,ܭ)ݔ݁݀݊ܫ݈݀݅ݑܤ ݀)

Step 1: Select a collection of r independent keyed hash
functions ℎ௜ୀ[ଵ,௥] = {ℎ௜|݅ ∈ [1, ,{[ݎ where ℎ௜ : {0,1}∗ ×
{0,1}௞ → {0,1}௟.
Step 2: Extract the keyword universe from the data files and
generate the corresponding DIVs {݀݅ݒଵ, … , {௪#ݒ݅݀
Step 3: Initialize an array ߛ comprising ‘m’ number of
buckets where each bucket is set to be empty.
Step 4: For each ݓ௜ ∈ ݓ
Compute the ‘r’ hash bucket positions
ଵݔ = ℎଵ(ݓ௜ , ,(ଵ݇ݏ … ௥ݔ, = ℎ௥(ݓ௜ , (ଵ݇ݏ
For each position ݔ௝ , if the bucket ݔൣߛ௝൧ is empty, ݀݅ݒ௜ is
stored in the corresponding bucket. Otherwise, the bucket is
updated by storing the bitwise OR of ݀݅ݒ௜ . The previously
stored DIV at the position is denoted by ݔൣߛ௝൧ = ௝൧ݔൣߛ ∨ .௜ݒ݅݀
Step 5: For 1 ≤ ݅ ≤ #݀, let ܿ௜ ← ,ଶ݇ݏ)ܿ݊ܧ.ܧܭܵ ݀௜).
Step 6: Output (ߛ, ܿ), where ܿ = (ܿଵ, … , ܿ#௖)
,ܭ൫ݕݎ݁ݒ݋ܴܿ݁ ܿ௤൯:ܴ݁݊ݎݑݐ	݀௜ ← ,ଶ݇ݏ)ܿ݁ܦ.ܧܭܵ ܿ௜) for
ܿ௜ ∈ ܿ௤.

3.1.2 Multi-keyword Search over the index

௜ݓ For each	:(ࢗ,࢑࢙)࢘࢕࢕ࢊ࢖ࢇ࢘ࢀ ∈ ݍ , the bucket positions
ଵݔ = ℎଵ(ݓ௜ , ,(ଵ݇ݏ … ௥ݔ, = ℎ௥(ݓ௜ , ଵ) are computed. Output݇ݏ
the union of all positions as ߬.
:(࣎,ࢉ,ࢽ)࢟࢘ࢋ࢛ࡽ Use ߬ to perform logic ܦܰܣ or ܱܴ query
over the array.
Conjunction logic query: Extract the corresponding DIVs
from all hit buckets in the trapdoor ߬ and compute ݀݅ݒఛ =
∧௬∈ఛ The encrypted data files ܿ௤ .[ݕ]ߛ = {ܿ௜ ∈ [݅]ఛݒ݅݀:ܿ =
1 are returned. To state the correctness, let ߬ݓ be a
sub-trapdoor for a single keyword ‘w’ in q. Thus, ߬௪ ⊂ ߬
ఛݒ݅݀ = ⋀ ⋀ [ݕ]ߛ =௬∈ఛೢ ⋀ [ݕ]ߛ = ⋀ ௬∈ఛ௪∈௤,௬∈ఛೢ௪∈௤[ݕ]ߛ
(1)
The execution will return the data files containing all
keywords in the multi-keyword query ‘q’.
Disjunction logic query: The similarity score ݁ݎ݋ܿݏ൫ ௝݀ , ൯ݍ
is computed between the data file ௝݀ and query ‘q’. The score
is defined as
൫݁ݎ݋ܿݏ ௝݀ ൯ݍ, = ݎ ∙ 1൫⋀ [݆][ݕ]ߛ = 1௬∈{ఛ[ଵ],…,ఛ[௥]} ൯ +⋯+ ݎ ∙
1൫⋀ [݆][ݕ]ߛ = 1௬∈{ఛ[#௤௥ି௥ାଵ],…,ఛ[#௤௥]} ൯ (2)
Where 1(∙) denotes the indicator function. The indicator
function is equal to 1, if the condition in 1(∙) holds.
Otherwise, it is zero. The similarity scores are sorted in a
descending order and the ranked encrypted files are returned.
For the conjunction logic queries, the query result of our basic
index structure is equal to post-processing of a sequence of
single-keyword queries. For the disjunction logic queries,
൫݁ݎ݋ܿݏ ௝݀ ൯ is the number of common buckets mapped byݍ,
the keywords in the data file ௝݀ and q. Hence, if the number of
common buckets is larger, the similarity between ௝݀ and q is
high. If a data file contains at least one query keyword, the
score is greater than or equal to r. Due to this property, the
server can return all the ranked data files with ݁ݎ݋ܿݏ൫ ௝݀ ൯ݍ, ≥
 or the ranked results with the top-k highest scores, where k ݎ
could be user-specified.

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

169

3.1.3 Supporting Index Dynamics

Both the addition and removal of the data files should be
supported without either re-indexing the whole database from
scratch or using the generic and expensive dynamization
techniques.
Update Token ൫࢐ࢊ,ࡷ൯: To add a new data file ௝݀ , the client
locally encrypts the data file as ௝ܿ . The sub-index ߛ∗ for ௝݀ is
constructed as the same structure as ߛ. The client simply runs
,ܭ൫	ݔ݁݀݊ܫ݈݀݅ݑܤ ௝݀൯ and sets ߬௔ = ൫ ௝ܿ ൯∗ߛ, . To delete an
existing data file, the client should initially determine the file
location and generate ߬ௗ = ൫݆: ௝݀ ∈ ݀൯.
Update (ࢽ,ࢊ࣎/ࢇ࣎, (ࢉ : For the addition of data file, ߛ∗ is
merged into the original index ߛ and ௝ܿ into the ciphertext ‘c’.
For deletion, set the jth entry of each bucket in ߛ to 0 and
delete ௝ܿ from the ciphertext.

3.2 BEIS-I: Using Random Generator

The basic index construction supports efficient conjunctive or
disjunctive logic queries without requiring privacy
preservation. In BEIS-I, every original bit of each IFV is
padded with a pseudo number generated by the PRF. By using
the symmetric key encryption and inheriting the basic index
structure, BEIS-I achieves practical efficiency while
performing multi-keyword queries and updates. To avoid
reiteration of the same steps, key differences and
modifications are only presented.

3.2.1 Initialization and index construction

Key Generation (1௞) : In addition, a PRF ‘F’ defined as
{0,1}௞ × {0,1}∗ → {0,1}௞ is used. A k-bit string ݇ݏଷ is
sampled uniformly at a random way to serve as the key of F.
Figure 2(a) shows the construction of index structure.
,ܭ)ݔ݁݀݊ܫ݈݀݅ݑܤ ݀): After obtaining the basic index structure,
additional step to encrypt ߛ is added.
For each original bit ‘b’ stored in the index ݕ)[݆][ݕ]ߛ ∈
1,݉,݆∈1,#݀, it is stored as encrypted form
[݆][ݕ]ߛ = ܾ + ௬௝ߞ (3)
Where ߞ௬௝ = ,ଵ݇ݏ)ܨ The default value of the flag .(݈݂݃ܽ‖݆‖ݕ
is set to 0. The value of the flag will be changed to 1, while
generating the update token ߬ௗ.

3.2.2 Multi-keyword Search over the encrypted index

	:(ࢗ,࢑࢙)࢘࢕࢕ࢊ࢖ࢇ࢘ࢀ The server needs to locate all hit
encrypted DIVs for each multi-keyword query and the
intermediate encrypted results computed on the specified
query logics are returned to the client for further processing.
 Use ߬ to compute the intermediate encrypted :(࣎,ࢉ,ࢽ)࢟࢘ࢋ࢛ࡽ
results according to specified logic.
Conjunction logic query: Locate all the hit encrypted DIVs,
compute and return to the client.
∑ ௬∈ఛ,௝∈[ଵ,#ௗ][݆][ݕ]ߛ (4)
Disjunction logic query: Locate all the hit encrypted DIVs,
compute and return to the client.

∑ ௬∈ఛ[ଵ,௥],௝∈[ଵ,#ௗ][݆][ݕ]ߛ ,…,	∑ ௬∈ఛ[#௤௥ି௥ାଵ,#௤௥],௝∈[ଵ,#ௗ][݆][ݕ]ߛ
(5)
At the client side, ߞ௬௝ is recomputed for each ݕ ∈ ߬ and
݆ ∈ [1, #݀] by leveraging the secret key ݇ݏଵ . According to
different query logics
Conjunction logic query: The client locally computes
௤ݐݏ = ൫ݐݏ௤,ଵ, … , ௤,#ௗ൯ whereݐݏ
௤,௝ݐݏ = ∑ ൫1 + ௬௝൯௬∈ఛߞ (݆ ∈ [1, #݀]) (6)
Then, an empty set ܦܫ is initialized and corresponding
identifier ݅݀൫ ௝݀൯(݆ ∈ [1, #݀]) is added into ID, if
∑ ௬∈ఛ[݆][ݕ]ߛ = ௤,௝ (7)ݐݏ
Disjunction logic query: The client locally computes
௤ݐݏ = ൫ݐݏ௤,ଵ, … , ௤,#ௗ൯ whereݐݏ
௤,௝ݐݏ = ൫∑ ௬௝ߞ + ௬∈ఛ[ଵ,௥]ݎ , … ,∑ ௬௝ߞ + ௬∈ఛ[#௤௥ି௥ାଵ,#௤௥]ݎ ൯ (8)
For each ݆ ∈ [1, #݀] , the similarity score is computed as
follows
൫݁ݎ݋ܿݏ ௝݀ ൯ݍ, = ݎ ∙ 1൫∑ ௬∈ఛ[ଵ,௥][݆][ݕ]ߛ = +⋯+௤,௝[1]൯ݐݏ ݎ ∙
1൫∑ [݆][ݕ]ߛ =௬∈ఛ[#௤௥ି௥ାଵ,#௤௥] ൯ (9)[ݍ#]௤,௝ݐݏ
Then, the scores are sorted in a descending order and
corresponding identifier ݅݀൫ ௝݀൯(݆ ∈ [1, #݀]) is added into the
ID, if ݁ݎ݋ܿݏ൫ ௝݀ ൯ is greater than a predefined threshold. Forݍ,
both the cases, the client sends ID to the server. Finally, the
server returns the encrypted data files ܿ௤ to the client.

3.2.3 Supporting Index Dynamics

The BEIS-I scheme can support efficient data updates.
Following updates are performed based on the basic index
construction.

Update Token ൫࢐ࢊ,ࡷ൯: To add a new data file ௝݀ , the client
locally encrypts each bit of the newly obtained sub-index ߛ∗
in a similar way processed in BuildIndex and outputs
encrypted sub-index and ௝ܿ as ߬௔ . The client generates an
m-dimensional row vector “Del” to delete an existing data
file, where each entry is initialized to zero. Then, the
encrypted version is generated by computing ݁ܦ ௝݈[݅] = 0 +
௜௝ߞ , where ݅ ∈ [1,݉] and ߞ௜௝ = ,ଵ݇ݏ)ܨ ݅‖݆‖݂݈ܽ݃ + 1) .
Finally, the encrypted row vector is obtained as output as ߬ௗ.
Update (ࢽ,ࢊ࣎/ࢇ࣎, (ࢉ : For the addition of data file, the
encrypted sub-index ߛ∗ extracted from ߬௔ is added to ߛ and ௝ܿ
is added into c. For the deletion of file, the jth row of ߛ is set to
the encrypted row vector “Del” extracted from ߬ௗ and ௝ܿ is
deleted from the ciphertext accordingly.

3.3 BEIS-II: Using Homomorphic Generator

BEIS-II is introduced by leveraging the Paillier cryptosystem
to reduce the communication cost and encrypt the DIVs stored
in each bucket. Due to the additive homomorphic property,
multiple DIVs can be aggregated directly at the server side in
an encrypted form.

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

170

3.4 Ciphertext packing

The typical parameters for the Paillier cryptosystem can
support big integers as the plaintext space. The bit vectors of
length #d are to be encrypted and each bit vector is to be
packed into multiple 1024-bit integers. To ensure the addition
of bit values in one row across ‘r’ different buckets will not
affect the aggregated values of other rows during the query
phase. There is a need to allocate [logଶ(ݎ + 1)] bits for each
original bit, ([logଶ(ݎ + 1)] − 1)	bit of zeros before each bit.
Our deletion mechanism requires the usage of an integer to
indicate the deletion of a certain file, more extra zeros need to
be inserted before each bit. For the removal of existing data
file, the second to the last entry is set to 1 in 1024-bit vector
corresponding to the data file and its encrypted version is
generated. After, the encrypted vector is used to perform
additive homomorphic operations on all the DIVs stored in
the buckets.

Figure 2(a): Example of Index Building

Upon finishing the updates, last two entries corresponding to
the data files in all the buckets are modified to either “10” or
“11”. For any new future query, the decimal value of entries
corresponding to the data files in the aggregated form is
turned to 3r or 2r. This does not incur collision and affect the
precision of checking equality for a new query. A block of
[logଶ(3ݎ + 1)] bits is used in the plaintext space to represent
a bit in the DIV and ([logଶ(3ݎ + 1)] − 1) bit of zeros is
padded before each original bit. Moreover, the remaining bits
that are inadequate to form a block are set to zero. At last, the
packed integers are encrypted by the Paillier cryptosystem.

3.4.1 Initialization and Index construction

Key Generation (1௞): Generate ൫݇ݏ௣, ௣൯݇݌ for the Paillier
cryptosystem and the new key tuple is added to K.
,ܭ)ݔ݁݀݊ܫ݈݀݅ݑܤ ݀): Based on the basic index structure, the
additional steps are performed as follows

(b)

Figure 2(b): Example of deleting a file

Extract div stored in ݕ)[ݕ]ߛ ∈ [1,݉]) and construct ݀ଓݒ෢ by
inserting the padded bits before each bit of div. ݀ଓݒ෢ is packed
into multiple 1024-bit plaintext blocks and Paillier
cryptosystem is applied to encrypt each block under the public
key ݇݌௣ . The newly obtained
ݒ݅݀ = ൳ܾ݈݇ܿ݋௬,ଵ൷‖… ‖൳ܾ݈݇ܿ݋௬,௩൷ is stored into [ݕ]ߛ, where v
represents the maximum number of blocks.

3.4.2 Multi-keyword search over the Encrypted index

 .Similar to the basic index construction :(ࢗ,࢑࢙)	࢘࢕࢕ࢊ࢖ࢇ࢘ࢀ
After locating the hit buckets, the server homomorphically
aggregates these encrypted DIVs and returns the intermediate
aggregation result to the client.
 Use ߬ to compute the intermediate encrypted :(࣎,ࢉ,ࢽ)࢟࢘ࢋ࢛ࡽ
results as follows. For ݐ ∈ [1, compute ,[ݍ#

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

171

௧ߠ = ∏ ൳ܾ݈݇ܿ݋௬,ଵ൷‖…‖∏ ൳ܾ݈݇ܿ݋௬,௩൷௬∈ఛ[#௤௥ି௥ାଵ,#௤௥]௬∈ఛ[ଵ,௥]
(10)
And return Θ = ൛ߠଵ, … , .௤ൟ to the client#ߠ
After the client decrypts the intermediate ciphertext Θ using
 ௣, reveals the blocks and analyzes the decryption result as a݇ݏ
concatenation of decimal values based on the aligned
configuration of the packing technique. The decrypted binary
string ߠ௧ is converted to ܤ௧ = (ܾଵ …ܾ#ௗ)ଵ଴(ݐ ∈ [1, ([ݍ# ,
where ܾ௜ denotes the binary representation of [logଶ(3ݎ + 1)]
bit integer.
Conjunction logic query: Add the corresponding ݅݀൫ ௝݀൯
into ID if ∀ݐ ∈ [1, [݆]௧ܤ,[ݍ# = .ݎ
Disjunction logic query: For each ݆ ∈ [1, #݀], the similarity
score is computed.
൫݁ݎ݋ܿݏ ௝݀ ൯ݍ, = ݎ ∙ [݆]ଵܤ)1 = (ݎ + ⋯+ ݎ ∙ 1൫ܤ#௤[݆] = ൯ݎ
(11)
The scores are sorted in a descending order and corresponding
݅݀൫ ௝݀൯ is added into ID if the score is greater than a
predefined threshold.

3.4.3 Supporting Index Dynamics

Finally, the file updates are shown by the BEIS-II scheme.
:൯࢐ࢊ,ࡷ൫	࢔ࢋ࢑࢕ࢀࢋ࢚ࢇࢊ࢖ࢁ To add a new file ௝݀ , for the
sub-index ߛ∗ generated in the basic index construction, the
client initially pads the sub-index to the binary strings of 1024
bits using the same packing method. Then, the sub-index is
encrypted using Paillier cryptosystem under the ݇݌௣ . The
encrypted sub-index and ciphertext are output as ߬௔. To delete
an existing data file, the client initializes a 1024-bit zero

vector Del, ቆቀ݆	݉݀݋	 ቔ ଵ଴ଶସ
⌈୪୭୥మ(ଷ௥ାଵ)⌉

ቕቁ ∙ ⌈logଶ(3ݎ + 1)⌉ − 1ቇ th

entry is set to 1 and encrypted by leveraging the Paillier
homomorphic encryption. The encrypted Del is output as ߬ௗ.
Update (ࢽ,ࢊ࣎/ࢇ࣎, Procedures for adding a new data file :(ࢉ
are similar for the basic index construction. For file deletion,
for the ௝∙⌈୪୭୥మ(ଷ௥ାଵ)⌉

ଵ଴ଶସ
 th ciphertext block in all the buckets

ݕ)[ݕ]ߛ ∈ [1,݉]) and encrypted Del extracted from ߬ௗ. The
server computes [ݕ]ߛ ← [ݕ]ߛ ∙ Del by restoring to the
additively homomorphic property and deletes ௝ܿ from c. This
works, as the decimal value of entries corresponding to the
data file is changed from r to 3r.
Figure 2(b) shows the file deletion process. If the client wants
to delete the file ݀ଵ, this is implied in the first ciphertext block
of each div. The client initializes a 1024-bit vector ݈݁ܦ =
(0010, 00 …) and encrypts the vector with the homomorphic
encryption. After receiving the Del, the server multiplies it
with the first block of each div to complete the update. Due to
the fact that the message space of the Paillier cryptosystem is
always greater than the space allocated for a data file.
Therefore, the updates can be achieved in a batch and
collection of data files can be added and removed
simultaneously [37].

3.5 Biometric identification scheme

The ciphertext is reconstructed to reduce the amount of
uploaded data and the efficiency in the preparation and
identification procedures are improved.

3.5.1 Preparation

In the preparation process, ܾ௜ is the ith sample feature vector
derived from the fingerprint image using a feature extraction
algorithm [38]. To be more specific, ܾ௜ is an n-dimensional
vector with ‘l’ bits of each element.
For easy identification, the fingerprint code ܾ௜ is extended by
adding (݊ + 1) th element as ܤ௜. Then, the database owner
encrypts ܤ௜ with the secret key ݇ݏ as follows
௜ܥ = ௜ܤ × (11) ݇ݏ
The database owner performs the following operation
௛ܥ = ଶܯ

ିଵ × (12) ்ܪ
Each Unique ID ܤ௜ is associated with an index ܫ௜ . After
executing the encryption operations, the database owner
uploads (ܥ௜ ௛ܥ, , .௜) to the cloudܫ

3.5.2 Identification

The steps in the identification process are described below
Step 1: When the fingerprint of a user to be identified, the
query Unique ID ܾ௖ derived from the query fingerprint image.
The Unique ID ܾ௖ is a n-dimensional vector. Then, the user
sends the Unique ID to the database owner.
Step 2: After receiving Unique ID, the database owner
extends ܾ௖ to ܤ௖ by adding (݊ + 1) th element equals to 1.
Then, the database owner randomly generates a (݊ + 1) ×
(݊ + 1) matrix ‘E’. The ith row vector
௜ܧ = ,௜ଶܧ,௜ଵܧ	ൣ … ௜(௡ାଵ)൧ is set as a random vector, whereܧ,
the (݊ + 1) th element is
൫1−∑ ௜௝ܧ ∗ ௝௡ܪ

௝ୀଵ ൯/ܪ௡ାଵ,ݓℎ݁݁ݎ	1 ≤ ݅ ≤ (݊ + 1) . Then,
the database owner performs the following computation to
hide Unique ID
௖ܨ = ଵ்ܧൣ ∗ ܾ௖ଵ,ܧଶ் ∗ ܾ௖ଶ, … (௡ାଵ)ܧ,

் ∗ ܾ௖(௡ାଵ)൧
்
 (13)

To send ܨ௖ to the cloud, the database owner needs to encrypt
ݎ ,௖ with the secret keys and a random integer rܨ > 0. The
computation is performed as follows
௙ܥ = ଵܯ

ିଵ × ݎ × ௖ܨ × ଶ (14)ܯ
Then, the database owner sends the ܥ௙ to the cloud for
identification purpose.
Step 3: After receiving ܥ௙ from the database owner, the cloud
starts to search the Unique ID having minimum Euclidean
distance with respect to the query Unique ID. ௜ܲ represents the
relative distance between ܤ௜ and ܤ௖ as follows
௜ܲ = ௜ܥ × ௙ܥ × ௛ܥ

= ௜ܤ × ଵܯ × ଵܯ
ିଵ × ݎ × ௖ܨ × ଶܯ × ଶܯ

ିଵ × ்ܪ
= ௜ܤ × ݎ × ௖ܨ × ்ܪ
௜ܲ = ∑ ݎ ∗ ܾ௜௝ ∗ ܾ௖௝௡ାଵ

௝ୀଵ (15)
In the above equation, the computation result can be used to
compare two Unique IDs. To compare the query ܾ௖ with two
Unique IDs ܾ௜ and ܾ௭ , the cloud computes ௜ܲ and ௭ܲ and
performs the following operation, where 1 ≤ ݅, ݖ ≤ ,ݐ ݅ ≠ ݖ

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

172

௜ܲ − ௭ܲ = ∑ ݎ ∗ ܾ௜௝ ∗ ܾ௖௝ −௡ାଵ
௝ୀଵ ∑ ݎ ∗ ܾ௭௝ ∗ ܾ௖௝௡ାଵ

௝ୀଵ (16)
= ௭௖ଶݐݏ݅݀)ݎ0.5 − ௜௖ଶݐݏ݅݀)
As shown in the above equation, if ௜ܲ − ௭ܲ > 0, the cloud
learns that ܾ௜ matches with the query unique code much better
than ܾ௭ . After repeating the operations for the encrypted
unique code database ‘C’ in the cloud, the ciphertext ܥ௜
having minimum Euclidean distance with ܾ௖ is found out. The
cloud obtains the corresponding index ܫ௜ according to the
tuple (ܥ௜ ௛ܥ, , .௜) and sends it back to the database ownerܫ
Step 4: After receiving the index, the database owner obtains
the corresponding sample unique code ܾ௜ in the database ‘D’
and computes the accurate Euclidean distance between ܾ௜ and

ܾ௖ as ݀݅ݐݏ௜௖ = ට∑ ൫ܾ௜௝ − ܾ௖௝൯
ଶ௡

௝ୀଵ . Then, the database owner
compares the Euclidean distance with the standard threshold.
The query is identified, if the Euclidean distance is lesser than
the threshold value. Otherwise, the identification fails.
Step 5: Finally, the database owner returns the identification
result to the user [15].

4. PERFORMANCE ANALYSIS

The proposed work B2EIS-RG is evaluated and compared
with the BEIS-I [37] and Zhu et al. scheme [15]. The BEIS
schemes can execute multi-keyword Boolean search while
achieving forward privacy and a strong privacy guarantee that
the server cannot learn whether a newly added file contains a
previously searched keyword or not. In addition, the search
tokens/keyword hashes of all keywords in the new file are not
leaked. If the forward privacy is not required, more efficient
file additions are obtained. BEIS schemes can naturally
support multi-keyword search, without needing to
post-process all results of single keyword queries.

Figure 3 shows the time cost analysis of the index
construction process. During the index construction of
BEIS-I, an 80-bit random number is used to mask each entry
in div. This leads to only a small computation cost. While
during the index construction of BEIS-II, the use of Paillier
homomorphic encryption system to encrypt each div leads to
relatively higher computation cost. The B2EIS-RG scheme
requires minimum computational time for the index
construction when compared to the BEIS-I and BEIS-II
schemes.

Figure 4 shows the query performance analysis. The time
cost of query process consists of the time cost of generating
trapdoors on the client side and the time cost of file searching
on the server side. Our BEIS schemes can naturally support
multi-keyword search, without needing to post-process all
results of single-keyword queries. The performance of the
single keyword query and multi keyword query is evaluated
with respect to the increase in #d. The computation cost for
the conjunction and disjunction logics is same.

Figure 5 depicts the time cost of the addition and deletion
operations. The cost of file updates for the BEIS-I scheme
increase with the increase in the number of data files to be
updated. Hence, both the addition and deletion operations are
efficient. Due to the unique encryptions of the index in the
proposed scheme, the time costs of file updates remain
invariant. The proposed scheme can be better applied to the

updates of a bunch of data files simultaneously. During the
process of file addition, the time costs of the proposed scheme
with and without achieving forward privacy are measured. For
without forward privacy, there is no need to generate m
encrypted value for every bucket. To insert each data file, the
client can only compute a single encrypted value of a 1024-bit
vector and send the 2048-bit ciphertext to the server along
with the position information of the buckets to be changed.
This can greatly reduce the time costs for generating adding
token if forward privacy is not required in practice.

Figure 6 and Figure 7 present the computation and
communication costs in the identification phase with the
number of FingerCodes ranges from 1000 to 5000. The
computation and communication costs will increase linearly
with the increase in the size of the database. Due to the fewer
vector matrix multiplication, the identification time and cost
are reduced significantly when compared with the Yuan and
Yu scheme [39] and Wang et al. scheme [40]. The bandwidth
cost of all schemes is almost same, due to the transmission of
matrix in the identification phase.

(a)

(b)

Figure 3: Average time cost of index construction

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

173

(a)

(b)

Figure 4: Average time cost of query process

(a)

(b)

Figure 5: Average time cost of file updates

Figure 6: Time cost in the identification phase

Figure 7: Bandwidth costs in the identification phase

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

174

5. CONCLUSION

This paper presents a combined biometric identification
scheme and bucket encrypting index structure with random
generator for efficient privacy preserving in the cloud
environment. The proposed scheme can resist the potential
attacks. A new secure index design is applied for processing
queries over large-scale encrypted databases. Our index
constructions addressed the trade-offs between the query
efficiency and query privacy, with flexible and complete
query functionalities. Through the extensive, experiments on
real-world datasets, the effectiveness and practicality of our
constructions are demonstrated. From the experimental
analysis, it is observed that the proposed scheme incurs
minimum average time for index construction process, query
process, file update process, minimum identification time and
bandwidth cost than the existing schemes.

REFERENCES
[1] Dr. Abdelrahman ElSharif Karrar and and M. F. I.

Fadl, "Security Protocol for Data Transmission in
Cloud Computing," International Journal of
Advanced Trends in Computer Science and
Engineering, vol. 7, pp. 1-5, Jan-Feb 2018.

 https://doi.org/10.30534/ijatcse/2018/01712018
[2] Goodubaigari Amrulla, Murlidher Mourya, R. R.

Sanikommu, and a. A. A. Afroz, "A Survey of :
Securing Cloud Data under Key Exposure,"
International Journal of Advanced Trends in
Computer Science and Engineering, vol. 7, pp.
30-33, Jan-Feb 2018.

 https://doi.org/10.30534/ijatcse/2018/01732018
[3] K. He, Jing Chen, Ruiying Du, Qianhong Wu, a.

Guoliang Xue, and X. Zhang, "Deypos:
Deduplicatable dynamic proof of storage for
multi-user environments," IEEE Transactions on
Computers, vol. 65, pp. 3631-3645, Dec 2016.

 https://doi.org/10.1109/TC.2016.2560812
[4] S. Hu, Qian Wang, Jingjun Wang, Zhan Qin, and a.

K. Ren, "Securing SIFT: Privacy-preserving
outsourcing computation of feature extractions over
encrypted image data," IEEE Transactions on Image
Processing, vol. 25, pp. 3411-3425, May 2016.

 https://doi.org/10.1109/TIP.2016.2568460
[5] J. Shen, Jun Shen, Xiaofeng Chen, Xinyi Huang, and

a. W. Susilo, "An efficient public auditing protocol
with novel dynamic structure for cloud data," IEEE
Transactions on Information Forensics and Security,
vol. 12, pp. 2402-2415, Oct 2017.

 https://doi.org/10.1109/TIFS.2017.2705620
[6] K. M. R. Urs, "Harnessing the Cloud for Securely

Outsourcing Large-scale Systems of Linear
Equations," IEEE Transactions on Parallel and
Distributed Systems, vol. 24, pp. 1172-1181, Jun
2013. https://doi.org/10.1109/TPDS.2012.206

[7] Q. Wang, Shengshan Hu, Kui Ren, Meiqi He,
Minxin Du, and a. Z. Wang, "Cloudbi: Practical
privacy-preserving outsourcing of biometric

identification in the cloud," In European Symposium
on Research in Computer Security, Springer, Cham,
pp. 186-205, Sep 2015.

 https://doi.org/10.1007/978-3-319-24177-7_10
[8] Q. Wang, Cong Wang, Kui Ren, Wenjing Lou, and a.

J. Li, "Enabling public auditability and data
dynamics for storage security in cloud computing,"
IEEE transactions on parallel and distributed
systems, vol. 22, pp. 847-859, May 2011.

 https://doi.org/10.1109/TPDS.2010.183
[9] D. X. Song, D. Wagner, and A. Perrig, "Practical

techniques for searches on encrypted data," in IEEE
Symposium on Security and Privacy, 2000, pp.
44-55.

[10] S. Kamara, C. Papamanthou, and T. Roeder,
"Dynamic searchable symmetric encryption," in
Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp.
965-976. https://doi.org/10.1145/2382196.2382298

[11] S. Kamara and C. Papamanthou, "Parallel and
dynamic searchable symmetric encryption," in
International Conference on Financial
Cryptography and Data Security, 2013, pp. 258-274.

 https://doi.org/10.1007/978-3-642-39884-1_22
[12] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H.

Krawczyk, M.-C. Rosu, et al., "Dynamic searchable
encryption in very-large databases: data structures
and implementation," in NDSS, vol. 14, pp. 23-26,
Feb 2014. https://doi.org/10.14722/ndss.2014.23264

[13] F. Hahn and F. Kerschbaum, "Searchable encryption
with secure and efficient updates," in Proceedings of
the 2014 ACM SIGSAC Conference on Computer
and Communications Security, 2014, pp. 310-320.

 https://doi.org/10.1145/2660267.2660297
[14] A. Jain, L. Hong, and S. Pankanti, "Biometric

identification," Communications of the ACM, vol.
43, pp. 90-98, Feb 2000.

 https://doi.org/10.1145/328236.328110
[15] L. Zhu, C. Zhang, C. Xu, X. Liu, and C. Huang, "An

Efficient and Privacy-Preserving Biometric
Identification Scheme in Cloud Computing," IEEE
Access, vol. 6, pp. 19025-19033, 2018.

 https://doi.org/10.1109/ACCESS.2018.2819166
[16] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu,

"Achieving efficient cloud search services:
multi-keyword ranked search over encrypted cloud
data supporting parallel computing," IEICE
Transactions on Communications, vol. 98, pp.
190-200, Jan 2015.

 https://doi.org/10.1587/transcom.E98.B.190
[17] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou,

"Privacy-preserving multi-keyword ranked search
over encrypted cloud data," IEEE Transactions on
parallel and distributed systems, vol. 25, pp.
222-233, Jan 2014.

 https://doi.org/10.1109/TPDS.2013.45
[18] S. Raghavendra, C. Geeta, K. Shaila, R. Buyya, K.

Venugopal, S. Iyengar, et al., "MSSS: most
significant single-keyword search over encrypted
cloud data," in Proceedings of the 6th Annual

Sudharani K et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 165 - 175

175

Intrernational Conference on ICT: BigData, Cloud
and Security, 2015.

 https://doi.org/10.5176/2382-5669_ICT-BDCS15.22
[19] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li,

"Protecting your right: verifiable attribute-based
keyword search with fine-grained owner-enforced
search authorization in the cloud," IEEE
Transactions on Parallel and Distributed Systems,
vol. 27, pp. 1187-1198, Apr 2016.

 https://doi.org/10.1109/TPDS.2014.2355202
[20] Z. Xia, X. Wang, X. Sun, and Q. Wang, "A Secure

and Dynamic Multi-Keyword Ranked Search
Scheme over Encrypted Cloud Data," IEEE Trans.
Parallel Distrib. Syst., vol. 27, pp. 340-352, Feb
2016.

 https://doi.org/10.1109/TPDS.2015.2401003
[21] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, "Toward

efficient multi-keyword fuzzy search over encrypted
outsourced data with accuracy improvement," IEEE
Transactions on Information Forensics and Security,
vol. 11, pp. 2706-2716, Dec 2016.

 https://doi.org/10.1109/TIFS.2016.2596138
[22] H. Dai, X. Zhu, G. Yang, and X. Yi, "A Verifiable

Single Keyword Top-k Search Scheme against
Insider Attacks over Cloud Data," in 3rd
International Conference on Big Data Computing
and Communications (BIGCOM), 2017, pp.
111-116. https://doi.org/10.1109/BIGCOM.2017.56

[23] Z. Chen, F. Zhang, P. Zhang, J. K. Liu, J. Huang, H.
Zhao, et al., "Verifiable keyword search for secure
big data-based mobile healthcare networks with
fine-grained authorization control," Future
Generation Computer Systems, vol. 87, pp. 712-724,
Oct 2018.

 https://doi.org/10.1016/j.future.2017.10.022
[24] T. Peng, Y. Lin, X. Yao, and W. Zhang, "An

Efficient Ranked Multi-Keyword Search for
Multiple Data Owners Over Encrypted Cloud Data,"
IEEE Access, vol. 6, pp. 21924-21933, 2018.

 https://doi.org/10.1109/ACCESS.2018.2828404
[25] J. Ye and Y. Ding, "Controllable keyword search

scheme supporting multiple users," Future
Generation Computer Systems, vol. 81, pp. 433-442,
Apr 2018. https://doi.org/10.1016/j.future.2017.09.030

[26] M. Ahmed and A. Khan, "Privacy Preserving
Multi-Keyword Ranked Search over Encrypted
Cloud Data," 2018.

[27] Y. Miao, J. Ma, X. Liu, Z. Liu, L. Shen, and F. Wei,
"VMKDO: Verifiable multi-keyword search over
encrypted cloud data for dynamic data-owner,"
Peer-to-Peer Networking and Applications, vol. 11,
pp. 287-297, Mar 2018.

 https://doi.org/10.1007/s12083-016-0487-7
[28] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li,

"Practical attribute-based multi-keyword search
scheme in mobile crowdsourcing," IEEE Internet of
Things Journal, Vol. 5, pp. 3008-3018, Aug 2017.

 https://doi.org/10.1109/JIOT.2017.2779124
[29] X. Jiang, J. Yu, J. Yan, and R. Hao, "Enabling

efficient and verifiable multi-keyword ranked search

over encrypted cloud data," Information Sciences,
vol. 403, pp. 22-41, Sep 2017.

 https://doi.org/10.1016/j.ins.2017.03.037
[30] H. Wang, X. Dong, and Z. Cao,

"Multi-value-Independent Ciphertext-Policy
Attribute Based Encryption with Fast Keyword
Search," IEEE Transactions on Services Computing,
Sep 2017. https://doi.org/10.1109/TSC.2017.2753231

[31] Z. Fu, X. Wu, Q. Wang, and K. Ren, "Enabling
central keyword-based semantic extension search
over encrypted outsourced data," IEEE Transactions
on Information Forensics and Security, vol. 12, pp.
2986-2997, Dec 2017.

 https://doi.org/10.1109/TIFS.2017.2730365
[32] Z. Cao, C. Mao, L. Liu, W. Kong, and J. Wang,

"Analysis of One Dynamic Multi-Keyword Ranked
Search Scheme over Encrypted Cloud Data," IJ
Network Security, vol. 20, pp. 683-688, Jul 2018.

[33] Z. Guo, H. Zhang, C. Sun, Q. Wen, and W. Li,
"Secure multi-keyword ranked search over
encrypted cloud data for multiple data owners,"
Journal of Systems and Software, vol. 137, pp.
380-395, Mar 2018.
https://doi.org/10.1016/j.jss.2017.12.008

[34] L. Chen, L. Qiu, K.-C. Li, and S. Zhou, "A secure
multi-keyword ranked search over encrypted cloud
data against memory leakage attack," Journal of
Internet Technology, vol. 19, pp. 167-176, Jan 2018.

[35] D. Radke, N. Hatwar, L. Gouda, M. Shambharkar, P.
Gajimwar, and R. Raut, "An Efficient Search
Method over an Encrypted Cloud Data," 2018.

[36] H. Li, D. Liu, K. Jia, and X. Lin, "Achieving
authorized and ranked multi-keyword search over
encrypted cloud data," in IEEE International
Conference on Communications (ICC), 2015, pp.
7450-7455.
https://doi.org/10.1109/ICC.2015.7249517

[37] M. Du, Q. Wang, M. He, and J. Weng,
"Privacy-Preserving Indexing and Query Processing
for Secure Dynamic Cloud Storage," IEEE
Transactions on Information Forensics and Security,
vol. 13, pp. 2320-2332, Sep 2018.

 https://doi.org/10.1109/TIFS.2018.2818651
[38] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti,

"Filterbank-based fingerprint matching," IEEE
transactions on Image Processing, vol. 9, pp.
846-859, May 2000.

 https://doi.org/10.1109/83.841531
[39] J. Yuan and S. Yu, "Efficient privacy-preserving

biometric identification in cloud computing," in
INFOCOM, 2013 Proceedings IEEE, 2013, pp.
2652-2660.

 https://doi.org/10.1109/INFCOM.2013.6567073
[40] Q. Wang, S. Hu, K. Ren, M. He, M. Du, and Z.

Wang, "Cloudbi: Practical privacy-preserving
outsourcing of biometric identification in the cloud,"
in European Symposium on Research in Computer
Security, 2015, pp. 186-205.

 https://doi.org/10.1007/978-3-319-24177-7_10

