
 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1225


ABSTRACT

We present a case study of an interpretation and application of
the measures in the Social Network Analysis (SNA) to
comprehend the implementation architecture of a software
system. The architectural structure derived from the
dependencies of programming elements is considered a social
network. Then, the SNA measures such as degree
distribution, centrality, clustering, community, and ego
network are applied to the software network. The Gephi tool
has been used to collect the values of those SNA measures and
also for visualization. The values obtained for those measures
were interpreted in the terms of potential application area of
the software engineering. The interpretation of SNA
measures from the case study reveals that it is useful for the
developers to enhance their comprehension about the
organization of program elements and source.

Key words: Measures, Social Network Analysis, Software
Network, Software Architecture.

1. INTRODUCTION

Building a software system is complex process and requires
considerable efforts, high level planning and design. With
this intense process produces a software system, which is a
solution to the real-world computation problem achieved
through decomposition and abstraction techniques. Such
system is often decomposed into collection of communicating
components or elements to manage its complexities. These
components will be implemented using different form of
abstractions to wrap details and will be gelled together as a
system to perform desired computation. Desired computation
is achieved through communication or interactions between
the various program elements in the system. Such interactions
will connect program elements and form structure of software.

These interactions define a software dependency network,
give rise alternative way to understand underlying structure of
a software. Researchers investigated such network by
considering it as a social network to examine the network
satisfies certain properties like degree distribution (scale free),
small world, centrality, clustering, and ego network. The

network is extracted from different type of software’s at
various levels of interaction granularity mainly from product
(source code) and design artifacts (class diagram) [1]. At the
same time, different authors worked on the network captured
from design and source code of the software at various
granularities such as package or module level [2], component
[3], class [4], and method [5]. Interactions among the
elements are captured at different phases - at runtime [6] and
non-runtime (design level or source code). But software
system analyzed till now is either procedural (written in C) or
Object-oriented systems (C++ and Java based) which are free
and open source [3], involve study of various properties of a
network along with evolution and stability of software [7], [8].

Further analysis focused on, ranking and search engine of
Java classes [9], measures complexity of network [10], [11]
and community structure [12], [13], [14]. Along with this
[15], [16] and [17] were suggested implication to software but
lacks concrete application and use. However, not only
software (interacting elements) but also process to build
software can be represented as complex network [16] which
includes representation of dependency or communication
among developers as network.

Similarly, many natural systems were represented as complex
network and analysis of such networks with help of social
network theory revealed that poses scale free and small world
attribute and categorized in social, information, technological
and biological network [18]. First, social networks were
examined like collaboration [19], co-authorship [18] and
virtual and real social network. Second, common information
networks were used in the research such as World Wide Web
[20], and citation network [18]. In technological networks
like Internet [21], [22], software network [6], [2], [7], [10],
[16], [3], [9], [23] and lastly metabolic network such as
protein-protein interactions, neural network in biological
network [24] study exhibits these properties.

The scale free (power law) refers distribution of degree in the
network skewed in nature. The free of scale means the
distribution unchanged even scaling independent variable
[18],[25]. The skewed degree distribution defines resilience
(robustness) property of the network where a network is not
disconnected even if a node is removed. Due to the probability
of such a node to a peripheral node is more than the hub.
Further robustness of the network against any random failure

Analyzing Implementation Architecture through measures of

Social Network Analysis: A case study
Sanjay Bapu Thakare1

1Dr. Babasaheb Ambedkar Technological University, Lonere, Maharashtra, India, mail2sbt@gmail.com

ISSN 2278-3091
Volume 10, No.2, March - April 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse1051022021.pdf

https://doi.org/10.30534/ijatcse/2021/1051022021

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1226

or removal, based on the connectivity of a network, removal of
a random node will increase distance in the network [19],
[18].

The network also exhibits a small-world property, and it is
based on average shortest path as well as clustering coefficient
of the node in a network. The network with the small-world
property must have large clustering coefficient and small
average shortest path [26].

In this paper, we examined various properties of software
dependency network at a node and network level such as
degree distribution, shortest path, clustering coefficient,
centrality, ego and community. Most of these properties are
examined by considering additional information provided by
the network that is direction but, in some cases, we ignore
direction. For this, we construct dependency network of
import relation extracted from a source code of
object-oriented software. In import relation, dependency
between a class and explicitly imported classes is captured.
Here, interface is also considered as class. This paper
addresses following questions to investigate a complex
network extracted from software.

“What is the current structure of a software?”
“Do software networks have properties of a social network?”
“Interpretation of the measures in SNA from perspectives of
Software Engineering”

The main contribution and difference between our work and
other authors approach are that we have not only apply
various measures of SNA to software network (which is done
by other authors) but also used these measures to interpret
from the perspective of a software.

The remainder section is outline as detailed on approach used
to analyzed dependency network of the import relation in
object-oriented software, experimental results, interpretation,
and related work. Section 2 presents brief of measures in
SNA. The approach used for an experiment analysis is
described in section 3. Analysis of the result is discussed in
section 4. Section 5 presents interpretation of analysis from
perspective of software organization and layered program
architecture. Section 6 is review of related work on analysis of
the social network that has property of scale free and small
world. Conclusion is presented in section 7.

2. MEASURES OF SOCIAL NETWORK ANALYSIS

Social network analysis (SNA) is systematic analysis of the
pattern and regularities of the relationship in the social
network with the help of graph theory, which consists of
nodes and ties that connect nodes. An analysis of social
network helps to extend our understanding about the
relationship and pattern of the relationship that present in the
network which cannot be visualize with other techniques.

The pattern of relation is influenced by personality, education,
background, race and ethnicity and has significant impact on
the individual in various contexts such as social, business,
education and politics. Many real-world networks from Web,
Internet, collaboration, protein, metabolic, movie actor,
cellular, citation, linguistic and power grid have property of
scale free and small world. Similarly, software consists of
various components that interact and collaborate with each
other defines the network. Now researchers are taking interest
in to apply concepts of social network to software system in
order to understand underlying structure of the software. Such
structure of software system pays the important role to support
the functionality of software.

Figure 1: Collaboration network of program elements.

The network extracted from design or source code can be
either call graph or collaboration (as shown in figure 1)
network that helps us to know the inner structure of
software. The study of topological properties of large and
complex software network used to improve an efficiency
and performance of software by guiding a process of
testing, debugging and maintenance based on these
properties.

The remainder section provides brief about measures in
Social Network Analysis.
1) Degree distribution: The number of edges connect to

a node is degree but degree of all nodes in the network
is not apparently same. Thus, degree distribution is
described by a function that measure spread of degree
in a network. Further, distribution function not only
gives the spread of degree in the network but also
defines a characteristic of a network that
distinguishes it from other networks. At the same
time, distribution is probability distribution and
defined as ratio of number of nodes with k degree to
all the nodes in a network.

P(k) ∼ k−γ

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1227

However, for a directed network has in-degree and
outdegree distribution. But we must conceive
in-degree and out-degree in right manner for the
network. For example, a call relationship in which a
person calls another person, high in-degree indicates
that the person receives more calls and high
out-degree shows that more call. There are various
implications of degree distribution of a network such
as if we want to propagate information in the network
then obvious choice to leak this information is to a
high out-degree node, because it is responsible for
spreading information to large number of nodes
connected to it. The power law or skewed degree
distribution of the real-world network in which
portion of large degree nodes are much smaller than
low degree nodes [27], [5].

2) Centrality: The centrality is a node level measure and

used to measures importance of or central nodes in the
network. A central node is most influential, and it has
great potential to communication and rich access to the
information.
Degree centrality: The most influential or popular node
is a node with higher degree in the network. It is
simplest centrality measure and considers only direct
contact between the nodes and ignores indirect contact.
Beside simplicity, it considers only immediate
connections and overlooks indirect contacts. In directed
graph, there are two separate degree centrality measure,
in-degree and out-degree based on incoming and
out-going edges respectively. Degree centrality of a
node is degree of a node "a" and normalized with
respect to maximum degree of the node (present in star
network).

Closeness centrality: To identify a popular node which
spread more information in a network quickly; so,
distance between the nodes should be small, hence
information may reach faster from one node to other.
Further, it is defined as an average distance from a
node to all the connected node at different depth. So,
average distance is measure for the closeness
centrality. However, distance between disconnected
components of the network is infinite and hence not
applied to the disconnected component of a network.
For a central node, an average distance is small and
calculated as inverse of the sum of distance to all other
nodes and normalized closeness (NCC) is in the range
from zero to one, zero is interpreted as isolated node
and one for strongly connected.

Betweenness centrality: The node connects two or more
components, hence acting as bridge or channel to pass
the information [28], [29] and gives one more measure
to determine a central node, removal of such nodes
disconnect the network. Betweenness centrality is define
as a number of the shortest paths pass through the nodes.

where σst is total number of shortest paths from a node s
to t and σst(v) is number of paths that pass-through v.
The relative betweenness centrality of any node in a
graph with respect to the maximum centrality of a node.

3) Average shortest path: An average shortest path length

is small means fast propagation of information and
reduces transfer costs and is one of the characteristics of
small world network. The distance dij is distance
between any pair of nodes i and j. L is mean distance
between any pair of nodes i and j and define as sum of
shortest distance between all pair of node divide by

4) Clustering coefficient: A clustering coefficient (CC) is a
measure of degree to which nodes in a graph tend to
cluster together. Nodes clustering coefficient is density
of its neighborhood and it is measured number of actual
edges between neighbors divide by all possible edges.
Clustering coefficient of a network is an average of
clustering coefficient of all the nodes in a network.

Newman [30] in 2001 proposed an alternative
calculation for clustering coefficient is known as global
clustering coefficient and is defined as number of closed
triplets over the total numbers of triplets. Triplet is
three connected nodes and there are two kind of triplets.
First, open triplet, in which ends are not connected with
each other. Second, closed triplet with their ends are
connected with each other.

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1228

5) Network Density: Network density measures cohesion
or clustering of a network and defined as ratio of the
actual edges to all the possible edges.

6) Ego Network: An ego network of a node is consisting of

all its neighboring nodes and edges connecting them
with the aim to study the behavior and role of individual
in the network. So, an ego is focal (ego) node and
network has ego’s equal to total number of nodes
present in the network. In directed network, there are in
and out kinds of ego network based on incoming and
outgoing edges from all the neighbors. In this paper, we
consider a network as whole and an ego focuses on the
part of network.

7) Community: A set of tightly connected nodes are
referred as a community like our real-world community
or group on social media. Here, study focuses on the
sub-structure level where a role and behavior in the
group are analyzed. It is fundamentally a partition
technique in which network is dividing into groups
based on the density of edges within the group and
between the groups.

3. COLLECTING SNA MEASURES

This section describes a tool used to extract the dependency
relationship from Object-oriented software and finding values
of various measures of SNA. A tool was developed in the Java
to recognize the import dependency amongst the program
elements. The tool implements an algorithm 1 to extract
import dependency relationship and store in a suitable format
for further analysis. Input to an algorithm is directory path of
source code and produces output in different format (gexf,
gml or edgelist) compatible to various SNA tools. The step 2
and 3 in the algorithm lists all existing files and
sub-directories in input directory of source code. Additionally,
checking of all files are carried out and only required files are
considered for processing. The process of identifying import
relationship from source director is recursive, at each time one
source file is opened and retrieve necessary information.

Figure 2: Block diagram of experimental procedure.

The selected file is processed in step 8 to 16, by checking word
“import” and “class” in a line read from a file and extracting
name of classes from that line. The class name retrieved from
import statement recorded in a list. Similarly, a public class in
a source file is also retrieved by ignoring an extends and
implements the keyword. Further dependency relationship is
established from public class name encounter in the file to list
of class in import statement. Now, extracted entities are
referred as names of nodes in the network and unique
identification is assigned to them. A relationship in form of
set edges is created between the public class and list of
imported classes. Finally, these relationships are stored in the
formats necessary for further processing.

Algorithm 1: Extraction of import relation from source code
Input: path of directory contains source code of software.
Output: extracted relations in the format: gexf, gml or
edgelist
1: procedure EXTRACT–RELATION
2: Open the directory contains source code
3: Listfiles := list all the files in the directory
4: for each File ∈ Listfiles do
5: If File is directory then goto 3
6: else
7: if File has .java extension
8: for each Line ∈ File do
9: Line := nextline(File)
10: If Line start with “import” keyword then
11: ImportedClassList := extractclass(Line)
12: If Line contains “class” keyword then
13: Class := extractclass(Line)
14: Classid := checkclass(class) and goto 17
15: end for
16: end for

Formation of relation:
17: for each ImportClass ∈ ImportedClassList do
18: Importclassid := checkclass(ImportClass)
19: Form edge (Classid , Importeclassid)
20: end for
21: end procedure
Table 1: Summary of statistical analysis of the ConStore library

Parameters With
user-def
classes

With
Java

classes
nodes 66 95
edges 141 317
Avg. degree 2.136 3.337
Highest in-degree 11 27
Highest out-degree 20 27
Diameter 5 5
Avg. path length 1.584 1.566
Number of shortest paths 245 544
Density 3.3 % 3.5 %
Highest betweenness 35.833 51.8
Highest closeness 2.488 2.5
Avg. clustering coefficient 0.094 0.103

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1229

In addition to this, tool support variety of output formats (node
list, edge list, gexf, gml) attuned with various Social Network
Analytical tools. Social Network Analysis tool Gephi was
used for getting values of various measures in SNA and
recorded in proper format. The output of these tools was
recorded for further analysis. The analysis is interpreted from
the perspective of software organization and layered program
elements. Figure 2 shows the block diagram of the
experimental procedure carried out.

4. CASE STUDY: CONSTORE ANALYSIS

ConStore is open-source library that presents storage facility
for concept network which model a real-world problem. It
provides features like query, store and model the real-world
network. The real-world networks are accessed and stored in
the form of network where nodes represent the concepts, and
edges represent the connection between the concepts.

We selected ConStore library for this case study to understand
its internal structure and to verify the properties of the social
network. Internal structure of this library is not prior
available, so provides an opportunity to uncover the
implementation structure of program elements. For the
analysis, we focused only on import dependency relationship
between the components of a program. The dependency
network of import relation is constructed using Algorithm 1
and visualized with assistance of Gephi [36]. During the
analysis of dependency network, we have considered the
import relationship between: 1) the only user defined classes
and 2) including Java built-in (library) classes. Table 1 gives a
summary of statistical analysis of the ConStore library. There
are 66 user-defined classes and 29 libraries or built-in Java
classes, so total 95 classes are in the analysis. We have found
141 import relations between the user defined classes and 317
whereas with built-in classes.

Figure 3: Degree centrality analysis of the ConStore where labels

are node id and size correspond to degree.

Due to this a little increase in the density of the network from
3.3% to 3.5%. The diameter of each case is the same that is
five which indicated the length of dependency. The number of
nodes involved is six. The average shortest path between any
two pair of nodes is 1.5, indicates the distance between two
classes. The average degree is around three specifies number
of connections fall on each node.

Figure 3a and 3b show in-degree of user-defined and with
built-in class whereas figure 3c and 3d show out-degree
analysis of various classes. Further, we observed that 35(53%)
nodes have degree less than equal to three in the network and
only two (3%) degree above 17.

The figure 4 reveals presence of skewed degree distribution of
the ConStore which clearly shows for both in, and out-degree
follows the power law. This means the heavy tail on the
left-side of the plot and flat on right-side or head part of the
plot.

An ego network FileConceptNet(19) and IOException(node
id 22) are shown in figure 5 and 6. The first figure 5a and 6a
illustrate the first order ego of the nodes as mentioned above.
The second figure 5b and 6a shows the second order private
network of the nodes.

Figure 4: Degree distribution of the ConStore.

Figure 5: An ego network of FileConceptNet(19) with order a) first

and b) second.

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1230

It is evident from statistical analysis that value of betweenness
and closeness properties for Java library classes is zero. This
indicates that these nodes are locating at the boundary of a
network (peripheral nodes). BufferedFileAdapter (11), Type
(10) and IOAdapter (11) are most imported classes while
mostly imported classes with considering built-in classes are
IOException (27), ByteBuffer (25) and List (20).

Figure 6: An ego network of IOException (22) with order a) first

and b) second
The figure 7 shows the clustering coefficient of the network
which reveals the density of neighborhood. The average
clustering coefficient (neighborhood edge density) of the
network is low.

Figure 7: Clustering coefficient analysis of the ConStore.

There are three major communities or groups found in the
ConStore library as shown in figure 8. The distribution of
nodes in communities is: first large community is 30%,
second community is 18% and third large community consist
of 8%.

To address the first question, we have recovered the structure
of classes in the ConStore library. The figure 9 shows the
implementation structure of the ConStore library. We found
13 nodes(classes) did not have any relations with other nodes.
These classes are not explicitly imported by the other classes,
may exist on implicit relations. In future, we not only consider
import relation but tapping all the relations between the
classes, so program structure become more accurate.

5. INTERPRETING SNA MEASURES

Degree Distribution: ConStore network has skewed degree
distribution (power law) and indicates the system is a fault
tolerance(resilience), due to large low degree nodes
(peripheral) and fewer high degree nodes(hub). So, the
degree distribution of software predicts reliability of software
against any random failure. The major functionality was
controlled by hub nodes has lower probability of failure.
While peripheral nodes have high probability of failure
indicating possible less damage to the main functionalities.
Thus, resilience property ensures reliability of functionality in
the software and that leads to the customer satisfaction.

Figure 8: Community analysis of the ConStore.

Figure 9: Implementation Architecture of the ConStore.

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1231

In-degree: In-degree of class means incoming connection,
simply indicates the reusability of the computing services
offered by the class. Now, a class(node) with high in-degree
mean it has been imported by most of the classes, provide core
computing, can be present mostly in utility or library. In case
of ConStore, mostly reused user-defined classes are
BufferedFileAdapter, IOAdapter and whereas in case of
built-in classes are IOException, ByteBuffer, ArrayList, File
List, FileNotFoundException, and Map. All these are part of
Java library classes. Thus, identification of highly reusable
classes is important for testing and maintenance process
because changes made will affect to the classes which depend
on it.
Out-degree: A class with high out-degree is an aggregator
and a controller of functionality provided by the dependee
classes of software and so on greater extent it relays on
dependee classes. Therefore, higher priority is given to such
class in testing and debugging process as more likely faults
presents in these classes. Therefore, these classes are included
in 20% of 80-20 rule and responsible for defect clustering. In
the maintenance process, these classes are very sensitive to
the changes.

Betweenness centrality: A node is more frequently along a
path that connects two nodes and has high betweenness value.
Thus, a class with high betweenness value is nontrivial and
act as bridge to connect parts of system. These classes
integrate the system. At the same time, it has been found from
analysis of ConStore that most of the classes with high
out-degree have high betweenness value. It suggests for
refactoring to simplify the class.
Closeness centrality: The closeness centrality is based on the
shortest path between the classes. If distance between the
classes is small then better the communication and faster the
computations. Large distance simply indicates the delay in
the communication.

Ego network: An ego network refers to a private network. In a
dependency network, an ego of class is useful for analyzing a
ripple effect of changes or modifications. However, an ego is
also coarse level analysis which has many applications in
software engineering such as network partition, structural
analysis at node level, and to estimate the properties of a
network.
Community: A community is a closely connected group which
often contains classes not similar to the classes in the
packages. The community allows you to partition the system
into modules different from the partition of the packages. As
there are multiple ways to divide the system to satisfy the need
of customer with different view point. Community provides
the new perspective to partition the system and useful for
predicting refactoring.

Shortest path: The path length allows us to understand the
level of the dependency between the classes. Further, if this
because of the inheritance then we must careful that path

length should not be large. Because it introduces the
communication delay as number of classes in the path
increases. We can also assert that shortest path between the
classes means computation becomes fast.
Density: The density of the ConStore is less than 4%, in the
real-world network it is up to 10%. More number of edges is
good for a real-world network but for software each edge is a
computation demand. So, it is better that software networks
are sparse in nature.

An important implication of these finding is that measures of
Social Network Analysis is useful to pull out program
architecture. At the same time, it can be also helpful for
significantly improve testing, debugging or maintenance
processes.

6. RELATED WORK

Network has been investigated more than two decades by
research community to deepen understanding of structure
used for different purposes [20]. The only intention of many
authors to examine a network constructed from different
software was to validate whether a network has certain
properties of the Social Network. Thus, most common
properties that the researcher found to be present in software
network were power law degree distribution, small world,
scale free properties, and community [2], [3], [4], [5], [6], [7],
[8].

Initially, Faloutsos [21] and Alberto Median [22] revealed
that Internet followed the power law, despite its apparent
randomness and fits well for three snapshots of the Internet
taken for experiment. Although Albert Barabas[27],
Newman[30] and Reuven Cohen[31] also studied various
networks and topologies that exhibit scale free property
comparing with random network model.

On the other hand, David Hyland-Wood [5] and Alex Potanin
[32] were verified scale free property in network constructed
from Java based software. Further, Valverde and Cancho
examined an undirected [17] and directed [4] class
collaboration network based on the class diagram of JDK 1.2
with 9257 nodes, 3115 connected components and first largest
component exhibits scale free and small world.

Now, researches considered various software network
constructed from open-source software system written in
different languages for analysis [16], [15]. Most commonly
studied software systems with help of the social network were
Linux, Mozilla, XFree86, Gimps and JDK [4] [17] [34].
However, software network captured various relationships
like calling, dependency, common header files, and
collaboration present between various programming
elements.

Researchers have also studied software network at different
level of granularity, starting from inter-package(module) to
function level captured at design, compile and run time [2]. In
addition to this, a large collection of on-line Java classes

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1232

available on the Internet ware analyzed by Diego and Fabrizio
[9] from eighteen software with intention of finding top
ranking classes and components. A class-ranking algorithm
similar to Google’s Page Ranking algorithm was
implemented to rank the classes with aim to efficient search
highly relevant classes or components from repository to
reduced component search time so as to seed-up component
reuse process.

Moreover, software network also exhibits community
structure (group of related classes or packages) and was not
similar to package organization [33]. Now, application of the
community detection technique and when combined with
various software metrics reveals various defects in the
software system [35]. It helps to assess and improve the
system development. Li used the concept of social network to
study internal structure in order to supervising various aspects
of complex software system [37], [38]. There are various
aspects of software system where researchers used social
network analysis such as a measuring stability [39],
measuring modularity and decomposition [40],[41], class
cohesion [42].

At same time several authors shown their interest in examine
various properties of software network constructed mostly
from open-source software at different level of granularity,
phase and relationship. However, very little discuss was
carried out on implication of such extensive analysis. Due to
this, aim of this paper to discuss implication of various
measures in Social Network to software from different
perspective like detecting implementation structure, improve
organization of components, testing and maintenance
process.

7. CONCLUSION

Concepts and measures of the Social Network Analysis have
been applied to software system in order to understand
underlying structure of software because it pays the important
role to support functionality of software. Which is often
influence, help to improve and support the maintenance
process and evolution of a software system.

This paper clearly shown that study of software network built
from the import dependency relationship extracted from
ConStore has clearly reveal properties of the social network.
The network also represents the program implementation
architecture. The finding suggests that measures of SNA help
to study the underlying software architecture. Also, it could be
applicable to other phase of software development and
maintenances process by improve software organization,
testing and maintenance process. In future, we not only
consider import relation but tapping all the relations between
the classes. We try to extend our study to different kinds of
software systems and explore more implications of the
analysis.

REFERENCES
1. P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M.

Faloutsos, Graphbased analysis and prediction for
software evolution, in Proceedings of the 34th
International Conference on Software Engineering,
IEEE Press, 2012, pp. 419–429.

2. N. LaBelle and E. Wallingford, Inter-package
dependency networks in open-source software, arXiv
preprint cs/0411096, 2004.

3. R. Nair, G. Nagarjuna, and A. K. Ray, Finiteasize
effects in the dependency networks of free and
openasource software, arXiv preprint arXiv:0901.4904,
2009.

4. S. Valverde and R. V. Sole, Hierarchical small worlds
in software architecture, arXiv preprint cond-mat /
0307278, 2003.

5. S. K. David Hyland-Wood, David Carrington, Scale-free
nature of java software package, class and method
collaboration graphs, 5th International Symposium on
Empirical Software Engineering,September, Rio de
Janeiro, Brazil, pp. 21–22, 2005.

6. C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano,
and H. Srinivasan, Dependence analysis for java, in
Languages and Compilers for Parallel Computing.
Springer, 2000, pp. 35–52.

7. H. Li, B. Huang, and J. Lu, Dynamical evolution
analysis of the object-oriented software systems, in
Evolutionary Computation of IEEE World Congress on
Computational Intelligence, 2008, pp. 3030–3035.

8. L. Wang, Z. Wang, C. Yang, and L. Zhang, Evolution
and stability of linux kernels based on complex
networks, Science China Information Sciences, vol. 55,
no. 9, pp. 1972–1982, 2012.

9. D. Puppin and F. Silvestri, The social network of java
classes, in Proceedings of the 2006 ACM symposium on
Applied computing. ACM, 2006, pp. 1409–1413.

10. Y. Ma, K. He, and D. Du, A qualitative method for
measuring the structural complexity of software
systems based on complex networks, in Software
Engineering Conference, 2005. APSEC’05. 12th
AsiaPacific. IEEE, 2005, pp. 7–pp.

11. Y. Ma, K. He, D. Du, J. Liu, and Y. Yan, A complexity
metrics set for large-scale object-oriented software
systems, in Computer and Information Technology,
2006. CIT’06. The Sixth IEEE International Conference
on. IEEE, 2006, pp. 189–189.

12. Y. Ma, K. He, and J. Liu, Network motifs in
object-oriented software systems, arXiv preprint
arXiv:0808.3292, 2008.

13. L. Subelj, S. Zitnik, N. Blagus, and M. Bajec, Node
mixing and group structure of complex software
networks, Advances in Complex Systems, 2014.

14. E. Ferrara and G. Fiumara, Topological features of
online social networks, arXiv preprint
arXiv:1202.0331, 2012.

15. A. P. De Moura, Y.-C. Lai, and A. E. Motter, Signatures
of small-world and scale-free properties in large

 Sanjay Bapu Thakare, International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1225 – 1233

1233

computer programs, Physical review E, vol. 68, no. 1, p.
017102, 2003.

16. C. R. Myers, Software systems as complex networks:
Structure, function, and evolvability of software
collaboration graphs, Physical Review E, vol. 68, no. 4,
p. 046116, 2003.

17. S. Valverde, R. F. Cancho, and R. V. Sole, Scale-free
networks from optimal design, EPL (Europhysics
Letters), vol. 60, no. 4, p. 512, 2002.

18. M. E. Newman, “The structure and function of complex
networks,” SIAM review, vol. 45, no. 2, pp. 167–256,
2003.

19. M. E. J. Newman, Random graphs as models of
networks, arXiv preprint cond-mat/0202208, 2002.

20. A.-L. Barabasi, R. Albert, and H. Jeong, Scale-free
characteristics of´ random networks: the topology of
the world-wide web, Physica A: Statistical Mechanics
and its Applications, vol. 281, no. 1, pp. 69–77, 2000.

21. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On
power-law relationships of the internet topology, in
ACM SIGCOMM Computer Communication Review,
vol. 29, no. 4. ACM, 1999, pp. 251–262.

22. A. Medina, I. Matta, and J. Byers, On the origin of
power laws in internet topologies, ACM SIGCOMM
computer communication review, vol. 30, no. 2, pp.
18–28, 2000.

23. M. Savic, M. Ivanovi´ c, and M. Radovanovi´ c,
Characteristics of class´ collaboration networks in
large java software projects, Information Technology
and Control, vol. 40, no. 1, pp. 48–58, 2011.

24. L. d. F. Costa, O. N. Oliveira Jr, G. Travieso, F. A.
Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana,
and L. E. Correa Rocha, Analyzing and modeling
real-world phenomena with complex networks: a
survey of applications, Advances in Physics, vol. 60, no.
3, pp. 329– 412, 2011.

25. Q. Liu and A. T. Ihler, Learning scale free networks by
reweighted l1 regularization, in International
Conference on Artificial Intelligence and Statistics,
2011, pp. 40–48.

26. A. Barrat and M. Weigt, On the properties of
small-world network models, The European Physical
Journal B-Condensed Matter and Complex Systems, vol.
13, no. 3, pp. 547–560, 2000.

27. R. Albert and A.-L. Barabasi, Statistical mechanics of
complex networks, Reviews of modern physics, vol. 74,
no. 1, p. 47, 2002.

28. S. P. Borgatti, Centrality and network flow, Social
networks, vol. 27, no. 1, pp. 55–71, 2005.

29. D. R. White and S. P. Borgatti, Betweenness centrality
measures for directed graphs, Social Networks, vol.
16, no. 4, pp. 335–346, 1994.

30. M. E. Newman, S. H. Strogatz, and D. J. Watts, Random
graphs with arbitrary degree distributions and their
applications, Physical review E, vol. 64, no. 2, p.
026118, 2001.

31. R. Cohen and S. Havlin, Scale-free networks are
ultrasmall, Physical review letters, vol. 90, no. 5, p.
058701, 2003.

32. A. Potanin, J. Noble, M. Frean, and R. Biddle, Scale-free
geometry in oo programs, Communications of the
ACM, vol. 48, no. 5, pp. 99–103, 2005.

33. L. Subelj and M. Bajec, Community structure of
complex softwareˇ systems: Analysis and
applications, Physica A: Statistical Mechanics and its
Applications, vol. 390, no. 16, pp. 2968–2975, 2011.

34. Ali & Aksoy Tuysuz, Analysis of function-call graphs
of open-source software systems using complex
network analysis. Pamukkale University Journal of
Engineering Sciences, 26(2), 2020.

35. Orru, M., Monni, C., Marchesi, M., Concas, G., &
Tonelli, R. Predicting Software Defectiveness through
Network Analysis. In SATToSE (pp. 36–47), 2015.

36. Bastian, Mathieu, Gephi: an open source software for
exploring and manipulating networks, 2009.

37. Li, Hao, Modeling Software Systems as Complex
Networks: Analysis and Their Applications.
Mathematical Problems in Engineering 2020.

38. Pan, Weifeng, Applying complex network theory to
software structure analysis. International Journal of
Computer and Systems Engineering 5. 12, 2011,
1634–1640.

39. Pan, Weifeng, Measuring software stability based on
complex networks in software. Cluster Computing 22.
2, 2019, 2589–2598.

40. Pan, Weifeng, Analyzing the structure of Java
software systems by weighted K-core decomposition,
Future Generation Computer Systems 83. 2018:
431–444.

41. Xiang, Yiming, Measuring software modularity based
on software networks, Entropy 21. 4,2019, 344.

42. Gu, Aihua, Measuring object-oriented class cohesion
based on complex networks, Arabian Journal for
Science and Engineering 42. 8, 2017, 3551–3561.

