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 
ABSTRACT 
 
In this paper, we present our contribution to the ASVspoof 
2019 challenge. The main task for this challenge is to find 
countermeasures that generalize well for different spoofing 
attacks against automatic speaker verification systems. Some 
of the approaches used by the authors during participation in 
the challenge are presented. Described anti-spoofing systems 
mostly rely on using constant Q cepstral coefficients (CQCC) 
features and bidirectional long-short term memory (BiLSTM) 
networks for genuine/spoof audio classification. Fusion of 
BiLSTM and GMM-UBM system is presented. This approach 
could give significant improvement to baseline systems 
results without any data augmentation, especially on physical 
access (PA) condition. Presented systems give 15.2% 
min-tDCF relative improvement for logical access (LA) 
condition and 61.5% min-tDCF relative improvement for PA 
condition, compared to the best baseline systems results. 
 
Key words : ASVspoof, BiLSTM network, anti-spoofing, 
playback detection, synthetic speech detection, GMM-UBM. 
 
1. INTRODUCTION 
 
One of the main disadvantages of using automatic speaker 
verification (ASV) systems is its vulnerability to spoofing 
attacks. Despite the fact that state of the art ASV systems 
performs well and are robust to channel variations, different 
kind of spoofing attacks could significantly reduce ASV 
system accuracy [1]. Several types of ASV systems used in 
banking, access control systems, internet of things systems 
(IOT) [2, 3] could be affected by spoofing attacks [4]. 
There are several types of spoofing attacks: impersonation, 
voice conversion (VC), text-to-speech (TTS) and replay 
attacks. As modern TTS and VC systems made significant 
progress during last years, the ASVspoof 2019 challenge aims 
to find relevant countermeasures to such new spoofing 
methods. Another objective of this challenge is to assess 
impact of spoofing attacks upon the reliability of ASV 
systems. In order to have equal conditions for all challenge 
participants, organizers shared their ASV system scores so 
there was no need to use existing or create new ASV system. 

 
The results were obtained as part of the implementation of the basic part of the 

state task of the Russian Federation Education and Science Ministry, project 
8.9628.2017/8.9. 

As opposed to the ASVspoof 2017 challenge, this challenge 
provide data recorded in controlled environment in order to 
make challenge results easier to analyze. 
ASVspoof 2019 adopts for the first time a new ASV-centric 
metric in the form of the tandem decision cost function 
(t-DCF) [5]. By combining spoofing detection scores with 
ASV scores produced by a fixed system designed by the 
organisers, adoption of the t-DCF as the primary evaluation 
metric will ensure that evaluation results and rankings will 
reflect the impact of spoofing and the performance of 
spoofing countermeasures upon the reliability of ASV [6]. 
There are two problems in this challenge: synthetic and 
converted speech recognition, which forms logical access 
(LA) condition, and replay attack detection, which forms 
physical access (PA) condition. LA condition includes data 
processed with VC, TTS and hybrid TTS-VC systems. Part of 
the spoofed data was generated using voice conversion 
systems based on neural networks and spectral filtering 
functions [7]. Another part of spoofed data was processed 
using the speech synthesis systems that are based on 
waveform concatenation, waveform filtering, generative 
adversarial networks, neural-network-based parametric 
speech synthesis using source-filter vocoders and 
neural-network-based parametric speech synthesis using 
Wavenet [8-12]. 
Spoofing attacks in the PA condition correspond to replay 
attacks as at first bona fide speech is recorded by supposed 
intruder. Challenge organizers pre-processed spoofed audio 
in order to simulate capture and replay according to one of the 
scenarios. These scenarios include 27 different acoustic 
configurations, including three room sizes, three levels of 
reverberation, and three speaker-to-ASV microphone 
distances. 
Most of the spoofing detection systems does not use 
traditional speech features. Systems of that kind typically use 
constant Q cepstral coefficient(CQCC) features [13], 
rectangular frequency cepstral coefficients (RFCC) [14], 
inverted mel frequency cepstral coefficients (IMFCC) [15] 
coupled with standard Gaussian Mixture Model (GMM) [16, 
17], GMM-UBM, GMM-SVM, i-vectors backend [17]. There 
are some examples of using deep neural networks (DNN) [18] 
for spoof attacks detection [19, 20]. In addition, there are 
systems that includes BiLSTM network as a classifier [21, 
22]. In this paper, we describe new methods of boosting 
BiLSTM networks performance for spoof attacks detection 
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using different network training and evaluation approaches.  
The organisation of the paper is as follows. In Section 2, we 
present a short description of the proposed methods including 
features and systems we used. Results of the experimental 
evaluation and performance analysis are described in Section 
3. Conclusions are presented in Section 4. 
 
2. PROPOSED METHODS 
 
In this section, we present components of spoofing 
countermeasures systems used in ASVspoof 2019 challenge. 
This includes features, classifiers and fusion details used in 
submitted systems.  

2.1 Features 
All of presented systems use constant Q cepstral coefficients 
(CQCC) as input features [23]. These features were extracted 
from training, development and test data using default 
parameters provided by organizers with mean and variance 
normalization using training set CQCC features distribution. 
Parameters for CQCC features extraction includes number of 
bins per octave B = 96, highest frequency to be analyzed fmax 
= 8000 Hz, lowest frequency to be analyzed fmin ≈ 16 Hz, 
number of uniform samples in the first octave d = 16, number 
of cepstral coefficients excluding zeroth coefficient cf = 29. 
Full feature vector includes 30 static CQCC features as well as 
30 delta and 30 double delta coefficients, making total of 90 
features.  
Some experiments were conducted using other features such 
as linear frequency cepstral coefficients (LFCC), standard 
mel frequency cepstral coefficients (MFCC) in combination 
with voicing probability feature. Last set of features was 
obtained using OpenSMILE [24] library with avec2013 
configuration file that is usually used for emotion recognition. 

2.2 Classifiers 

A. GMM-UBM system 
GMM-UBM classifier is based on the principle of creating 
universal background model (UBM) which is a GMM trained 
on the all of the data available. This gives more details to be 
learned by GMM classifier and allows models for genuine and 
spoofed data to be more discriminative. Separated genuine 
and spoofed models are adapted from UBM model using MAP 
adaptation [25] with means, variance and weights adaptation. 
All GMM-UBM systems used in this work have 
1024-component GMMs with relevance factor r = 10. Final 
score for this system is log-likelihood ratio LLR calculated 
using same approach as for baseline GMM system: 

 )|(log)|(log spoofgenuine HXpHXpLLR      (1) 

where  is the feature vector of evaluated audio,  xi is feature 
vector of frame i, T is total number of a frames,  Hgenuine 
corresponds to hypothesis that X is genuine audio segment, 
Hspoof corresponds to hypothesis that X is spoof audio 
segment. Each log-likelihood is calculated as average 

likelihood over each frame i: 

   
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B. BiLSTM network 
Given an input sequence ],...,,[ 21 Txxxx   and the hidden 
vector ],...,,[ 21 Thhhh  , for a standard recurrent neural 
networks (RNNs), the output vector ],...,,[ 21 Tyyyy   can be 
computed from t = 1 to T according to the following iterative 
equations: 
    )( 1 hthhtxht bhWxWHh    (3) 

    ythtt bhWy   (4) 

where H is the activation function of hidden layer, W is the 
weight matrix, and b is the bias vectors [22]. 

Bidirectional RNNs (BRNNs) were proposed to make full 
use of the context of feature sequences in both forward and 
backward directions [26]. Furthermore, an LSTM structure 
consists of memory blocks was proposed to learn the 
long-term dependencies [27]. Every block contains 
self-connected memory cells and three adaptive and 
multiplicative gate units i.e. input, output and forget gates. 
These gates can respectively provide write, read, reset 
operations for the cells. After combining the advantages of 
BRNN and LSTM, BiLSTM [28], designed as Figure 1, can 
deal with long-range context in both preceding and 
succeeding directions. 

 

 
Figure 1: Structure of BiLSTM network module. 

Since BiLSTM treats whole feature vector X as a sequence, it 
could find dependencies in time domain, as opposed to GMM 
classifier, that treats every feature vector in frames separately. 
This gives us opportunity to combine advantages of this two 
classifiers with making scores fusion. 
BiLSTM network system used in both LA and PA conditions 
consists of two BiLSTM layers with dropout and a fully 
connected layer with softmax activation (Figure. 2). 

 
Figure 2: BiLSTM network system architecture. 
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2.3 Systems description 
For both LA and PA conditions different types of GMM-UBM, 
BiLSTM network systems and scores fusion were used. Here 
we does not describe other systems structure and parameters 
because our team did not submit scores for these systems for 
ASVspoof 2019 Challenge. 

2.4. LA condition systems description 
There were three systems developed for LA condition: 
GMM-UBM system, BiLSTM system and system with score 
fusion from both of them. 

A. GMM-UBM system (single system) 
First system is GMM-UBM based system. Whole training set 
was used for UBM training. Three 1024-component GMMs 
were derived from this UBM: genuine model, spoof model 
and VC-1 model. VC-1 model was trained separately because 
bigger part of errors on development dataset was made only 
regarding this type of voice conversion system.  
Final score (log-likelihood ratio) was calculated by scoring all 
three likelihoods from these GMMs using this algorithm: 
Score1 = LLKgenuine – LLKspoof; 
Score2 = LLKgenuine – LLKVC-1; 
if Score1 > Θ 
Final_Score = Score1; 
else 
Final_Score = Score2. 
Threshold parameter Θ was determined using development 
dataset. This system is considered single because it is fast and 
uses only three GMM models. 

B. BiLSTM system (Contrastive1) 
This system consists of two layers of bi-directional long-short 
term memory units with dropout after each layer, fully 
connected layer (size = 2) and softmax layer. First layer 
consists of 100 BiLSTM units, second layer consist of 50 
BiLSTM units, p(dropout) = 0.4. All training data was sorted 
in ascending order in terms of length before training.  
Due to disbalance in training data (only 10 % is genuine), 
training batch with batch size bs = 64 was created with 
randomly choosing 30 % of spoof sequences and using all 
genuine speech. For this system training, we used only half of 
the training sequence skipping every 2-nd feature vector in 
full sequence. 
Final score for this system was calculated using only one 
trained BiLSTM network, but with three different feature 
inputs. First input was full test sequence of CQCC vector, 
which gives output of the BiLSTM system - score1, second – 
sequence with skipping every 2nd feature vector (score2) and 
third – sequence with skipping every 2nd and 3rd feature 
vector (score3). Final score was calculated using this 
equation: 

   2
31

2
_ scorescorescorescoreFinal 


       (5) 

C. Fusion system (Primary) 
Fusion system makes fusion of GMM-UBM and BiLSTM 
systems scores using this equation: 

biLSTMfUBMGMM scorescorescoreFusion *_    (6) 

where Θf is fusion weight parameter that was evaluated using 
development dataset. 

2.5. PA condition systems description 
Similarly to LA condition, in PA condition three systems 
were developed: BiLSTM system, GMM-UBM system and 
system with score fusion from both of them. 

A. GMM-UBM system (single system) 
Structure of BiLSTM system for PA condition is identical to 
the system used in LA condition. This system consists of two 
layers of bi-directional long-short term memory units with 
dropout after each layer, fully connected layer (size = 2) and 
softmax layer. First layer consists of 100 BiLSTM units, 
second layer consist of 50 BiLSTM units, p(dropout) = 0.4. 
All training data was sorted in ascending order in terms of 
length before training.  
Due to disbalance in training data (only 10 % is genuine), 
training batch with batch size bs = 64 was created with 
randomly choosing 30 % of spoof sequences and using all 
genuine speech. Another aspect of this system is that training 
batcher used only half of full input training sequence skipping 
every 2-nd feature vector in sequnce. 
Final score for this system was calculated using only one 
trained BiLSTM network and considered single. All features 
sequences were cut with skipping every 2nd feature vector as 
during the training stage. Final score for this system is the 
direct output from the trained network. 

B. BiLSTM system (Contrastive1) 
Contrastive1 system is GMM-UBM based system. Whole 
training set was used for UBM training. 13 GMMs were 
derived from 1024-component UBM: 3 genuine models (for 
*a, *b, *c record conditions), spoof model (all spoof data) and 
9 for different attack ID models (AA,AB, …). UBM model 
was also used for scoring and considered as spoof. 

Final score (log-likelihood ratio) was calculated by 
scoring all 14 log-likelihoods from these GMMs, selecting 
maximum scores of every genuine log-likelihoods and every 
spoof log-likelihoods using equation: 

)max()max(_ spoofLLKssgenuineLLKScoreFinal   (7) 

C. Fusion system (Primary) 
Fusion system make fusion of GMM-UBM and BiLSTM 
systems scores using this equation: 

UBMGMMfbiLSTM scorescorescoreFusion  *_  (8) 

where Θf is fusion weight that was calculated using 
development dataset. 
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3. EXPERIMENTAL EVALUATION 
 
For experimental evaluation, only the data provided by the 
challenge organizers was used. This includes using official 
rules and protocols included in the challenge evaluation plan 

[6]. Some experimental results are not presented in this 
section. These results include experiments with convolutional 
DNN and i-vector systems using CQCC features as a 
frontend. These systems had very high error rates on 
development dataset and seemed to be undertrained. 

3.1. LA condition results 
LA condition systems evaluation results are shown in Table 1. 
Baseline1 system is referred to baseline GMM-CQCC system 
and Baseline2 system is referred to baseline GMM-LFCC 
system. 

Table 1: LA condition systems evaluation results 
As it could be seen from Table 1, our primary submission as 
well as single submission had highly overfitted on the 
training and development datasets. This overfitting is a result 
of assumption that VC systems generate audio with similar 
features to the VC-1 system. Thus, this assumption was 
wrong. However, contrastive1 submission (BiLSTM system) 
for this condition showed 15.2% t-DCF relative improvement 
to baseline2 system. This gives us conclusion that BiLSTM 
network system generalises more than baseline GMM system 
for new VC and TTS spoofing attacks. 
Analysing detailed contrastive1 system performance we could 
see that it recognises well TTS spoofing systems but struggles 
with VC systems. This gives min-tDCF = 0.9992 for 
waveform filtering VC system (A17) and min-tDCF = 0.7269 
for vocoder VC system (A18).  
Additional systems results for LA condition are shown in 

Table 2. It includes GMM-UBM system that uses only two 
GMMs for genuine and spoofed data, quadratic SVM 
classifier that uses avec2013 features as frontend, BiLSTM 
network, consisting of only one BiLSTM layer and GMM 
system that uses 14 MFCC features with delta and double 
delta coefficients combined with voicing probability (Vp) as a 
feature vector. We could see that there is small performance 
boost in min-tDCF when using GMM-UBM system instead of 
simple GMM system. 

Table 2: LA condition additional systems development set 
evaluation results 

 
One of the assumptions while developing BiLSTM system 
was that skipping some of the features in input sequence could 
significantly affect systems performance. As it could be seen 
from Table 3, indeed using full input sequence could degrade 
this system performance. Best results for single input 
sequence were achieved when skipping every 2nd feature 
vector in sequence (BiLSTM, 1 skipped in Table 3). 

Table 3: BiLSTM systems with different input time steps 
development set evaluation results 

 
Another approach that gave a little performance boost is using 
different input time steps for BiLSTM system that was trained 
on individual input time steps. This approach was used in 
contastive1 system, where BiLSTM network was trained on 
sequence with skipping every 2nd feature vector. 
Nevertheless, on the evaluation stage this system was also 
scored with other input time steps sequences (5). 

3.2. PA condition results 
PA condition systems evaluation results are shown in Table 4. 
Baseline systems titles are the same as for the LA condition. 

Table 4: PA condition systems evaluation results 

 
As in the LA condition, BiLSTM system (single) also uses 
input features skipping to improve predictive capability of the 

System Dev Eval 
m-tDCF EER m-tDCF EER 

Baseline1 0.0123 0.43 0.2366 9.57 
Baseline2 0.0663 2.71 0.2116 8.09 

GMM-UBM 
(single) 

0.0007 0.04 0.4395 20.08 

Primary 
(fusion) 

0.0002 0.03 0.3856 15.32 

BiLSTM 
(contrastive1) 

0.0111 0.47 0.1793 7.78 

System m-tDCF EER 
Baseline1 0.0123 0.43 
Baseline2 0.0663 2.71 

GMM-UBM 
(CQCC) 

0.0085 0.43 

SVM 
(avec2013) 

0.0223 0.78 

BiLSTM, 1 
layer 

0.0245 0.79 

GMM 
(MFCC+Vp) 

0.0569 2.00 

System m-tDCF EER 
BiLSTM 0.0231 0.73 

BiLSTM, 1 
skipped 

0.0126 0.45 

BiLSTM, 2 
skipped 

0.0232 0.80 

BiLSTM(contra
stive1) 

0.0111 0.47 

System Dev Eval 
m-tDCF EER m-tDCF EER 

Baseline1 0.1953 9.87 0.2454 11.04 
Baseline2 0.2555 11.96 0.3017 13.54 

GMM-UBM 
(single) 

0.1109 4.07 0.1467 5.38 

Primary 
(fusion) 

0.0944 3.57 0.1309 4.87 

BiLSTM 
(contrastive1) 

0.1525 8.22 0.2653 12.32 
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model. We could see that BiLSTM system alone and as a part 
of the fusion system gives significant performance boost in 
comparison with the baseline systems results. Simple 
weighted scores fusion of the GMM-UBM and BiLSTM 
systems (8) gives 61.5% min-tDCF relative improvement for 
PA condition. 
Analysing detailed primary system performance we could see 
that it does not recognise “BA” attack condition (50-100 cm 
attacker-to-talker distance, replay device quality is perfect) 
with environment id “caa” (10-20 m2 room size, 50-200 ms 
reverberation time, 10-50 cm talker-to-ASV distance), which 
gives min-tDCF = 1.  In addition, there is performance loss in 
“BB” and “CA” attack conditions for “caa” and “cac” 
environment ids (min-tDCF = 0.49). 
 
4. CONCLUSIONS 
 
In this paper, we presented our contribution to the ASVspoof 
2019 challenge. Described anti-spoofing systems mostly rely 
on using constant Q cepstral coefficients (CQCC) features 
and bidirectional long-short term memory (BiLSTM) 
networks for genuine/spoof audio classification. Fusion of 
BiLSTM and GMM-UBM system is presented. BiLSTM 
network could find dependencies in time domain, as opposed 
to GMM-UBM classifier that gives us more variability in 
systems decision methods.  
Presented approach gives significant performance 
improvement compared to the baseline systems results 
without any data augmentation, especially on physical access 
(PA) condition. Presented systems give 15.2% min-tDCF 
relative improvement for logical access (LA) condition and 
61.5% min-tDCF relative improvement for PA condition, 
compared to the best baseline systems results. 
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