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ABSTRACT 
The electroencephalogram (EEG) is a test that determines 
brain activity. The existence of artifacts in EEG can naturally 
decrease the smoothness of the analysis of the biomedical 
signal.  EEG disturbed by noises during encephalogram 
recordings is one of the problems that the experts have to 
investigate for finding solutions to remove these artifacts. To 
obtain an accurate EEG signal; the improved complete 
ensemble empirical mode decomposition with adaptive noise 
(ICEEMDAN) is used and compared with and its old 
versions. The non-stationarity and non-linearity of the EEG 
signal cannot provide complete information when using the 
traditional method (Temporal and frequency domains). 
Among the objectives is the comparative analysis of 
time-frequency distributions applied on EEG signals. The 
denoising and time-frequency methods used in this study are 
tested on healthy and abnormal EEG signals which are 
disturbed by natural and artificial noises.  The comparative 
study in this work shows the effectiveness of the combination 
of the ICEEMDAN and Periodogram methods that are 
suitable for denoising and analyzing the EEG signal. 
 
Key words: ICEEMDAN, EEG, EEMD, Time-Frequency. 
 
1. INTRODUCTION 

The brain produces the electrical activities that are 
recorded by electroencephalogram; this procedure is painless 
and safe. The measures of this activity are obtained by placing 
electrodes at good locations on the patient scalp [1, 2]. EEG 
signal has a lot of information about specific brain functions 
from which the experts obtain good interpretation and 
analyses in clinical laboratories. Generally, the signals that 
have low amplitudes (the amplitude order is a few microvolt) 
can be attacked by artefacts easily [2]. The EEG is generally 
obscured by the noise of physiological and non-physiological 
origin. The artefacts as electromyogram (EMG), electrical 
interference, baseline wanders (BW), ocular artefacts (OE) 
and motion artifact (MA) are found to be among the most 

 
 

 

significant and common during the EEG recording [3, 4].  
Elimination of these artefacts is one of the obligations for 
processing the biomedical signals to make better diagnoses on 
neurological disorders and supplies a cleaner biomedical 
signal. In this paper, the methods as Empirical Mode 
Decomposition EMD and its recent versions Ensemble EMD 
(EEMD) and completed EEMD with adaptive noise 
(CEEMDAN) and the new version of these techniques have 
been proposed.  These methods are tested in various areas as 
geophysical logging data, rotating machinery, changing 
climate and biomedical signals [5, 6, 7, 8, 9, 10, 11, 12].  The 
EMD technique is a suitable tool for decomposing the 
non-stationary signal. Despite the fact that the EMD 
technique presents the problem of the mode-mixing; the latter 
is given by the interference of discrete scales in one IMF or in 
different IMFs. For overcoming the limits of EMD technique 
the new version of EMD method is EEMD which is presented 
for analyzing the biomedical signals by adding the Gaussian 
white noise [5, 6]. The drawback of the EEMD is the 
apparition of the new extreme points when adding noise. This 
drawback appears in the modes that can give a bad 
interpretation of signals by the experts. To surpass this 
drawback, the complementary EEMD with adaptive noise 
(CEEMDAN) was presented in this study for giving the 
solution of the residual noise appearing in the methods 
previously cited in this section [7, 12]. The CEEMDAN tool 
adds the white noise with unit variance at each step of 
calculation of the new IMF for solving the problem of the 
decomposition scale deviation. The problems of spurious 
modes and residual noise are presented during the restoration 
of the original signal by the CEEMDAN method. The new 
technique called improved CEEMDAN technique presented 
by Colominas et al outperforms the other methods cited above 
by solving the problems that appear during the decomposition 
[13, 14].   
The extraction of the characteristic of the component existing 
in the signal by traditional analysis is not always evident. 
These components may issue information about the health 
status of the brain. The classic methods used in analyzing the 
EEG signals are temporal and frequency domains. Despite the 
benefits of these traditional methods, there are some aspects 
that can be incomplete. The analysis of the non-stationarity 
and non-linearity of the EEG signals may be in the time 
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domain more difficult to extract good information about 
signals and can't give the frequency content of the signal. In 
the frequency domain; the analysis of the biomedical signals 
is not very delicate because of the disappearance of the 
concept of time during the appearance of the frequency 
contents. The time-frequency methods may be a good tool for 
surpassing the cited problem of the traditional methods [15, 
16, 17, 18, 19]. The time-frequency methods permit 
extracting different characteristics of biomedical signals as 
EEG and have a good resolution and high anti -noise 
property. These methods can be the solution for the analysis, 
the extraction of the important frequency content and decision 
making. The advantages of the time-frequency methods are 
the capabilities to detect the behaviour of the EEG signal in 
the time and frequency domain synchronously. It offers an 
additional occasion for treatment and analyses of the EEG 
signal. The parametric and non-parametric techniques used 
in this paper are the Choi-Williams (CW), the Smoothed 
Pseudo Wigner-Ville (SPWV) and Periodogram (PE). These 
parametric and non-parametric methods have been used in 
several fields as an electrocardiogram (ECG), 
electromyogram (EMG) and acoustics signals and obtained 
some good results. 
The research starts with an introduction, and part two 
presents the principles of existing techniques of the filtering 
and time-frequency. Part three presents the main results. The 
last part is a conclusion. 
 
2. DENOISING AND TIME-FREQUENCY TECHNIQUES 

2.1 Denoising Techniques  

2.1.1   Empirical Mode Decomposition (EMD) 

The EMD is an adaptive tool to decompose an original signal 
x(t) into the modes called intrinsic mode function  IMFs.  The 
Intrinsic Mode Functions can express the signal x(t) by the 
following expression: 

                  
1

( ) ( )( )
k

j
j

d t r tx t


                                  (1)                                                                                                                                                                  

Where dj is IMFj with j=1,2…k  that IMF1 represent the 
component that have high frequency  and k: number of the 
IMFk represents represent the component that have low 
frequency.   
With r(t) that represents the low frequency residue. 
The EMD process is presented by the following steps [4, 6]:  
1: Extraction all extrema of original signal. 
2: computes the local average m(t): 
 
           max min( ) ( ( ) ( ))/2m t e t e t                                       (2)                                                                                                                             
With emax(t) is upper envelope and  emin(t)) is lower envelope. 
 3: calculates of the mode dJ(t)=IMFJ(t), a local detail by : 
                    ( ) ( ) ( )d t x t m t                                               (3)                                                                                                                                                                                                                                 
4: The expression (1) gives the iteration. 

      

2.1.2  Ensemble Empirical Mode Decomposition (EEMD)    
 
The EEMD method decomposes each signal x(t) separately 
than the other and each step have to compute the residue. The 
EEMD process is a technique that needed applying the EMD 
method in each addition of white noise on the original signal 
x(t) and computing the mean of the corresponding IMFs from 
the realizations obtained for all the additions cited. The 
EEMD method describes the real mode and surpasses the 
disadvantage of the EMD method that related by 
mode-mixing [8].  The EEMD process is given as follows: 
1: generated the original signal with white noise.  
2: The obtained signal is decomposed by applying the EMD 
process for each addition to white noise.  
3: Computes of the c (Average the corresponding (IMFs)) 
obtained by the decomposition results [8]. 
The signal x(k) is decomposed. 
                     

1
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                                                 (4)                                                                                           

Where n define the IMFs number. 
 
2.1.3. Complete Ensemble Empirical Mode 
Decomposition with adaptive noise (CEEMDAN) 
 
The disadvantages of the EEMD technique resides in the 
decomposition of the signal who is not completely 
decomposed and the noise that added on the signal can 
engender a different number of modes for overcoming these; 
the CEEMDAN method was considered.     
The first mode is obtained by using the EMD technique in 
each step that the noise added in original signal and calculate 

1( )IMF n  the by way the EEMD method. 
We define the function Ej [.] that extract the j-th IMF 
decomposed by EMD. wi is the white noise[9, 10, 11].  
The CEEMDAN algorithm is described as follows: 
1: Decompose 0( ) ( )ix n w n to obtain the first mode by   
using:                                                                                                     

1
1

1( ) ( )
l

i
k

i
IMF n IMF n

I 
                                                 (5) 

Where 0w  is the level of the added noise, and ( )t is the 
white noise with unit variance. 

2: The first residue is obtained by following relation:                                                                      
              11( ) ( ) ( )r n x n IMF n                                  (6) 

3: Decompose 1 1 1( ) ( ( ))ir n w E n  , to obtain the first 
mode and define the second mode by :                                              

 2 1 1 1 1
1

1( ) ( ) ( ( ))
l

i

i
IMF n E r n w E n

I



                        (7)                           

For k= 2, …, K, calculate the k-th residue and obtain the first 
mode. Define the (k+1)-th mode as follows: 

       1 1
1

1( ) ( ) ( ( ))
l

i
k k k k

i
IMF n E r n w E n

I



             (8)                                         

4: Iterate this operation until residue no longer achievable. 
The residue is given as follows: 
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Finally, the original signal is obtained by the equation as 
follows:                        

                    
1

( ) ( )
k

k
k

x n R n IMF


                               (10)                                                                                                                             

2.1.4 Improved Complete Ensemble Empirical Mode 
Decomposition with adaptive noise (ICEEMDAN) 
 
The CEEMDAN method presents drawbacks that appearing 
in residual noise that to be present in its modes and the 
spurious modes that presented in the first decomposition. The 
IMCEEMDAN technique reduces the noise and gives more 
physical meaning of the intrinsic mode function (IMFs). The 
IMCEEMDAN method defines the new operator M(.) that 
calculates the local mean of the signal. The ICEEMDAN is 
given by the steps as follows [13, 14]: 

a) The local means is obtained by applying the EMD method  
for I realizations on  the signal : ( )

0 1( )i ix x E w   to 
to get the first residue:  ( )

1 1 ( )ir M w    
b)  Computes the mode:          

1 1d x r   

c) The second residue is obtained by the equation 
: ( )

1 1 2 ( )ir E w  ; the second mode is obtained by the 

relation : ( )
2 1 2 1 1 1 2( ( ))id r r r M r E w        

d) For p = 3, …, P calculate the pth 
residue ( )

1 1( ( ) )i
p p p pr M r E w      

e) Calculates the pth mode     
1p p pd r r   

f) Go to step 4 for next p.  
These values  ( )p p ps td r   are selected to get the 

required SNR between the added noise and the residue to 
which the noise is added. 
The goal of the addition of the white noise on the original 
signal during applying the modified version of the EMD 
method is to generate new extrema. This latest is compelled to 
take them to calculate the new local mean. 

2.2   Time-frequency methods 

The time-frequency methods are used for revealing the 
frequency components over time. Among these techniques; 
the Periodogram (PE), the Choi-Williams (CW) and the 
Smoothed Pseudo Wigner-Ville (SPWV) were chosen [15, 
16, 17, 18, 19].  
 
2.2.1  Choi-Williams distribution  
The Choi-Williams method (CW) is a good tool for reducing 
the cross-terms and the resolution of time-frequency images 
[19].  
                                                                                          

1 exp ( , )24
  ( , ) j t j j uCWD A dud dut fx        



      
 

 (11)     

Where  
           *      

2 2uA x u x u    
   
   

                                    (12)                                                                           

And                      

2 2

( , ) e
 
     

The smoothing of the technique is modified by the parameter 
σ.   

2.2.2  Periodogram technique 
 
The Periodogram (PE) method was defined by the following 
equation [16, 17, 18]:  
                                               

2( , ) . . / ((p + 1 ) )HP E t f Z R Zxf f                                  (13) 

The PE method offers a good frequency resolution of 
time-frequency images.  
 
 2.2.3 Smoothed Pseudo Wigner-Ville technique  
 
The SPWV tool is applied by using two smoothing windows 
h(t) and g(t). This technique is defined by the following 
equation [15, 17]:                                                                                       
 

 
2

2*( , )  
2 2 2

i fSPWV t f h g t u x u x u e d dux a a
          
     
     

      
 

          (14) 

Where x*a(t) indicates the complex conjugate of xa(t).  With 
xa(t) is a signal.  Where h(t) and g(t) are the smoothing  
frequential and temporal  windows. 

2.3 Biomedical signals 

The electroencephalogram test is non-invasive that can be 
permitted to detect the normal and abnormal electrical 
activities in the brain.  The brain disorders are obtained by 
analyzing the EEG test; these disorders can be sleep disorders 
for example. In the time of the sleep, the Cyclic Alternating 
Pattern (CAP) appearing. The CAP is a periodic activity. The 
CAP can be provided the state of sleep stability and maybe 
correlated with several sleep-related anomalies [2, 3]. The 
signals existing in Database in [20]. The EEG signal 
presented in figure 1 is a healthy subject that has not 
presented any neurological disorders.  

 
Figure 1: Normal EEG signal 

The figure 2 presents the abnormal EEG signal with subject 
PLM. 
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Figure 2: Abnormal EEG signal with subject PLM 

 
The noises signals used in this research are muscle artifact 
(MA), Baseline wander (BW) and electrode motion (EM) 
[20].  The EEG signals that used in the paper are normal and 
abnormal with subject PLM, these signal were affected with 
noise CN given by the equation as follows [10]:                                                                                                       

* * *qbaw BW qelm EM qmoa MACN
qbaw qelm qmoa

 


 
                        (15)                                

 The percent of the noises added the baseline wander is 
defined by qbaw, electromyogram noise is defined by qelm, 
and motion artifact noises are defined by qmoa. The values 
chosen are qbaw = 2, qelm = 2, and qmoa = 5.  The selection 
of effeteness of the technique that minimizes the noise is the 
issue of the comparison between four de-noising techniques. 
The three desired metrics used in this research are Mean 
Square Error (MSE), Root MSE (RMSE), Percent RMS 
Difference (PRD) and Signal-to-noise-ratio (SNR). The SNR 
parameter calculates the quantity of noise in a signal. These 
metrics provide the quality of the information during the 
restoration of the components EEG signals. The metrics are 
calculated as follows: 

The MSE equation is shown in following:  
                                                                                                                

2
1

1 ( ( ) ( ))F
fM SE y n nF y




                                     (16)    

The RMSE equation is giving by the equation: 
                                                                                                            

2
1

1 ( ( ) ( ))F
fRMSE y n nF y




                                   (17) 

The PRD is obtained by the equation:       
                                                                                                       

2

2
1

1 ( ( ) ( ))
*100

( )1

F
f y n nFP R D N nn y

y






 

                             (18) 

 
3. RESULTS AND DISCUSSION 

3.1 Results 

In this part of this paper we provide the results given by the 
denoising methods. The denoising methods CEEMDAN and 
ICEEMDAN are applied to EEG signals. Figures 3 and 4 
show the decompositions given by the ICEEMDAN and 
CEEMDAN. Figures 5 and 6 show the sifting iterations 
demanded by each decomposition. The filtering techniques 
are evaluated by their performance by being applied on 
normal and abnormal EEG signals. The suggested techniques 
are ICEEMDAN, CEEMDAN, EEMD and EMD. Before the 
direct application of these methods on EEG signals, we added 
the natural noise given by equation (15) on EEG signal and 
also added white noise with different values between 10dB to 
35dB with a 5 dB step. 

 

 
Figure 3:  Decomposition of a 2048-sample abnormal EEG by: CEEMDAN; ICEEMDAN 
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                                     Figure 4: Decomposition of a 2048-sample normal EEG by: CEEMDAN; ICEEMDAN 

The figures 5 and 6 depict the sifting iterations demanded by 
each decomposition. 

 

Figure 5: Sifting iterations of abnormal EEG  

 

                                                                        Figure 6: Sifting iterations of normal EEG 
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The tables 1 and 2 describe the results of the denoising 
techniques (ICEEMDAN, CEEMDAN, EEMD and EMD) 
for the EEG signal with any problem and the abnormal signal 
with subject Periodic limb movements in sleep (PLMS). 
These tables present the Mean Square Error (MSE) of these 
signals and give the report of the performance by comparing 
the results obtained by this metric. The obtained results of the 
MSE and PRD are shown by the figures 7 to 10. These results 
are given by the application of the denoising methods on 
normal and abnormal EEG signals with subject PLM. The 
results of the RMSE and PRD are given in the tables 3 and 4.   
These results are obtained by using the ICEEMDAN, 
CEEMDAN, EEMD and EMD techniques on normal and 
abnormal EEG signals with subject PLM. 
The table 1 shows the MSE of normal EEG signal. 
 
      Table 1: MSE of the normal EEG signal 

 
 
 
 
 
 
 
 

           
The table 2 shows the MSE of abnormal EEG signal. 
        
           Table 2: MSE of the Abnormal EEG signal 

 
The figures 7 and 8 show the MSE of the normal and 
abnormal EEG signals. 
 

 

Figure 7:  MSE obtained of the normal signal 
 

 
Figure 8: MSE obtained of the abnormal signal 

 
The figures 9 and 10 show the PRD of the normal and 
abnormal EEG signals. 
 

 
Figure 9: PRD obtained of the normal signal 

 
 

 
Figure 10: PRD obtained of the abnormal signal 

SNR ICEEMDAN CEEMDAN EEMD EMD 

10 
15 
20 
25 
30 
35 

9,569 
3,045 
0,987 
0,331 
0,129 
0,066 

9,577 
3,046 
0,989 
0,341 
0,140 
0,075 

9,644 
3,124 
1,078 
0,331 
0,174 
0,103 

10,360 
3,922 
1,863 
1,130 
0,930 
0,742 

SNR ICEEMDAN 
CEEMDA
N EEMD EMD 

10 
15 
20 
25 
30 
35 

24,780 
7,850 
2,503 
0,813 
0,280 
0,110 

24,848 
7,861 
2,505 
0,818 
0,286 
0,115 

24,892 
7,892 
2,614 
0,994 
0,428 
0,296 

24,810 
8,420 
3,129 
2,022 
1,905 
1,997 
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The results of the RMSE and PRD are given in the tables 3 
and 4. 

 

 
 
 

Table 3: RMSE and PRD of the normal EEG signal  
RMSE PRD 

SNR ICEEMDAN CEEMDAN EEMD EMD ICEEMDAN CEEMDAN EEMD EMD 
10 
15 
20 
25 
30 
35 

3,093 
1,745 
0,993 
0,576 
0,358 
0,256 

      3,095 
1,745 
0,995 
0,584 
0,374 
0,273 

3,105 
1,768 
1,038 
0,575 
0,417 
0,320 

3,219 
1,980 
1,365 
1,063 
0,964 
0,861 

31,621 
17,837 
10,153 
5,884 
3,665 
2,618 

31,635 
17,841 
10,168 
5,968 
3,823 
2,796 

31,745 
18,069 
10,612 
5,882 
4,267 
3,275 

32,902 
20,244 
13,952 
10,865 
9,858 
8,803 

                                                                      
                          

Table 4:  RMSE and PRD of the Abnormal EEG signal with subject PLM 

                                  RMSE   
                             

 PRD  
SNR ICEEMDAN CEEMDAN EEMD EMD ICEEMDAN CEEMDAN EEMD EMD 
10 
15 
20 
25 
30 
35 

4,978 
2,802 
1,582 
0,902 
0,529 
0,332 

4,985 
2,804 
1,583 
0,904 
0,535 
0,340 

4,989 
2,809 
1,617 
0,997 
0,654 
0,544 

4,981 
2,902 
1,769 
1,422 
1,380 
1,413 

31,587 
17,778 
10,038 

5,720 
3,358 
2,104 

31,630 
17,791 
10,044 

5,739 
3,392 
2,155 

31,658 
17,826 
10,260 

6,327 
4,150 
3,454 

31,606 
18,413 
11,225 

9,023 
8,758 
8,968 

 
 
The second part of this paper presents the results of 
time-frequency methods. The utilization of time-frequency 
distributions can permit to determine and recognize the 
various aspects and features of EEG signals. In this part, we 
have applied the parametric and non-parametric methods 
(PE, CW and SPWL) to the EEG signal corrupted by the CN 
and white noises signal that vary between -5dB to 20dB with a 
5dB step. The comparison of time-frequency methods is given 
in this part after application to The EEG signals.  The figures 
11 and 12 show the obtained results of the PRD by applying 
the parametric and non-parametric methods. The obtained 
results are reported in table 5 and 6 of the PRD.  

The table 5 shows the PRD of the normal EEG signal. 

 
 

Table 5: PRD obtained of the normal EEG signal         
 
 
 
 
 
 
 
 
 

 

 

 

 

The table 6 shows the PRD of the normal EEG signal. 

 
Table 6: PRD obtained of the abnormal EEG 

 
 
 
 
 
 
 
 
 

The figures 11 and 12 show the PRD of the normal and 
abnormal EEG signals. 
 
 
 
 
 

 
SNR     PERIOD       CW PWVL 

-5 
0 
5 
10 
15 
20 

45,578 
23,625 
12,653 
6,915 
3,826 
2,131 

 
 
 
 
 
 

415,395 
204,274 
106,129 
57,042 
31,269 
17,334 

331,081 
164,294 
85,680 
46,109 
25,284 
14,016 

SNR     PERIOD      CW PWVL 
-5 
0 
5 

10 
15 
20 

21,473 
15,863 
10,482 
6,422 
3,783 
2,182 

172,235 
88,688 
48,153 
26,704 
14,930 
8,374 

148,512 
74,697 
40,181 
22,218 
12,413 
6,962 
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Figure 11:  PRD obtained of the normal EEG 

 
 

 
Figure 12: PRD obtained of the Abnormal EEG 

3.2 Discussion 

Neural information is obtained by the EEG signal; this 
information can be interfered with by some physiological 
artefacts (EM, MA, BW). These artefacts may be used as 
normal phenomena to deceptively drive an experimental 
utilization. The natural noises as BW, EM and MA are 
provided by noise stress and Sleep Heart Health Study PSG 
Database. In the first part, we present the results obtained 
from the discrimination among the four techniques, 
ICEEMDAN, CEEMDAN and the classic Methods EEMD 
and EMD which remove these physiological artefacts. The 
obtained results are explained as follows; the number of 
sifting iteration of CEEMDAN method is higher than 
ICEEMDAN method presented in figures 5 and 6.  The 
decomposition of the abnormal EEG signal by CEEMDAN 
produces eleven modes, while in ICEEMDAN produces nine 
modes and in the normal EEG the decomposition obtained is 
twelve modes by CEEMDAN and ten by ICEEMDAN 
presented in figure 3 and 4. In these decompositions the 
values of the amplitudes are close in the first decompositions.  

In CEEMDAN method, the identification of the fundamental 
frequency is more difficult than using the ICEEMDAN 
method caused by the number of the modes in the first method 
(CEEMDAN). The obtained results of the metric values are 
shown in the figures 7, 8, 9 and 10 and tables 1, 2, 3, and 4. 
According to the results, the ICEEMDAN method provides 
the smallest values of the MSE, RMSE, and PRD for all white 
noise added with natural noise composite signals on healthy 
and PLM EEG signals used compared to CEEMDAN, 
EEMD, and EMD techniques. This study shows the 
effectiveness and the power of the ICEEMDAN method. The 
ICEEMDAN method is the most suitable for denoising the 
non-linear and non-stationary CAP signals with less noise 
and more physical meaning.  In the second part, based on the 
obtained results; the Periodogram technique shows the 
effectiveness when it obtained low values of the PRD than 
other methods used (non-parametric techniques). The 
parametric Periodogram method is very applicable to analyze 
the time-frequency image on non-linearity EEG signals. The 
work with the Periodogram method is only sufficient for 
extracting the information with high resolution and precision. 
Among the goals of this investigation is the combination of 
the denoising ICEEMDAN and Periodogram methods for 
reducing the noise and giving a good resolution to the image 
time-frequency. 
 
4. CONCLUSION 
In this paper, the denoising and time-frequency methods were 
tested on EEG signals. The first obtained result concerning 
the comparative study of the denoising methods shows the 
power of the ICEEMDAN tool for the artifacts reduction. The 
second result proves the high effectiveness of the parametric 
time-frequency method in order to provide good analyses of 
the EEG signals. We deduce that the parametric 
time-frequency and ICEEMDAN methods are more suitable 
for filtering and analyzing the EEG signals. 
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