
Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

53


ABSTRACT
The growth of Big Data, memory wall and power wall are
posing unprecedented demand for Processing In Memory
(PIM). A computational memory architecture supporting in
bit-Line processing can be a major key for PIM to eliminate
the overhead of moving data from processing unit to memory
and vice versa. It promises high bandwidth, massive
parallelism, and high energy efficiency. The existing PIM
approaches concentrates mostly on near-memory processing
(NMP) and/or in-memory processing (IMP). The
Compute-line based Computational Memory Architecture
(CCMA), or simply (multiple) compute-lines (CLs),
represents a different way of approaching in-memory
processing (IMP). A compute-line represents a line that
carries fine-grained operations using connected memory
cells. CL is based on (a selection of) a bit-line for processing
elementary logical operations and a bit-line Keeper
(KEEPER) for enforcing and stabilizing the outcome results.
CCMA is backward compatible with the conventional Static
Random Access Memory (SRAM) and can be used for state
storing. In contrary to the conventional SRAM, it eliminates
the need to pre-charge and sensing bit-line(s) for read and
write operations which reduces bit-line activities and support
in-place combinational logic which reduces data transfer
latency. It introduces a considerable potential to reduce
bandwidth and energy consumption by eliminating overhead
of data movement when used as an in-memory computing.
Moreover, it can easily support any specific interconnect
topology between multiple compute-lines for parallel
applications by hard wiring their input/output interfaces
during chip fabrication. The CCMA designs the KEEPER
circuitry so that, in one (or two) clock cycle(s) and through
bit-line selection, its can multi-row read bit information from
participating memory cells, bitwise logic compute selected
operation and multi-row write to targeted memory cells. In
this work, toward deep investigation of the CCMA
architectures and perspective remarks, CL’s capabilities and
statistical analysis of running in-place logic operations are
presented and showed potential computational and global
energy savings.
Key words : Compute-line, in-place processing, build-in
computing.

1. INTRODUCTION

The Computational Memory Architecture (CMA) in [1]–[4]
is based on a Compute-Line (CL) with built-in computing
capabilities that shares many objectives with Near Data
Processing (NDP) including Computing with Memory [5],[6]
as in FPGAs, Computing in caches [7] using Computational
RAM (CRAM) [8],[9], Near-Memory Processing [10],[11]
and Processing In Memory (PIM) [11],[12]. In contrary, CL
does not require dedicated computational, pre-charging
and/or sensing circuitry logics to conduct a logical operation
on locally stored data without any memory copy. Instead, it
uses at request [1] or automatically [2]–[4] a bit-line keeper
(KEEPER) to keep both bit-lines stable and superposed to
each other for each execution of an elementary operation
(NAND/NOR/NOT) on the selected data stored locally.

A binary operation (Addition, Multiplication, etc.) can be
optimized spatially at the CPU level [13] or temporally at
software level [14]. CL architecture follows the temporal
computing model to evaluate general functions across
multiple cycles and follows the spatial model to execute
elementary operations (NAND/NOR/NOT) on large set of
data. It supports in bit-line processing bringing parallel
computation as close as possible to the location of the stored
data. It first selects and sets up an operation, reads bit
information from external inputs and/or local memory cells in
parallel and simultaneously, stabilizes the bit-lines
throughout the controlled [1] or automated [2]–[4] KEEPER,
and finally writes the data to external outputs and/or local
memory cells in one compute cycle. Moreover, multiple CLs
can be interconnected using dedicated topologies with
multiple dimensions to accelerate computation and increase
locality for specific research areas.

In this work, we introduce internals of CCMA using bit-line
keepers and the corresponding analysis of CL. In the next
section, we introduce basics summary of CCMA architecture
where the concepts of CL and bit-line Keepers are introduced.
In the third section, we presented the results of simulating a
Full Adder in the CL. It follows an analysis section where CL
behaviors are investigated. Finally, we provide a conclusion
including some perspective remarks.

A Compute-line based Computational Memory Architecture

using bit-line Keepers: Internals and Analysis
Driss Azougagh1, Ahmed rebbani2, Omar Bouattane3

1SSDIA Laboratory, ENSET, Hassan II University of Casablanca, Morocco, azougagh@gmail.com
2SSDIA Laboratory, ENSET, Hassan II University of Casablanca, Morocco, a.rebbani@gmail.com

3SSDIA Laboratory, ENSET, Hassan II University of Casablanca, Morocco, o.bouattane@gmail.com

 ISSN 2278-3091
Volume 9, No.1.5, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0991.52020.pdf

https://doi.org/10.30534/ijatcse/2020/0991.52020

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

54

2. CCMA BASICS
CCMA, as in our previous work [1]–[4], is a pure PIM (or
computational memory) architecture that can be configured to
perform both state storage and combinational logic. The bit of
information can be stored from extern buffer similarly to
conventional SRAM or from intern result of applied
combinational logic. The in-place computing (or
combinational logic) is configurable by control lines (from a
sequencer) and the connection between the participating state
storages and their corresponding logics on the compute-line.

CCMA has a control unit and a set of m selective
compute-lines to store data and/or apply logic operations on
the stored data. The control unit has extra control column
lines (XSL and YSL) used to synchronize participating inputs
and select target bit-line for each in-place processing
operation. Figure 1 presents an example of selective
computational memory with m selective compute-lines or
simply, now on, we call compute-lines (CLs). For k varying
from 1 to m, each CLk is composed of a pair of bit-lines XBLk
and YBLk accompanied with a pair of select-lines XSLk and
YSLk and contains a set of blocks distributed all along the
line.

The CCMA will act as a bit-wise Single Instruction Multiple
Data (bit-wise SIMD) if the same command word lines from
the control unit are shared by horizontal blocks of the same
kind (INPUTs, OUTPUTs, CMCs or KEEPERs). For
simplicity and to further save circuitry overhead, one global
pair of select-lines XSL and YSL is sufficient and can be
shared in an interleaved manner between each two adjacent
compute-lines by replacing all XSLk with XSL and YSLk with
YSL. For correct and functional CCMA, due to dimensioning
limitations, the number of CLs (m) and the number of blocks
per CL (n) need to be carefully chosen in order to guarantee
stable multiple read/writes from/to CMCs to/from candidate
bit-line(s), simultaneously and efficiently.

For advanced dynamic data-parallelism, specific topology
that interconnect any subset of blocks (mainly horizontally)
for data-exchange is easily supported by cross wiring their
Local INPUTs (LIs) to their Local OUTPUTs (LOs) internally
as in Figure 1(b). In addition, each compute-line (CLk) can
use proper private select-lines. The presence of the
inter-connections between compute-lines can give raise of
massive parallel computation on multiple local data,
depending on which topology is chosen.

In the following, we concentrated more on studying the basics
of KEEPER block and its relation with other blocks,
select-lines and bit-lines. In particular, a detailed study and
analysis of the functionality and behavior of minimal CL
(M-CL) are introduced. These basics are the ones exploited to
design the full version of the compute-line supporting built-in
computational capabilities in [1] from which other
derivations with different optimization objectives and

purposes emerged in [2]–[4]. Extending the finding in this
work to [2] is straight forward and to [3],[4] requires some
study left for future work.

Figure 1: CCMA is composed of m compute-lines (CLs), each CL
has (a) 1×INPUT, (b) m×Local Inputs (LIs) and 1×Local Output
(LO), (c) d×CMCs, 1×OUTPUT and (e) 1×KEEPER

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

55

2.1 Concept of CL
The minimal compute-line architecture (M-CL) in Figure 2 is
a subpart of the full symmetrical CL (F-CL) mentioned in
[1]–[4]. M-CL supports only NOR/NOT logic operations on
the bit-line XBL using only one operation select-line (XSL).
Its basic blocks are the minimal INPUT (M-INPUT),
OUTPUT (M-OUTPUT) and bit-line KEEPER (M-KEEPER)
as in Figure 1(a), (c) and (d), respectively. The minimal
computational memory cell (M-CMC) in Figure 1(b) is
simply a coupling combination of both M-INPUT and
M-OUTPUT where their XI and XO are connected to each
other and can act as either M-INPUT, M-OUTPUT or both
simultaneously. It is the smallest version of the full CMC with
55% area overhead improvement and requires about three
extra nMOS transistors (3T) over the conventional SRAM
memory cell with 6T.

The M-INPUT has one nMOS transistor (XN) and one AND
logic gate (XG). XN and XG are arranged to pull down the
bit-line XBL only when the input XI, the select-line XSL and
the read word line XR are all set high. Otherwise, if one of the
inputs of the gate XG is 0, the M-INPUT stays passive without
interfering with the state of XBL. In the other hand,
M-OUTPUT has two nMOS pass transistors (XT and YT)
and storage nodes (XB and YB). When the write word line
(XW) is activated, the XT and YT play a roll of passing the
states in XBL and YBL to XB and YB, respectively. Once the
states are stored into the storage nodes, the output (XO)
exhibit a steady persistent state for any read by any other
internal/external M-INPUTs and/or devices, until XW is
activated again and the state of XBL opposite to that of XO.

The KEEPER, select-line(s) and bit-lines play major role in
orchestrating in-place operation computing when the
operands are locality available. Unlike [15], the CL does not
required a pre-charging cycle, sensing amplifiers nor extra
separated read-line for read/write operation, instead it
exploits bit-lines for read/write and uses extra select-line(s)
for operation control. The minimal bit-line KEEPER
(M-KEEPER), used in M-CL, is a reduced version of
KEEPER with about 30% area overhead improvement.
M-KEEPER’s role is to keep the bit-line YBL opposed to the
bit-line XBL using the controlled inverter (YP and YN)
through XG and the command line BK.

When XSL is activated, M-CL senses for any participating
M-CMC (M-INPUT) pulling down the bit-line XBL to 0
while the M-KEEPER keeps raising non pulled down XBL to
1 and projecting the opposite state of XBL to YBL, as
formulated in the two expressions in (1). Once both bit-lines
are stabilized, targeted M-CMCs (M-OUTPUTs) save the
resulting state to their storage nodes using the expression in
(2).

XBLYBLandXBXRXSLXBL jj

d

j


1
 (1)

XBLXWXB ii  (2)
The data transfer medium used between bit-lines and storage
nodes has a pair of transistors (XT and YT) for writing and a
gate XG and a transistor XN for reading. It has a small
latency.

Figure 2: Minimal Compute-line (M-CL) with (a) 1×M-INPUT, (b)
4×M-CMC, (c) 1×M-OUTPUT and (d) 1×M-KEEPER
 (

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

56

2.2 Concept of Bit-line Keeper in CL

Prior detailed study of CL, we first introduce two symmetric
flavors of bit-line keepers from where the KEEPER
architecture is inspired. We present pKeeper and nKeeper
circuits as in Figure 3(a) and (b), respectively. It is easy to
grasp the symmetry between nKeeper and pKeeper. Hence, in
this paper, nKeeper is used as a major model to construct
KEEPER as depicted in the M-CL above with the drawings
colored with green or blue. The nKeeper has a capacitor Cn
connected to an nBit-line n and a ground (GND or 0). It uses
an nMOS transistor T and pMOS transistor P in serial for
passing a degraded or weak 1 to nBit-line n and charge the
capacitor Cn when commands on c is 0 and on w is 1. It can
support z parallel nMOS transistors where each pass
transistor Nj is used for passing a strong 0 to the nBit-line n
and discharge the capacitor Cn when xj is 1 for some j ∈ {1, ..,
z}.

The nKeeper might experience contention when both pull-up
and pull-down are simultaneously turned on. However, since
pull-down pass a strong 0 and pull-up passes a weak 1 to the
nBit-line n, the strong 0 dominates and discharges the
capacitor Cn. Hence, the major role of using the transistor T is
to reduce the degree of contention since it passes a degraded 1
to the nBit-line n. In addition, the transistors T and P are
carefully resized in order to regulate the capacitor’s charging
speed and voltage level by reducing the gate length of T in
comparison to that of the rest of transistors in the circuit. An
inverter composed of transistors NM1 and NM2 is used to
invert the voltage level of the nBit-line. When the gate xi of
the pass Transistor Ni is 1 the nBit-line is pulled down
strongly to 0. Thus, a bit-wise logical NOR, NAND and NOT
operations can be performed in nKeeper, pKeeper, and both,
respectively as summarized in the two expressions in (3).
Note that, nnew is kind of a reduced form of the expression (1)
above.

j

z

j
oldnewj

z

j
oldnew xcwppxcwnn

11
&)(


 (3)

Figure 4 shows nKeeper and pKeeper voltage and current
waveforms using spice simulation with 45nm PTM model, as
cited in [16], for high-performance application (PTM-HP),
incorporating high-k metal gate and stress effect(level = 54
and version = 4.0) and z is equal to 4. Different transistor
models have been tested and they showed similar results with
slight but clear noticeable differences. Similar observation
was witnessed when the capacitor is changed as well. The
voltage level of bit-lines (n and p) with their inverses (nb and
pb) and the current of their corresponding pass transistors (Ni
and Pi) are in Figures 4(b) and (a), and 4(d) and (c),
respectively. Figure 4(e) presents the control combinations

applied to the circuit in gates c, w, and xz for all z’s. The
pattern in time for the control combinations is chosen to show
the impact on voltage and current of the circuit as the number
of transistors pulling-down the bit-line varies and/or
increases.

Vertically, the waveforms are divided into 26 cycles each with
a duration of 10ns. In case of nKeeper, the cycles 7 and 12
show the charging of the capacitor due to weak pull-up and in
the absence of strong pull-down. The cycles 5, 6, 13, 18, 19,
20, 25, and 26 illustrate how the capacitor’s voltage level is
preserved and the nBit-line is kept unchanged, in which the
nKeeper is said to be in passive state. The remaining cycles
presents the nBit-line being pulled-down by at least one of the
transistors Nj for j ∈ {1, .., z}. Pulling down the nBit-line n
cause the capacitor Cn to discharge and dominates over the
weak 1 passed by T and P to the nBit-line.

The particular noticeable discharging bursts in the waveforms
are caused when transiting from phase 7 to 8 and from phase
13 to 14. The first transition causes the capacitor to discharge
along 4 transistors and each transistor did registered
relatively equal amount of current traversed from drain to

Figure 3: Bit-line conception for compute-line using (a) pKeeper
with pMOS Transistors to push up pBit-line and (b) nKeeper with
nMOS transistors to pull down the nBit-line.

Figure 4: The voltage waveforms of nKeeper and pKeeper using
spice simulation with 45nm PTM model for (a) voltage inverse of
outcome result (b) voltage registered on n Bit-line and pBit-line (c)
current traversed pMOS transistors for Pl, P2, P3, and P4 (d) current
traversed pMOS transistors Nl, N2, N3 , and N4, and (e) logic
control commands applied on c, w, and xz for z ∈{1, .. ,4}.

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

57

source. In the second transition there was only one active
transistor N1 and the totality of current discharged did
traversed through the transistor and caused a peak pulse
current of -5µA. As the number of transistors pulling the
nBit-line down increases the line’s voltage level becomes
more stable and converges faster.
3. RESULTS

M-CL can run addition of two n-bits binary numbers ((a)n
and (b)n) using only NOT and NOR logic operations as
shown in Figure 5. An optional 1-bit carry c0 is initially
fetched to the storage nodes XB1. The operands a0 and b0 are
fetched to XB2 and XB3, respectively. When c0, ak and/or bk
are available locally, the iteration becomes shorter, the cycles
cyc-c, cyc-a and/or cyc-b are omitted and their storage
locations are directly accessed instead of using XB1, XB2
and/or XB3, respectively. Such iteration requires 9 cycles to
run Full Adder with sum sk and carry ck+1 stored in XO and
XB1, respectively.

Figure 6, adopted from our previous work [1], shows voltage
waveforms of running Full Adder (cyc1 through cyc9) on
different inputs in M-CL. Common control commands for
read, process, and write are shown in Figure 6(c). For a given
iteration k and a combination i ="ck|ak|bk" ∈ {0, .., 7}, the
Figure 6(i) represents the voltage evolution in time of the CL
running Full Adder of two bits ak and bk with the carry ck.(left

side 0/1 digits) with sum sk and carry ck+1 (right side 0/1
digits). Cycles 2, 3, 4, 6 and 7 experience recursive bit-wise
NOR operation, where one of the involved operands is also
used for storing the outcome result and causing a slight
impact on the voltage level of the bit-line XBL before storing
the outcome results. However, final result consistency is
guaranteed due to the stability enforced by the KEEPER on
the bit-lines.

Figure 5: Sequence of operations to iteratively compute n-bits
binary addition using Full Adder in M-CL.

Figure 6: Voltage waveforms for simulated Full Adder; (c) control commands
& (i) XI, XBL, YBL, XB1,XB2, XB3, XB4, XO for a carry ck and inputs ak and
bk, where i = " ck|ak|bk" ∈{1, ., 7}.

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

58

4. ANALYSIS

In voltage waveforms above, the bit-lines did not experienced
many charging and discharging of their capacitors during the
execution of memory operations (compute operations) nor
during the execution of regular fetch/store (read/write)
operations. The bit-line XBL, however, experienced in one
single cycle a charge and discharge when the same CMC is
used for read and write simultaneously. This can happen
when the operation is reflexive, where the read and write are
applied to the same CMC. This can be avoided by adding
extra CMCs, changing the operation sequences of writing the
conflicting outcome result elsewhere and copying the
outcome bit of information back to the final designated CMC.

For deep analysis, Figure 7 shows all kind of diagrams that
can be experienced by (storage nodes of) a written CMC in a
compute-line running a logical operation when using M-CL
architecture, or simply say all possible/distinct compute
cycles. Each row-column RiCj shows distinct voltage
waveforms of XSL, BK, XW, XBL, YBL and XB for a
distinct computation cycle vertically divided into eight phases
(∆T1 through ∆T8) where two phases (∆T0 and ∆T9) of read
word line (XR=1) are omitted due to the space limitation.

The count gain of pulling up or down the bit-lines XBL and
YBL is obtained by comparing each bit-line to conventional
bit-line using bit-line pre-charging for each possible compute
cycle RiCj, and can be simply summarized into Table 1. In the
table, the signs “” and “” are used with the meaning of
pull-up and pull-down, respectively. Preserving and
exploiting the previous states of bit-lines XBL and YBL to
conduct the current operation does reduce considerably the
activities of both bit-lines. For compute cycles in row R7, in
the conventional memory, the bit-lines XBL and YBL are
pre-charged and since the final result is 1 the XBL will keep
its state and YBL will be discharged. Whereas in the proposed
CCMA, XBL experiences discharging as well for the three
columns C1, C2 and C3 and this is noted by the −1 in the table.
However, YBL did not experience any charging and has its
pulling-up count gain is 1 for all columns C1, C2 and C3.

Columns ("Cj") are classified by the initial values of the
bit-lines XBL and YBL before starting computation. Initially,
Column C1 has XBL is 0 and YBL is 1, C2 has both XBL and
YBL are 0, and C3 has XBL set to 1 and YBL set to 0. The
(distinct) compute cycles experienced by a CMC can be
distinguished by checking whether its storage nodes were
participating in memory operation as an operand or not. In a
given compute cycle, we define a memory operation to be
directive when each involved CMC is used for either read or
write but not for both, as it is the case for the rows R1 through
R4. Alternatively, when the read word line (XR) and write
word line (XW) of the same CMC are activated, we define the

memory operation to be reflexive, as shown in R5 through R7.
If the input bit of information read from the CMC is opposite
to the resulting outcome to be written to the same CMC, the
reflexive operation is called conflictive as in R7, otherwise it
is called concordant as shown in R5 and R6. The rows can
also be distinguished by the state change experienced by XBL
in the given compute cycle. The bit-line is pulled-down in R1,
R2, R5, and R6 and passive in R3, R4 and R7.

Figure 7: Voltage waveforms of all possible/distinct compute
cycles RiCj , where i ∈{1, ., 7} and j ∈ {1,2,3}, extracted from
simulations conducted in the M-CL architecture.

Table 1: Number of transitions gained per cycle of bit-lines XBL
and YBL over to the conventional bit-line BL and BL, respectively.

 R1 R2 R3 R4 R5 R6 R7

XBL
C1 1 1 0 0 1 1 0
C2 1 1 0 0 1 1 0
C3 1 1 1 1 1 1 1

XBL
C1 1 1 0 0 1 1 -1
C2 1 1 0 0 1 1 -1
C3 0 0 0 0 0 0 -1

YBL
C1 1 1 1 1 1 1 1
C2 0 0 1 1 0 0 1
C3 0 0 1 1 0 0 1

YBL
C1 0 0 0 0 0 0 0
C2 0 0 1 1 0 0 1
C3 0 0 1 1 0 0 1

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

59

The initial value of the target storage node XB (0 or 1) also
classifies the rows. XB is 1 for R2, R4 and R6 and 0 for the
rest. After an operation is applied, the select-line XSL directs
the participating CMCs (INPUTs) with values 1 to pull down
the bit-line XBL. The only possible pull down that changed
the content of bit-line XBL are registered in rows R1, R2, R5,
and R6 for column C3. The KEEPER introduces a sharp
distinction between both bit-lines when BK is set to 1. As it
can be seen from rows R3, R4, and R7 for columns C1 or C2,
after select-line XSL is activated, KEEPER charges the
capacitor XC if the bit-line XBL is not pulled-down by any of
the participating CMCs (INPUTs). Then, it enforces the
distinction by projecting the inverted value of XBL to YBL.

In row R7, we can witness a side effect of reflective operations
on the bit-line XBL as the CMCs are selected for both read
and write at the same time. At write operation, XW is set to 1,
the bit-line YBL converges faster to strong 0 while XBL is
charging. Writing bit-lines values back to one of the CMCs
while participating as an operand causes conflict. This
conflict occurs when the storage node XB is rising to 1 and the
corresponding pass transistor XNj (for some j ∈ {1, .., d})
starts pulling-down the bit-line XBL that was charging. As
long as YB is strongly enough pulled down to 0, XB reaches a
voltage level of stability sufficiently enough to converge to the
correct outcome result at the end of the operation.

Each two successive operations might differ in the sources
INPUTs (CMCs) as well as the destinations OUTPUTs
(CMCs). However, the last state of bit-lines left by the first
operation should be the same as the initial state of the bit-lines
used by the second operation. Therefore, the cyclic directed
graph that connect all possible/distinct compute cycles can be
summarized by seven inference rules; R1  C1, R2  C1, R5
 C1, R6  C1, R3  C3, R4  C3, and R7  C2. The rule
"Ri  Cv" means that any compute cycle (RiC*) in the row Ri
can be followed by any compute cycle (R*Cv) in the column Cv.
We define P(RuCv|RiCj) to be the probability distribution for
experiencing the compute cycle in RuCv right after completing
the compute cycle in RiCj. The P(RuCv|RiCj) is 0 when Ri Cv
is not among the seven rules above.

In this setup, our comparison will focus on activities of the
bit-lines instead of the results stored by CMCs. For CL with m
CMCs, and logical operations having i operands and o target
outputs in one compute cycle, the occurrence distribution is
summarized in Table 2. Note that, as the number of operands
i raises the chance of pulling down XBL increases. And, when
the number of CMCs m is larger than the number of operands
i and target outputs o, the chance of experiencing a reflexive
operation becomes small. For M-CL with 4 CMCs conducting
operation with 2 operands and one output, the chance of "XB
= 1" is half, a passive XBL is one fourth, and reflexive is half.
For this example, the occurrence/experience frequency of

each compute sequence "Ri  Cv" of operations is following
fairly a uniform distribution as summarized in Table 3. If all
distinct compute cycles occur following this probability
distribution, the improvement of bit-lines
charging/discharging in comparison to the conventional
bit-lines can be summarized in Table 4. The results
approximates the findings in [1], where the bit-line charging
was reduced by about 68% and bit-line activity by 60%. High
occurrence frequencies are dominated by the column C1 and
approved by the voltage waveforms.

Table 2: Probability distribution for an operand XB=1, a
passive bit-line selection (XBL) and reflexive, for M-CL
with m CMCs and operations with i operands and o outputs.

X XB = 1 XBL reflexive

p(X) 2
1

i2
1

)!(!
)!()!(1

oimm
omim






Table 3: Occurrence frequency of each compute cycle RiCj in
percentage (%) for i ∈ {1, .., 7} and j ∈ {1, 2, 3}.

 C1 C2 C3 Total
R1 15.23 1.17 2.34 18.75
R2 15.23 1.17 2.34 18.75
R3 5.08 0.39 0.78 6.25
R4 5.08 0.39 0.78 6.25
R5 15.23 1.17 2.34 18.75
R6 20.31 1.56 3.12 25.00
R7 5.08 0.39 0.78 6.25

Total 81.25 6.25 12.50 100.00

Table 4: Improvement (in %) of bit-lines
charging/discharging XBL and YBL for each RiCj.

 R1 R2 R3 R4 R5 R6 R7 Total

XBL↑

C1 15.2 15.2 0.0 0.0 15.2 20.3 0.0 66 02

C2 1. 2 1.2 0.0 0.0 1.2 1.6 0.0 5.08

C3 2. 3 2.3 0.8 0.8 2.3 3.1 0.8 12. 50
tot 18. 8 18.8 0. 8 0.8 18.8 25.0 0.8 83. 59

XBL↓

C1 15.2 15.2 0.0 0.0 15.2 20.3 -5.1 60.94

C2 1.2 1.2 0.0 0.0 1.2 1.6 -0.4 4. 69

C3 0.0 0.0 0.0 0.0 0.0 0.0 -0.8 -0.78
tot 16.4 16.4 0.0 0.0 16.4 21.9 -6.3 64. 84

YBL↑

C1 15. 2 15.2 5.1 5.1 15.2 20.3 5.1 81. 25

C2 0.0 0.0 0.4 0.4 0.0 0.0 0.4 1.17

C3 0.0 0.0 0. 8 0.8 0.0 0.0 0.8 2. 34
tot 15. 2 15.2 6. 3 6.3 15.2 20.3 6.3 84. 77

YBL↓

C1 0. 0 0.0 0. 0 0.0 0.0 0. 0 0.0 0. 0

C2 0.0 0.0 0.4 0.4 0.0 0.0 0.4 1.17

C3 0.0 0.0 0.8 0.8 0.0 0.0 0.8 2. 34
tot 0.0 0.0 1.2 1.2 0.0 0.0 1.2 3. 52

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

60

The occurrence expectation for a compute cycle that execute a
reflexive and conflictive operation is about 6.25% which is
negligible. If the distinct compute cycles are independent and
follow a uniform distribution then in a long run the ratio of
writes that modifies a CMC will take half of the operations.
However, as the number of pull down are more frequent, the
calculated ratio of any bit-line experiencing a change is about
57.29% and the chances of charging XBL is 32.29%.

5. CONCLUSION

In this paper we introduced our prior work on compute-line
based computational memory architecture (CCMA) for
in-place storage processing based on compute-line (CL)
concept using KEEPER. The KEPPER keeps both bit-lines
stays distinguished from each other. CCMA, a memory-like
structure with built-in computing capabilities, supports basic
(and complete) binary operations on multiple local and/or
remote data simultaneously. The architecture does
extensively support computation and data locality. We
introduced Minimal CL (M-CL) and showed how data
movement can be reduced to almost null while executing
built-in operations. Our contribution are investigating CCMA,
studying its behavior/functionality and illustrating promising
perspectives. Compiling real program needs to take into
consideration the above finding. Generally, depending on the
chosen application, CCMA with a suitable connection
topology between its compute-lines can achieve massive
parallelism.

REFERENCES
1. D. Azougagh, A.Rebbani, and O. Bouattane.

Computational Memory Architecture Supporting in
Bit-Line Processing, International Journal of Computer
Science and Network Security, vol. 18, no. 7, July 2018.

2. D. Azougagh, A.Rebbani, and O. Bouattane. An
Enhanced Bit-line Keeper for Computational
Memory Architecture, International Conference on
Systems of Collaboration Big Data, Internet of Things &
Security (SysCoBIoTS), Casablanca, pp. 1-5, December
2019. doi: 10.1109/SysCoBIoTS48768.2019.9028042.

3. D. Azougagh, A.Rebbani, and O. Bouattane. A power
Saving Bit-line Keeper for Computational Memory
Architecture, International Conference on Electrical
and Information Technologies (ICEIT), Rabat, pp. 1-6,
March 2020. doi: 10.1109/ICEIT48248.2020.9113299.

4. D. Azougagh, A.Rebbani, and O. Bouattane. Bit-line
Keeper based Computational Memory Architecture:
varieties and comparisons, 1st International
Conference on Innovative Research in Applied Science,
Engineering and Technology (IRASET), Meknes, pp.
1-6, Morocco, 2020. doi:
10.1109/IRASET48871.2020.9092329.

5. P. K. Meher, LUT Optimization for Memory-Based
Computation, in IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 57, no. 4, pp. 285-289,
April 2010. doi: 10.1109/TCSII.2010.2043467.

6. M.M.A. Basiri and S.K.N. Mahammad, Memory Based
Multiplier Design in Custom and FPGA
Implementation, In: El-Alfy ES., Thampi S., Takagi H.,
Piramuthu S., Hanne T. (eds), Advances in Intelligent
Informatics. Advances in Intelligent Systems and
Computing, Springer, Cham, vol. 320, pp. 253-265,
2015. doi: 10.1007/978-3-319-11218-3_24.

7. S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, Compute caches, in IEEE
International Symposium on High Performance
Computer Architecture (HPCA), Austin, TX, pp.
481–492, Feb 2017. doi: 10.1109/HPCA.2017.21.

8. M. Sayed and W. Badawy, A new class of
computational RAM architectures for real-time
MPEG-4 applications, The 3rd IEEE International
Workshop on System-on-Chip for Real-Time
Applications, Calgary, Alberta, Canada, pp. 328-332,
2003. doi: 10.1109/IWSOC.2003.1213057.

9. Z. Chowdhury et al., Efficient In-Memory Processing
Using Spintronics, in IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 42-46, January-June 2018. doi:
10.1109/LCA.2017.2751042

10. S. F. Yitbarek, T. Yang, R. Das and T. Austin, Exploring
specialized near-memory processing for data
intensive operations, Design, Automation & Test in
Europe Conference & Exhibition (DATE), Dresden, pp.
1449-1452, 2016.

11. S. Khoram, Y. Zha, J. Zhang, and J. Li, Challenges and
Opportunities: From Near-memory Computing to
In-memory Computing, In ACM Proceedings on
International Symposium on Physical Design (ISPD '17).
ACM, New York, NY, USA, pp. 43-46, March 2017. doi:
10.1145/3036669.3038242

12. J. Ahn, S. Yoo, O. Mutlu and K. Choi, PIM-enabled
instructions: A low-overhead, locality-aware
processing-in-memory architecture, ACM/IEEE 42nd
Annual International Symposium on Computer
Architecture (ISCA), Portland, OR, pp. 336-348, 2015.
doi: 10.1145/2749469.2750385

13. M.Siva Kumar, Syed Inthiyaz, J. Dhamini, A.Sanjay,
U.Chandu Srinivas, Delay Estimation of Different
Approximate Adders using Mentor Graphics,
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE, Vol. 8, No. 6), pp.
3584-3587, November-December 2019, doi:
10.30534/ijatcse/2019/141862019.

14. Lavanya Maddisetti, Ranjan K. Senapati, JVR Ravindra,
Training Neural Network as Approximate 4:2
Compressor applying Machine Learning Algorithms
for Accuracy Comparison, International Journal of
Advanced Trends in Computer Science and Engineering
(IJATCSE, Vol. 8, No. 2), pp. 221-215, March-April
2019, doi: 10.30534/ijatcse/2019/17822019

15. N. Verma and A. P. Chandrakasan, A 256 kb 65 nm 8t
subthreshold sram employing sense-amplifier

Driss Azougagh et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.5), 2020, 53 - 61

61

redundancy, IEEE Journal of Solid-State Circuits, vol.
43, no. 1, pp. 141–149, Jan 2008. [Online]. Available:
https://doi.org/10.1109/JSSC.2007.908005

16. Predictive technology model, in 2018-2019, [Online].
Available: http://ptm.asu.edu/

