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 
ABSTRACT 
The growth of Big Data, memory wall and power wall are 
posing unprecedented demand for Processing In Memory 
(PIM). A computational memory architecture supporting in 
bit-Line processing can be a major key for PIM to eliminate 
the overhead of moving data from processing unit to memory 
and vice versa. It promises high bandwidth, massive 
parallelism, and high energy efficiency. The existing PIM 
approaches concentrates mostly on near-memory processing 
(NMP) and/or in-memory processing (IMP). The 
Compute-line based Computational Memory Architecture 
(CCMA), or simply (multiple) compute-lines (CLs), 
represents a different way of approaching in-memory 
processing (IMP). A compute-line represents a line that 
carries fine-grained operations using connected memory 
cells. CL is based on (a selection of) a bit-line for processing 
elementary logical operations and a bit-line Keeper 
(KEEPER) for enforcing and stabilizing the outcome results. 
CCMA is backward compatible with the conventional Static 
Random Access Memory (SRAM) and can be used for state 
storing. In contrary to the conventional SRAM, it eliminates 
the need to pre-charge and sensing bit-line(s) for read and 
write operations which reduces bit-line activities and support 
in-place combinational logic which reduces data transfer 
latency. It introduces a considerable potential to reduce 
bandwidth and energy consumption by eliminating overhead 
of data movement when used as an in-memory computing. 
Moreover, it can easily support any specific interconnect 
topology between multiple compute-lines for parallel 
applications by hard wiring their input/output interfaces 
during chip fabrication. The CCMA designs the KEEPER 
circuitry so that, in one (or two) clock cycle(s) and through 
bit-line selection, its can multi-row read bit information from 
participating memory cells, bitwise logic compute selected 
operation and multi-row write to targeted memory cells. In 
this work, toward deep investigation of the CCMA 
architectures and perspective remarks, CL’s capabilities and 
statistical analysis of running in-place logic operations are 
presented and showed potential computational and global 
energy savings.  
Key words : Compute-line, in-place processing, build-in 
computing.  

 
 

1. INTRODUCTION 
 
The Computational Memory Architecture (CMA) in [1]–[4] 
is based on a Compute-Line (CL) with built-in computing 
capabilities that shares many objectives with Near Data 
Processing (NDP) including Computing with Memory [5],[6] 
as in FPGAs, Computing in caches [7] using Computational 
RAM (CRAM) [8],[9], Near-Memory Processing [10],[11] 
and Processing In Memory (PIM) [11],[12]. In contrary, CL 
does not require dedicated computational, pre-charging 
and/or sensing circuitry logics to conduct a logical operation 
on locally stored data without any memory copy. Instead, it 
uses at request [1] or automatically [2]–[4] a bit-line keeper 
(KEEPER) to keep both bit-lines stable and superposed to 
each other for each execution of an elementary operation 
(NAND/NOR/NOT) on the selected data stored locally. 
 
A binary operation (Addition, Multiplication, etc.) can be 
optimized spatially at the CPU level [13] or temporally at 
software level [14]. CL architecture follows the temporal 
computing model to evaluate general functions across 
multiple cycles and follows the spatial model to execute 
elementary operations (NAND/NOR/NOT) on large set of 
data. It supports in bit-line processing bringing parallel 
computation as close as possible to the location of the stored 
data. It first selects and sets up an operation, reads bit 
information from external inputs and/or local memory cells in 
parallel and simultaneously, stabilizes the bit-lines 
throughout the controlled [1] or automated [2]–[4] KEEPER, 
and finally writes the data to external outputs and/or local 
memory cells in one compute cycle. Moreover, multiple CLs 
can be interconnected using dedicated topologies with 
multiple dimensions to accelerate computation and increase 
locality for specific research areas.  
 
In this work, we introduce internals of CCMA using bit-line 
keepers and the corresponding analysis of CL. In the next 
section, we introduce basics summary of CCMA architecture 
where the concepts of CL and bit-line Keepers are introduced. 
In the third section, we presented the results of simulating a 
Full Adder in the CL. It follows an analysis section where CL 
behaviors are investigated. Finally, we provide a conclusion 
including some perspective remarks.  
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2. CCMA BASICS 
CCMA, as in our previous work [1]–[4], is a pure PIM (or 
computational memory) architecture that can be configured to 
perform both state storage and combinational logic. The bit of 
information can be stored from extern buffer similarly to 
conventional SRAM or from intern result of applied 
combinational logic. The in-place computing (or 
combinational logic) is configurable by control lines (from a 
sequencer) and the connection between the participating state 
storages and their corresponding logics on the compute-line.  
 
CCMA has a control unit and a set of m selective 
compute-lines to store data and/or apply logic operations on 
the stored data. The control unit has extra control column 
lines (XSL and YSL) used to synchronize participating inputs 
and select target bit-line for each in-place processing 
operation. Figure 1 presents an example of selective 
computational memory with m selective compute-lines or 
simply, now on, we call compute-lines (CLs). For k varying 
from 1 to m, each CLk is composed of a pair of bit-lines XBLk 
and YBLk accompanied with a pair of select-lines XSLk and 
YSLk and contains a set of blocks distributed all along the 
line. 
 
The CCMA will act as a bit-wise Single Instruction Multiple 
Data (bit-wise SIMD) if the same command word lines from 
the control unit are shared by horizontal blocks of the same 
kind (INPUTs, OUTPUTs, CMCs or KEEPERs). For 
simplicity and to further save circuitry overhead, one global 
pair of select-lines XSL and YSL is sufficient and can be 
shared in an interleaved manner between each two adjacent 
compute-lines by replacing all XSLk with XSL and YSLk with 
YSL. For correct and functional CCMA, due to dimensioning 
limitations, the number of CLs (m) and the number of blocks 
per CL (n) need to be carefully chosen in order to guarantee 
stable multiple read/writes from/to CMCs to/from candidate 
bit-line(s), simultaneously and efficiently. 
 
For advanced dynamic data-parallelism, specific topology 
that interconnect any subset of blocks (mainly horizontally) 
for data-exchange is easily supported by cross wiring their 
Local INPUTs (LIs) to their Local OUTPUTs (LOs) internally 
as in Figure 1(b). In addition, each compute-line (CLk) can 
use proper private select-lines. The presence of the 
inter-connections between compute-lines can give raise of 
massive parallel computation on multiple local data, 
depending on which topology is chosen.  
 
In the following, we concentrated more on studying the basics 
of KEEPER block and its relation with other blocks, 
select-lines and bit-lines. In particular, a detailed study and 
analysis of the functionality and behavior of minimal CL 
(M-CL) are introduced. These basics are the ones exploited to 
design the full version of the compute-line supporting built-in 
computational capabilities in [1] from which other 
derivations with different optimization objectives and 

purposes emerged in [2]–[4]. Extending the finding in this 
work to [2] is straight forward and to [3],[4] requires some 
study left for future work. 

 
Figure 1: CCMA is composed of m compute-lines (CLs), each CL 
has (a) 1×INPUT, (b) m×Local Inputs (LIs) and 1×Local Output 
(LO), (c) d×CMCs, 1×OUTPUT and (e) 1×KEEPER 
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2.1 Concept of CL 
The minimal compute-line architecture (M-CL) in Figure 2 is 
a subpart of the full symmetrical CL (F-CL) mentioned in 
[1]–[4].  M-CL supports only NOR/NOT logic operations on 
the bit-line XBL using only one operation select-line (XSL). 
Its basic blocks are the minimal INPUT (M-INPUT), 
OUTPUT (M-OUTPUT) and bit-line KEEPER (M-KEEPER) 
as in Figure 1(a), (c) and (d), respectively. The minimal 
computational memory cell (M-CMC) in Figure 1(b) is 
simply a coupling combination of both M-INPUT and 
M-OUTPUT where their XI and XO are connected to each 
other and can act as either M-INPUT, M-OUTPUT or both 
simultaneously. It is the smallest version of the full CMC with 
55% area overhead improvement and requires about three 
extra nMOS transistors (3T) over the conventional SRAM 
memory cell with 6T.  
 
The M-INPUT has one nMOS transistor (XN) and one AND 
logic gate (XG). XN and XG are arranged to pull down the 
bit-line XBL only when the input XI, the select-line XSL and 
the read word line XR are all set high. Otherwise, if one of the 
inputs of the gate XG is 0, the M-INPUT stays passive without 
interfering with the state of XBL. In the other hand, 
M-OUTPUT has two nMOS pass transistors (XT and YT) 
and storage nodes (XB and YB). When the write word line 
(XW) is activated, the XT and YT play a roll of passing the 
states in XBL and YBL to XB and YB, respectively. Once the 
states are stored into the storage nodes, the output (XO) 
exhibit a steady persistent state for any read by any other 
internal/external M-INPUTs and/or devices, until XW is 
activated again and the state of XBL opposite to that of XO. 
 
The KEEPER, select-line(s) and bit-lines play major role in 
orchestrating in-place operation computing when the 
operands are locality available. Unlike [15], the CL does not 
required a pre-charging cycle, sensing amplifiers nor extra 
separated read-line for read/write operation, instead it 
exploits bit-lines for read/write and uses extra select-line(s) 
for operation control. The minimal bit-line KEEPER 
(M-KEEPER), used in M-CL, is a reduced version of 
KEEPER with about 30% area overhead improvement. 
M-KEEPER’s role is to keep the bit-line YBL opposed to the 
bit-line XBL using the controlled inverter (YP and YN) 
through XG and the command line BK.  
 
When XSL is activated, M-CL senses for any participating 
M-CMC (M-INPUT) pulling down the bit-line XBL to 0 
while the M-KEEPER keeps raising non pulled down XBL to 
1 and projecting the opposite state of XBL to YBL, as 
formulated in the two expressions in (1). Once both bit-lines 
are stabilized, targeted M-CMCs (M-OUTPUTs) save the 
resulting state to their storage nodes using the expression in 
(2).  
 

XBLYBLandXBXRXSLXBL jj

d

j


1
 (1) 

XBLXWXB ii   (2) 
The data transfer medium used between bit-lines and storage 
nodes has a pair of transistors (XT and YT) for writing and a 
gate XG and a transistor XN for reading. It has a small 
latency. 

 
Figure 2: Minimal Compute-line (M-CL) with (a) 1×M-INPUT, (b) 
4×M-CMC, (c) 1×M-OUTPUT and (d) 1×M-KEEPER 
 ( 
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2.2 Concept of Bit-line Keeper in CL 
 
Prior detailed study of CL, we first introduce two symmetric 
flavors of bit-line keepers from where the KEEPER 
architecture is inspired. We present pKeeper and nKeeper 
circuits as in Figure 3(a) and (b), respectively. It is easy to 
grasp the symmetry between nKeeper and pKeeper. Hence, in 
this paper, nKeeper is used as a major model to construct 
KEEPER as depicted in the M-CL above with the drawings 
colored with green or blue. The nKeeper has a capacitor Cn 
connected to an nBit-line n and a ground (GND or 0). It uses 
an nMOS transistor T and pMOS transistor P in serial for 
passing a degraded or weak 1 to nBit-line n and charge the 
capacitor Cn when commands on c is 0 and on w is 1. It can 
support z parallel nMOS transistors where each pass 
transistor Nj is used for passing a strong 0 to the nBit-line n 
and discharge the capacitor Cn when xj is 1 for some j ∈ {1, .., 
z}. 

 
The nKeeper might experience contention when both pull-up 
and pull-down are simultaneously turned on. However, since 
pull-down pass a strong 0 and pull-up passes a weak 1 to the 
nBit-line n, the strong 0 dominates and discharges the 
capacitor Cn. Hence, the major role of using the transistor T is 
to reduce the degree of contention since it passes a degraded 1 
to the nBit-line n. In addition, the transistors T and P are 
carefully resized in order to regulate the capacitor’s charging 
speed and voltage level by reducing the gate length of T in 
comparison to that of the rest of transistors in the circuit. An 
inverter composed of transistors NM1 and NM2 is used to 
invert the voltage level of the nBit-line. When the gate xi of 
the pass Transistor Ni is 1 the nBit-line is pulled down 
strongly to 0. Thus, a bit-wise logical NOR, NAND and NOT 
operations can be performed in nKeeper, pKeeper, and both, 
respectively as summarized in the two expressions in (3). 
Note that, nnew is kind of a reduced form of the expression (1) 
above.   
 

j

z

j
oldnewj

z

j
oldnew xcwppxcwnn

11
&)(


  (3) 

 
Figure 4 shows nKeeper and pKeeper voltage and current 
waveforms using spice simulation with 45nm PTM model, as 
cited in [16], for high-performance application (PTM-HP), 
incorporating high-k metal gate and stress effect(level = 54 
and version = 4.0) and z is equal to 4. Different transistor 
models have been tested and they showed similar results with 
slight but clear noticeable differences. Similar observation 
was witnessed when the capacitor is changed as well. The 
voltage level of bit-lines (n and p) with their inverses (nb and 
pb) and the current of their corresponding pass transistors (Ni 
and Pi) are in Figures 4(b) and (a), and 4(d) and (c), 
respectively. Figure 4(e) presents the control combinations 

applied to the circuit in gates c, w, and xz for all z’s. The 
pattern in time for the control combinations is chosen to show 
the impact on voltage and current of the circuit as the number 
of transistors pulling-down the bit-line varies and/or 
increases. 
 
Vertically, the waveforms are divided into 26 cycles each with 
a duration of 10ns. In case of nKeeper, the cycles 7 and 12 
show the charging of the capacitor due to weak pull-up and in 
the absence of strong pull-down. The cycles 5, 6, 13, 18, 19, 
20, 25, and 26 illustrate how the capacitor’s voltage level is 
preserved and the nBit-line is kept unchanged, in which the 
nKeeper is said to be in passive state. The remaining cycles 
presents the nBit-line being pulled-down by at least one of the 
transistors Nj for j ∈ {1, .., z}. Pulling down the nBit-line n 
cause the capacitor Cn to discharge and dominates over the 
weak 1 passed by T and P to the nBit-line. 
 
The particular noticeable discharging bursts in the waveforms 
are caused when transiting from phase 7 to 8 and from phase 
13 to 14. The first transition causes the capacitor to discharge 
along 4 transistors and each transistor did registered 
relatively equal amount of current traversed from drain to 

 
Figure 3: Bit-line conception for compute-line using (a) pKeeper 
with pMOS Transistors to push up pBit-line and (b) nKeeper with 
nMOS transistors to pull down the nBit-line. 

 
Figure 4: The voltage waveforms of nKeeper and pKeeper using 
spice simulation with 45nm PTM model for (a) voltage inverse of 
outcome result (b) voltage registered on n Bit-line and pBit-line (c) 
current traversed pMOS transistors for Pl, P2, P3, and P4 (d) current 
traversed pMOS transistors Nl, N2, N3 , and N4, and (e) logic 
control commands applied on c, w, and xz for z ∈{1, .. ,4}. 
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source. In the second transition there was only one active 
transistor N1 and the totality of current discharged did 
traversed through the transistor and caused a peak pulse 
current of -5µA. As the number of transistors pulling the 
nBit-line down increases the line’s voltage level becomes 
more stable and converges faster. 
3. RESULTS 
 
M-CL can run addition of two n-bits binary numbers ( (a)n 
and  (b)n ) using only NOT and NOR logic operations as 
shown in Figure 5. An optional 1-bit carry c0 is initially 
fetched to the storage nodes XB1. The operands a0 and b0 are 
fetched to XB2 and XB3, respectively. When c0, ak and/or bk 
are available locally, the iteration becomes shorter, the cycles 
cyc-c, cyc-a and/or cyc-b are omitted and their storage 
locations are directly accessed instead of using XB1, XB2 
and/or XB3, respectively. Such iteration requires 9 cycles to 
run Full Adder with sum sk and carry ck+1 stored in XO and 
XB1, respectively.  
 
Figure 6, adopted from our previous work [1], shows voltage 
waveforms of running Full Adder (cyc1 through cyc9) on 
different inputs in M-CL. Common control commands for 
read, process, and write are shown in Figure 6(c). For a given 
iteration k and a combination i ="ck|ak|bk" ∈ {0, .., 7}, the 
Figure 6(i) represents the voltage evolution in time of the CL 
running Full Adder of two bits ak and bk with the carry ck.(left 

side 0/1 digits) with sum sk and carry ck+1 (right side 0/1 
digits). Cycles 2, 3, 4, 6 and 7 experience recursive bit-wise 
NOR operation, where one of the involved operands is also 
used for storing the outcome result and causing a slight 
impact on the voltage level of the bit-line XBL before storing 
the outcome results. However, final result consistency is 
guaranteed due to the stability enforced by the KEEPER on 
the bit-lines. 

 
Figure 5: Sequence of operations to iteratively compute n-bits 
binary addition using Full Adder in M-CL. 
 
 

 
Figure 6: Voltage waveforms for simulated Full Adder; (c) control commands 
& (i) XI, XBL, YBL, XB1,XB2, XB3, XB4, XO for a carry ck and inputs ak and 
bk, where  i = " ck|ak|bk" ∈{1, ., 7}. 
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4. ANALYSIS 
 
In voltage waveforms above, the bit-lines did not experienced 
many charging and discharging of their capacitors during the 
execution of memory operations (compute operations) nor 
during the execution of regular fetch/store (read/write) 
operations. The bit-line XBL, however, experienced in one 
single cycle a charge and discharge when the same CMC is 
used for read and write simultaneously. This can happen 
when the operation is reflexive, where the read and write are 
applied to the same CMC. This can be avoided by adding 
extra CMCs, changing the operation sequences of writing the 
conflicting outcome result elsewhere and copying the 
outcome bit of information back to the final designated CMC. 
 
For deep analysis, Figure 7 shows all kind of diagrams that 
can be experienced by (storage nodes of) a written CMC in a 
compute-line running a logical operation when using M-CL 
architecture, or simply say all possible/distinct compute 
cycles. Each row-column RiCj shows distinct voltage 
waveforms of XSL, BK, XW, XBL, YBL and XB for a 
distinct computation cycle vertically divided into eight phases 
(∆T1 through ∆T8) where two phases (∆T0 and ∆T9) of read 
word line (XR=1) are omitted due to the space limitation. 
 
The count gain of pulling up or down the bit-lines XBL and 
YBL is obtained by comparing each bit-line to conventional 
bit-line using bit-line pre-charging for each possible compute 
cycle RiCj, and can be simply summarized into Table 1. In the 
table, the signs “” and “” are used with the meaning of 
pull-up and pull-down, respectively. Preserving and 
exploiting the previous states of bit-lines XBL and YBL to 
conduct the current operation does reduce considerably the 
activities of both bit-lines. For compute cycles in row R7, in 
the conventional memory, the bit-lines XBL and YBL are 
pre-charged and since the final result is 1 the XBL will keep 
its state and YBL will be discharged. Whereas in the proposed 
CCMA, XBL experiences discharging as well for the three 
columns C1, C2 and C3 and this is noted by the −1 in the table. 
However, YBL did not experience any charging and has its 
pulling-up count gain is 1 for all columns C1, C2 and C3. 
 
Columns ("Cj") are classified by the initial values of the 
bit-lines XBL and YBL before starting computation. Initially, 
Column C1 has XBL is 0 and YBL is 1, C2 has both XBL and 
YBL are 0, and C3 has XBL set to 1 and YBL set to 0. The 
(distinct) compute cycles experienced by a CMC can be 
distinguished by checking whether its storage nodes were 
participating in memory operation as an operand or not. In a 
given compute cycle, we define a memory operation to be 
directive when each involved CMC is used for either read or 
write but not for both, as it is the case for the rows R1 through 
R4. Alternatively, when the read word line (XR) and write 
word line (XW) of the same CMC are activated, we define the 

memory operation to be reflexive, as shown in R5 through R7. 
If the input bit of information read from the CMC is opposite 
to the resulting outcome to be written to the same CMC, the 
reflexive operation is called conflictive as in R7, otherwise it 
is called concordant as shown in R5 and R6. The rows can 
also be distinguished by the state change experienced by XBL 
in the given compute cycle. The bit-line is pulled-down in R1, 
R2, R5, and R6 and passive in R3, R4 and R7. 
 

 
Figure 7: Voltage waveforms of all possible/distinct compute 
cycles RiCj , where i ∈{1, ., 7} and j ∈ {1,2,3}, extracted from 
simulations conducted in the M-CL architecture. 

Table 1: Number of transitions gained per cycle of bit-lines XBL 
and YBL over to the conventional bit-line BL and BL, respectively. 

 R1 R2 R3 R4 R5 R6 R7 

XBL 
C1 1 1 0 0 1 1 0 
C2 1 1 0 0 1 1 0 
C3 1 1 1 1 1 1 1 

XBL 
C1 1 1 0 0 1 1 -1 
C2 1 1 0 0 1 1 -1 
C3 0 0 0 0 0 0 -1 

YBL 
C1 1 1 1 1 1 1 1 
C2 0 0 1 1 0 0 1 
C3 0 0 1 1 0 0 1 

YBL 
C1 0 0 0 0 0 0 0 
C2 0 0 1 1 0 0 1 
C3 0 0 1 1 0 0 1 
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The initial value of the target storage node XB (0 or 1) also 
classifies the rows. XB is 1 for R2, R4 and R6 and 0 for the 
rest. After an operation is applied, the select-line XSL directs 
the participating CMCs (INPUTs) with values 1 to pull down 
the bit-line XBL. The only possible pull down that changed 
the content of bit-line XBL are registered in rows R1, R2, R5, 
and R6 for column C3. The KEEPER introduces a sharp 
distinction between both bit-lines when BK is set to 1. As it 
can be seen from rows R3, R4, and R7 for columns C1 or C2, 
after select-line XSL is activated, KEEPER charges the 
capacitor XC if the bit-line XBL is not pulled-down by any of 
the participating CMCs (INPUTs). Then, it enforces the 
distinction by projecting the inverted value of XBL to YBL. 
 
In row R7, we can witness a side effect of reflective operations 
on the bit-line XBL as the CMCs are selected for both read 
and write at the same time. At write operation, XW is set to 1, 
the bit-line YBL converges faster to strong 0 while XBL is 
charging. Writing bit-lines values back to one of the CMCs 
while participating as an operand causes conflict. This 
conflict occurs when the storage node XB is rising to 1 and the 
corresponding pass transistor XNj (for some j ∈ {1, .., d}) 
starts pulling-down the bit-line XBL that was charging. As 
long as YB is strongly enough pulled down to 0, XB reaches a 
voltage level of stability sufficiently enough to converge to the 
correct outcome result at the end of the operation. 
 
Each two successive operations might differ in the sources 
INPUTs (CMCs) as well as the destinations OUTPUTs 
(CMCs). However, the last state of bit-lines left by the first 
operation should be the same as the initial state of the bit-lines 
used by the second operation. Therefore, the cyclic directed 
graph that connect all possible/distinct compute cycles can be 
summarized by seven inference rules; R1  C1, R2  C1, R5 
 C1, R6  C1, R3  C3, R4  C3, and R7  C2. The rule 
"Ri  Cv" means that any compute cycle (RiC*) in the row Ri 
can be followed by any compute cycle (R*Cv) in the column Cv. 
We define P(RuCv|RiCj) to be the probability distribution for 
experiencing the compute cycle in RuCv right after completing 
the compute cycle in RiCj. The P(RuCv|RiCj)  is 0 when Ri Cv 
is not among the seven rules above. 
 
In this setup, our comparison will focus on activities of the 
bit-lines instead of the results stored by CMCs. For CL with m 
CMCs, and logical operations having i operands and o target 
outputs in one compute cycle, the occurrence distribution is 
summarized in Table 2. Note that, as the number of operands 
i raises the chance of pulling down XBL increases. And, when 
the number of CMCs m is larger than the number of operands 
i and target outputs o, the chance of experiencing a reflexive 
operation becomes small. For M-CL with 4 CMCs conducting 
operation with 2 operands and one output, the chance of "XB 
= 1" is half, a passive XBL is one fourth, and reflexive is half. 
For this example, the occurrence/experience frequency of 

each compute sequence "Ri  Cv" of operations is following 
fairly a uniform distribution as summarized in Table 3. If all 
distinct compute cycles occur following this probability 
distribution, the improvement of bit-lines 
charging/discharging in comparison to the conventional 
bit-lines can be summarized in Table 4. The results 
approximates the findings in [1], where the bit-line charging 
was reduced by about 68% and bit-line activity by 60%. High 
occurrence frequencies are dominated by the column C1 and 
approved by the voltage waveforms. 
 
Table 2: Probability distribution for an operand XB=1, a 
passive bit-line selection (XBL) and reflexive, for M-CL 
with m CMCs and operations with i operands and o outputs. 

X XB = 1 XBL reflexive 

p(X) 2
1  

i2
1  

)!(!
)!()!(1

oimm
omim




  

Table 3: Occurrence frequency of each compute cycle RiCj in 
percentage (%) for i ∈ {1, .., 7} and j ∈ {1, 2, 3}. 

 C1 C2 C3  Total 
R1 15.23 1.17 2.34  18.75 
R2 15.23 1.17 2.34  18.75 
R3 5.08 0.39 0.78  6.25 
R4 5.08 0.39 0.78  6.25 
R5 15.23 1.17 2.34  18.75 
R6 20.31 1.56 3.12  25.00 
R7 5.08 0.39 0.78  6.25 

      
Total 81.25 6.25 12.50  100.00 

Table 4: Improvement (in %) of bit-lines 
charging/discharging XBL and YBL for each RiCj. 

  R1 R2 R3 R4 R5 R6 R7  Total 

XBL↑ 

C1 15.2 15.2 0.0 0.0 15.2 20.3 0.0  66 02 

C2 1. 2 1.2 0.0 0.0 1.2 1.6 0.0  5.08 

C3 2. 3 2.3 0.8 0.8 2.3 3.1 0.8  12. 50 
tot 18. 8 18.8 0. 8 0.8 18.8 25.0 0.8  83. 59 

XBL↓ 

C1 15.2 15.2 0.0 0.0 15.2 20.3 -5.1  60.94 

C2 1.2 1.2 0.0 0.0 1.2 1.6 -0.4  4. 69 

C3 0.0 0.0 0.0 0.0 0.0 0.0 -0.8  -0.78 
tot 16.4 16.4 0.0 0.0 16.4 21.9 -6.3  64. 84 

YBL↑ 

C1 15. 2 15.2 5.1 5.1 15.2 20.3 5.1  81. 25 

C2 0.0 0.0 0.4 0.4 0.0 0.0 0.4  1.17 

C3 0.0 0.0 0. 8 0.8 0.0 0.0 0.8  2. 34 
tot 15. 2 15.2 6. 3 6.3 15.2 20.3 6.3  84. 77 

YBL↓ 

C1 0. 0 0.0 0. 0 0.0 0.0 0. 0 0.0  0. 0 

C2 0.0 0.0 0.4 0.4 0.0 0.0 0.4  1.17 

C3 0.0 0.0 0.8 0.8 0.0 0.0 0.8  2. 34 
tot 0.0 0.0 1.2 1.2 0.0 0.0 1.2  3. 52 
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The occurrence expectation for a compute cycle that execute a 
reflexive and conflictive operation is about 6.25% which is 
negligible. If the distinct compute cycles are independent and 
follow a uniform distribution then in a long run the ratio of 
writes that modifies a CMC will take half of the operations. 
However, as the number of pull down are more frequent, the 
calculated ratio of any bit-line experiencing a change is about 
57.29% and the chances of charging XBL is 32.29%.  
 
5. CONCLUSION 
 
In this paper we introduced our prior work on compute-line 
based computational memory architecture (CCMA) for 
in-place storage processing based on compute-line (CL) 
concept using KEEPER. The KEPPER keeps both bit-lines 
stays distinguished from each other. CCMA, a memory-like 
structure with built-in computing capabilities, supports basic 
(and complete) binary operations on multiple local and/or 
remote data simultaneously. The architecture does 
extensively support computation and data locality. We 
introduced Minimal CL (M-CL) and showed how data 
movement can be reduced to almost null while executing 
built-in operations. Our contribution are investigating CCMA, 
studying its behavior/functionality and illustrating promising 
perspectives. Compiling real program needs to take into 
consideration the above finding. Generally, depending on the 
chosen application, CCMA with a suitable connection 
topology between its compute-lines can achieve massive 
parallelism.  
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