
Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

51

ABSTRACT

Requirements prioritization is an important activity conducted
during requirements management phase of requirement
engineering. Prioritization of requirements is necessary to
include certain features in software while exclude
unnecessary requirements. Similarly for developers of
software project, prioritization of requirements is also
important. Prioritization of small size requirements is easy but
difficult process when deal with large size requirements due
to time complexity of prioritization technique. AHP (Analytic
hierarchy process) is an efficient technique which has been
used from several years by many authors. AHP is simple in
use and yield accurate results but one of difficulty with AHP
is too much comparisons that make is difficult to use for large
size requirements. In this research study, an improved AHP
technique is designed to diminish number of comparisons and
time complexity of AHP with spanning tree based approach.
Reducing total comparisons with AHP will make it more
suitable to prioritize large size software requirements.

Key words: Requirements engineering, requirements
prioritization, functional requirements, AHP, MST.

1. INTRODUCTION

Requirement Engineering (RE) is important phase in software
engineering where requirements are collected from clients in
more systematic way [1] [2]. Requirement prioritization (RP)
is an important activity during RE where requirements are
assigned net importance of priority for implementation [2]. To
implement quality software project in limited budget and
time, giving importance and priority to requirements become
necessary [3][4]. Importance of prioritization increase more
and more when size of requirements become larger [5][6].
Techniques such as cost-value ranking, aattribute
goal-oriented, value-oriented are designed to prioritize
business requirements [7][8]. Prioritization techniques such
as binary tree, value-based, and genetic algorithm designed to
prioritize user requirements during elicitation [9][10][11].
Finally, prioritization techniques such as QFD and
ccontextual preference based technique are specifically
designed for non-functional requirements [12][13].

The Analytical Hierarchy Process (AHP) is prioritization
technique suitable to prioritize any type of software
requirements. It is an organized decision-making method that
is intended to compute complex multi-criteria decision
problems. The method was formerly suggested by Thomas
Saaty [14]. Even though the results for AHP is very accurate,
it can only cater for small-sized requirements. AHP pairwise
compare all requirements and calculate net importance of
requirements with respect to other requirements e.g. if total
number of requirements are m than total pairwise
comparisons will reach to m*(m-1)/2. Due to too much
comparisons, AHP is not suitable for prioritization of large
size requirements. AHP is considered to be suitable and
scalable for prioritizing small size requirements [13].

The purpose of this research is to enhance AHP so that it can
be applied for large-sized FRs. Although AHP is not suitable
technique to be applied efficiently for large size functional
requirements, but when number of comparisons of
requirements is reduced before applying AHP, then the
technique can be efficiently applied to prioritize large size
requirements with reduce time complexity. When comparing
large size requirements, not all requirements are related to
each other, so we can separate different requirements with
spanning tree and then AHP can be applied efficiently [15].
The remaining of this paper will proceed as follows. Section 2
presents the work related to AHP and requirements
prioritization. Section 3 presents the materials and methods.
Section 4 presents the time complexity and validation results
and finally Section 5 concludes with some direction for future
works.

2. BACKGROUND STUDY

AHP is applied efficiently in many studies e.g. in one of their
studies, author used AHP to prioritize process requirements.
Both local and perspective priority was considered to
prioritize software process requirements using AHP. For this
purpose, CBPA framework was designed which capture
process requirements from various perspective from
stakeholders and then prioritize it. Process requirements are
prioritized from perspective of both business and management
such as increase profit, lead in completion, reduction in
development cost and time to deliver software are taken as

Prioritization of Software Functional Requirements: A Novel Approach using
AHP and Spanning Tree

Muhammad Yaseen, Aida Mustapha, Mohamad Aizi Salamat, Noraini Ibrahim

Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

yaseen_cse11@yahoo.com, aidam@uthm.edu.my, aizi@uthm.edu.my, noraini@uthm.edu.my

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse09912020.pdf

https://doi.org/10.30534/ijatcse/2020/09912020

Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

52

business oriented process requirements while schedule,
satisfaction of customers and increase of productivity and
benefits from software’s are taken as business oriented
process requirements. Matrix is drawn to compare all
requirements against each other’s. Similarly another matrix is
drawn to include multiple stakeholders and their point of view
and then all requirements are pairwise compared and net
priority of all requirements are calculated[16].

In another study, AHP is used in combination with Artificial
Neural Network (ANN) to reduce efforts during requirements
elicitation from clients [17]. For this purpose, author applied
ANN to group requirements of same nature or category and
then AHP is applied to group of requirements rather than
individual requirements. In first phase of prioritization, clients
are requested for the preparation of all possible requirements
to be included in software. Along with this, client’s
preferences from different perspective are collected. Purpose
of ANN is to remove all conflicts from requirements and
make arrange requirements in groups and then AHP were
efficiently applied. Although technique is suitable for large
size requirements but too much complex in use. Similarly if
size of requirements in same group increase, time complexity
of AHP increase. For particular scenarios this technique is
preferable but not better to prioritize all types of requirements
from different perspectives.

Not always software requirements are implemented in single
version. Due to too much requirements and limited budget and
time restrictions or customers need of some features on urgent
basis, requirements need to be prioritized based on goals of
the stakeholders. Certain goals are stable during the whole
project whereas several goals changes with passage of time
because of the affection from environment such as laws,
stakeholders, variety of clients, requirements and business
restrictions, market necessities etc and thus prioritization
become necessary. This shows goals of stakeholders varies. In
his study, author applied AHP to prioritize requirements by
considering various goals [7].

In another paper author have prioritized functional
requirements as relation and based on nonfunctional
requirements using AHP method of pairwise comparisons
[18]. Every functional requirement will be check against its
associated nonfunctional requirement and if the priority of
nonfunctional requirement is found greater than functional
requirement. This shows that paying attention to
nonfunctional requirements can change priority for functional
requirements.

3. MATERIALS AND METHODS

Figure 1 shows step by step process for the current research
work. The detail of framework is discussed as follows.

Figure 1: Step-by-step research design process

3.1 Functional Requirements (FRs) Collection

Functional requirements (FRs) are low level requirements that
belong to different high level user requirements [19]. FRs are
core requirements of any software system. Developers of
software project deals with FRs [20]. For this research study,
we have considered FRs from development perspective to
validate our proposed technique of AHP using spanning trees.

3.2 Representation of FRs

Circular rounded shape notations are used for representing
FRs for this study and alphabets R1, R2, …, Rn are used for
denoting requirements as shown in figure 2. Many other
studies also used similar notations for the representation of
FRs [10].

Figure 2: Requirements Prioritization

FRs are connected and inter-related with directed acyclic
graph (DAG) as shown in figure 3. E.g. in in Figure 2, R5 is
required for R3 and R6 or we can say that both R3 and R6
need R5 for implementation. Through DAG, we can easily
relate requirements with one another.

R1 R4 R3

R5 R6 R2

Collecting Functional Requirements

Using directed graph

Making spanning trees from graph

Applying AHP without
spanning tree

Applying AHP with
spanning tree

Compare both results

Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

53

Figure 3: Graphical representation of requirements

3.2 Adjacency Matrix

In graph theory of computer science, an adjacency matrix is
a square matrix used for representing a finite graph. This
matrix shows which element of the graph is directed towards
other elements of the graph. Graph consist of vertices and
edges. Vertices in this study shows FRs while edge shows
relation of one requirement with other requirement. In Table
1, the value 1 represents the relationship of requirement with
another requirement while 0 shows no relation. For example,
R4 is required for R3, so we placed 1 in column R3 and row
R4.

3.3 Spanning Tree

Spanning trees represents special sub-graphs that possess
numerous significant characteristics. For example, if T is a
spanning tree belongs to graph G, then T must span G, which
shows that T must cover all vertices inside G. Second, T must
be a sub graph of G. Third, if every edge in T also occurs
inside G, this shows G is similar to T. In many studies, authors
used spanning tree algorithms for directed graph [21][22].
With the help of adjacency matrix, we can show all those
requirements through spanning tree for which a particular
requirement is needed. E.g. from table 1 we can see that R2 is
needed for R8 which is then needed for R9 and R10. Figure 4
shows possible spanning trees resulted from figure 3.
Spanning trees formation from directed graph either follow
depth first search (DFS) or breadth first search (BFS)
algorithm [23].

Table 1: Adjacency matrix for requirements of Figure 3

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
R1 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 1 0 0
R3 1 0 0 0 0 0 0 0 0 0
R4 0 0 1 0 0 0 0 0 0 0
R5 0 0 1 0 0 1 0 0 0 0

R6 0 0 0 0 0 0 0 0 0 0
R7 0 0 0 0 0 0 0 1 0 0
R8 0 0 0 0 0 0 0 0 1 1
R9 0 0 0 0 0 0 0 0 0 0
R10 0 0 0 0 0 0 0 0 0 0

3.4 Apply AHP to Spanning Tree

Through the process of AHP, each and every requirement is
pairwise compared. In this case when AHP is applied to
requirements of spanning trees only dependent requirements
are compared. For the rest of requirements that are not
dependent on each other will be consider as equal by default.
E.g. in Tree 2, R1 and R6 will be consider of the equal priority
although both belongs to same tree. As we have four possible
spanning trees as shown in figure 4, we can apply AHP to
individual trees or combination of trees that contain common
requirements E.g. R3 is common is first two trees while R8 in
next two trees. AHP is applied for all cases in this research
work.

Tree 1 Tree 2

Figure 4: Spanning tree resulted from graph of Figure 3

Tree 3 Tree 3

Figure 4: Spanning tree resulted from graph of Figure 3 (con’t)

R2

R8

R9 R10

R7

R8

R9 R10

R4

R3

R1

R3

R1

R6

R5

R1

R3

R6

R4 R5

R2
R7

R8 R10

R9

Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

54

Now we are separately taking two different groups of
requirements. Table 2 shows requirements of first two
spanning trees while table 3 shows requirements of the next
two spanning trees.

Table 2: Pairwise comparison of first two spanning trees

 R1 R3 R4 R5 R6
R1 1 .5 .25 .25 1
R3 2 1.0 .50 .50 1
R4 4 2.0 1.00 1.00 1
R5 4 2.0 1.00 1.00 2
R6 1 1.0 1.00 .50 1
Sum 12 6.5 3.75 3.25 6

Table 3: Averaging and normalization for Table 2 values

 R1 R3 R4 R5 R6 Sum
R1 .083 .076 .066 .076 .166 .467
R3 .166 .153 .133 .153 .166 .771
R4 .333 .307 .266 .307 .166 1.380
R5 .333 .307 .266 .307 .333 1.550
R6 .083 .153 .266 .153 .166 .581

In table 2, all requirements are pairwise compared. If
requirement is needed for other requirement than its priority
will be greater than it. In this study we have consider it double
i.e. 2 but we can select any value from 2 to 9. E.g. R3 is
required for R1, so R3 priority will be two times as compare to
R1 while R4 priority will be 4 times than R1 as its priority is
double as compare to R3. For those requirements that are
independent i.e. not related either belong to same or different
trees, we will put 1 against these requirements. When all
values after comparing FRs are placed in table, then
normalized values for each requirement is calculated by
dividing priority value of each requirement against other
requirement by rows sum for each column. E.g. for R1 against
R1, its priority value i.e. 1 will be divided on 12. Normalized
values for each requirement is calculated and given in table 3.

In next step, averaging or sum of normalized values are
calculated by adding normalized values of requirements
belong to all columns for each row. Column sum in table 3
shows averaging over normalized value. We can find priority
out of 1 by dividing it on number of requirements which is 6.
Now repeat the same process for Tree 3 and Tree 4 in
combination and the results are given in table 4 and table 5
respectively.

Table 4: Pairwise comparison of 3rd and 4th spanning trees

 R2 R7 R8 R9 R10
R2 1.00 1.00 2.00 4 4
R7 1.00 1.00 2.00 4 4
R8 .50 .50 1.00 2 2
R9 .25 .25 .50 1 1
R10 .25 .25 .50 1 1
Sum 3.00 3.00 6.00 12 12

Table 5: Averaging and normalization for Table 4 values

Table 6 summarize priority values for each requirement as
calculated and shown in table 3 and table 5. R2 get high value
while R9 and R10 get low values.

Table 6: Priority values assigned for two combined trees

Requirement Priority
R2 1.660
R7 1.660
R5 1.550
R4 1.380
R8 0.830
R3 0.771
R6 0.581
R1 0.467
R9 0.410
R10 0.410

We can validate result from figure 4 easily. R2 and R7 got
highest values in 3rd and 4th trees respectively while R8 got
value less than R2 and R7, because both of them are required
for R8. R2 priority is slightly higher than R5, although both
are required for same number of requirements but chain
structure is different. Similarly R5 have high priority than R4
because R5 is needed for more requirements. Similarly R6
priority will be lower than R3 because R3 is required for R1
while R6 is required for none of the requirement.

Now calculate priority values of requirements separately for
each tree. Table 7 shows prioritize values obtained as a result
of prioritization from AHP by repeating the same process for
Tree 1, Tree 2, Tree 3 and Tree 4 individually.

Table 7: Priority values assigned for each individual trees

Requirement Priority

R2 2.00
R7 2.00
R5 1.80
R4 1.70
R8 1.00
R3 0.90 and 0.85
R6 0.77
R1 0.56 and 0.42
R9 0.50
R10 0.50

Now consider whole set of requirements by considering all
trees together, and compare each and every requirement
against others. Table 8 shows summary of prioritization as a
result of AHP by considering combination of four trees.

 R2 R7 R8 R9 R10 Sum
R2 .333 .333 .333 .333 .333 1.66
R7 .333 .333 .333 .333 .333 1.66
R8 .166 .166 .166 .166 .166 .83
R9 .083 .083 .083 .083 .083 .41
R10 .083 .083 .083 .083 .083 .41

Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

55

Table 8: Priority values by considering all requirements together

Requirement Priority
R2 1.334
R7 1.334
R5 1.244
R4 1.153
R8 1.000
R3 0.838
R6 0.837
R1 0.563
R9 0.600
R10 0.600

4. TIME COMPLEXITY AND VALIDATION OF
RESULTS

From table 6, table 7 and table 10, we can see that order of
priority is same in all cases, either we prioritize requirements
of combined trees or separately result is same in all cases.
Some minor changes like R9 is given more priority as
compare to R1 in second and third cases while in first case R1
is given slightly higher priority. But as whole results are same.
Number of comparisons of depended requirements are
although same in all cases but as whole number of calculated
normalized values are different in all cases. E.g. when we
compare all 10 requirements with each other’s then total
calculations will be equal to 10*10 which is 100. When we
consider another case in which requirements of combined
spanning trees are compared only i.e. 5 requirements in each
tree as shown in table 2 and table 3 respectively. The total
calculations reduce to 25. This is because in first case, each
and every requirement is compared with all other
requirements either belong to same tree or different tree but in
second case requirements in two combined spanning trees are
compared only against others which reduced the total
comparisons and calculations.

In our study although priority values order is same in all cases
but in real software’s where software requirements size is
large, there can be much difference in results, so which the
results of which case is more accurate? If we consider whole
set of requirements in one table than along with too much
comparisons biasness can increase as we have to put 1 against
all independent requirements and in big size requirements
number of 1’s of independent requirements will be very much
so it can have negative impact on results.

Now what will happen if we consider individual trees
separately instead of two combined spanning tree each? There
are two disadvantages, first is that number of calculations can
increases as we are repeating calculations after comparison of
common requirements of more than one tree e.g. in Tree 1 and
Tree 2, R3 and R1 are common, so in separate tables we are
repeating calculations for them although comparisons are
done once. Second disadvantage is that for common
requirements like R3, we are calculating priorities separately
e.g. one for Tree 1 and another for Tree 2 separately which can
decrease or increase the overall priority of R3 as we are
considering its priority multi times separately.

Now if we combine trees with common requirements like we
combined first two trees, then overall impact of requirement
will be not affected and biasness will be decrease. Also, in
combined trees calculations will be not repeated although it
will be lesser (half) as compare to combined case of all
requirements.

5. CONCLUSION

So we can conclude from our study that AHP is easy and
better technique to prioritize requirements but takes too much
time due to too much comparisons and calculations but if we
compare only dependent FRs, then we can reduce number of
comparisons and calculations to minimum and the results will
be more accurate. With the help of spanning tree, we have
related dependent requirements. With help of spanning tree
and AHP, we have efficiently prioritized FRs with accuracy
and minimum time complexity. From the current work, we
have concluded that comparing requirements of either
individual tree or combination of trees with common
requirements reduces time complexity and produce accurate
results as compare to that case where we consider whole set of
requirements for comparisons and prioritization.

In future we aim to apply the suggested framework to FRs of
Enterprise Resource Planning (ERP) system. ERP system
developers, who avoid to use AHP because of its time
complexity and number of comparisons, will be able to use it
easily.

ACKNOWLEDGEMENT

This paper is supported by the Ministry of Education,
Malaysia under the Fundamental Research Grant Scheme
FRGS/1/2019/ICT01/UTHM/02/1

REFERENCES

[1] M. . Yaseen, S. . Baseer, S. . Ali, S. U. . Khan, and

Abdullahb, ‘Requirement implementation model
(RIM) in the context of global software development’,
2015 Int. Conf. Inf. Commun. Technol. ICICT 2015,
2015.
https://doi.org/10.1109/ICICT.2015.7469573

[2] M. Yaseen, N. Ibrahim, and A. Mustapha,
‘Requirements Prioritization and using Iteration
Model for Successful Implementation of
Requirements’, Int. J. Adv. Comput. Sci. Appl., vol.
10, no. 1, pp. 121–127, 2019.

[3] M. Yaseen, A. Mustapha, and N. Ibrahim,
‘Prioritization of Software Functional Requirements :
Spanning Tree based Approach’, vol. 10, no. 7, pp.
489–497, 2019.
https://doi.org/10.14569/IJACSA.2019.0100767

[4] M. Yaseen, A. Mustapha, and N. Ibrahim,
‘MINIMIZING INTER-DEPENDENCY ISSUES OF
REQUIREMENTS IN PARALLEL DEVELOPING
SOFTWARE PROJECTS WITH AHP’, vol. 8, no.

Muhammad Yaseen et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 51 – 56

56

Viii, 2019.
[5] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘An

Approach for Managing Large-Sized Software
Requirements During Prioritization’, no. 1, pp.
98–103, 2019.

[6] B. Manoj, K. V. K. Sasikanth, M. V. Subbarao, and V.
Jyothi Prakash, ‘Analysis of data science with the use
of big data’, Int. J. Adv. Trends Comput. Sci. Eng.,
vol. 7, no. 6, pp. 87–90, 2018.
https://doi.org/10.30534/ijatcse/2018/02762018

[7] N. Garg, M. Sadiq, and P. Agarwal, ‘GOASREP :
Goal Oriented Approach for Software Requirements
Elicitation and Prioritization Using Analytic
Hierarchy Process’, pp. 281–287, 2017.

[8] M. A. A. Elsood and H. A. Hefny, ‘A Goal-Based
Technique for Requirements Prioritization’, 2014.
https://doi.org/10.1109/INFOS.2014.7036697

[9] R. Beg, R. P. Verma, and A. Joshi, ‘Reduction in
number of comparisons for requirement prioritization
using B-Tree’, no. March, pp. 6–7, 2009.

[10] P. Tonella, A. Susi, and F. Palma, ‘Interactive
requirements prioritization using a genetic algorithm’,
Inf. Softw. Technol., vol. 55, no. 1, pp. 173–187, 2013.

[11] A. K. Massey, P. N. Otto, and A. I. Antón,
‘Prioritizing Legal Requirements’, vol. 1936, no. 111,
2010.

[12] C. E. Otero, E. Dell, A. Qureshi, and L. D. Otero, ‘A
Quality-Based Requirement Prioritization
Framework Using Binary Inputs’, pp. 0–5, 2010.
https://doi.org/10.1109/AMS.2010.48

[13] F. Dalpiaz, ‘Contextual Requirements Prioritization
and Its Application to Smart Homes’, vol. 1, pp.
94–109, 2017.

[14] ‘AHP.pdf’. .
[15] A. Perini, F. Ricca, and A. Susi, ‘Tool-supported

requirements prioritization : Comparing the AHP and
CBRank methods’, Inf. Softw. Technol., vol. 51, no. 6,
pp. 1021–1032, 2009.

[16] X. Frank, Y. Sun, and C. Sekhar, ‘Priority assessment
of software process requirements from multiple
perspectives’, vol. 79, pp. 1649–1660, 2006.

[17] M. I. Babar, M. Ghazali, D. N. A. Jawawi, S. M.
Shamsuddin, and N. Ibrahim, ‘Knowledge-Based
Systems PHandler : An expert system for a scalable
software requirements prioritization process’,
KNOWLEDGE-BASED Syst., 2015.
https://doi.org/10.1016/j.knosys.2015.04.010

[18] F. Fillir, ‘6 \ VWHP UHTXLUHPHQWV
SULRULWL] DWLRQ EDVHG RQ $+ 3’, pp.
163–167, 2014.

[19] M. Yaseen and Z. Ali, ‘Success Factors during
Requirements Implementation in Global Software
Development : A Systematic Literature Review’, vol.
8, no. 3, pp. 56–68, 2019.

[20] Z. Ali, M. Yaseen, and S. Ahmed, ‘Effective
communication as critical success factor during
requirement elicitation in global software
development’, vol. 8, no. 03, pp. 108–115, 2019.

[21] S. Kapoor and H. Ramesh, ‘Algorithmica An
Algorithm for Enumerating All Spanning Trees of a

Directed Graph 1’, pp. 120–130, 2000.
[22] C. J. Quinn, N. Kiyavash, and T. P. Coleman,

‘Efficient methods to compute optimal tree
approximations of directed information graphs’, IEEE
Trans. Signal Process., vol. 61, no. 12, pp.
3173–3182, 2013.
https://doi.org/10.1109/TSP.2013.2259161

[23] C. Papamanthou, ‘Depth First Search & Directed
Acyclic Graphs’, 2004.

