
Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

57

ABSTRACT

Nowadays, practitioners have automated web application
vulnerability assessment to speed up the testing life-cycle.
Although this area of research had been widely studied
worldwide for decades, however, existing studies show
present state-of-the-art of automated web application
vulnerability assessment still suffer from limitations of false
alarms, which including both false positive and false
negative. Therefore, this paper extends present research
works by quantitatively analysing the web application
security scanners’ quality. The objective is to investigate
present state-of-the-art performance in cross-site scripting
detection for witnessing the decades of evolution. This paper
achieves desired goal using the experimental research
method, which the paper had quantitatively analysed six
web application security scanner’s performance for
clarifying these scanners’ capability in detecting the cross-
site scripting. The experiment result shows present state-of-
the-art still suffer from limitations of false positive, false
negative and redundant test results.
Key words : Automated web application, Cross-site
Scripting, False positive, False negative, Quantitative
analysis.

1. INTRODUCTION

In this Age information, the web application is ubiquitous
that web application has a crucial role in information
sharing as well as communicating. Presently, the web
application is widely used in economic, education,
healthcare, politic, entertainment, and many more to spread
information or get people connected. The web application is
a unique and platform independent client-server application,
which web application not only executable on a computer,
mobile device, tablet of various operating systems, through
the web browser, it is also accessible by anyone in 24/7, as
long as there is an Internet connection. Moreover, the
modern web application always possesses confidential data.
Therefore, intruders always have their eyes on the
vulnerable web application. According to a report of [1], the
vulnerable web application is always a gate- way for

intruders to gain access to confidential data. Unfortunately,
awareness to strengthen web application security is rather
low among the public. Henceforth, statistical reports of [2]
and [3] show modern web application always possessing at
least a security loophole and are vulnerable to vulnerabilities
like SQL injection and cross-site scripting.

Existing countermeasure to the related problem has
included educating and training developers to produce
secure and high-quality web application, as well as assessing
the web application security during and after the
development phase [4-5]. Presently, there are software static
analysis techniques like code debugging and code review for
assessing web application security during the development
phase. At the same time, there are also dynamic analysis
testing techniques such as penetration testing to assess the
fully developed web application security. However, manual
testing is time consuming, tedious and error-prone.
Consequently, practitioners have automating related testing
process, leverage the computer’s computation power. The
introduction of automated web application vulnerability
assessment not only succeeded in shortening the testing life-
cycle but also allows tester performing the test in parallel.

A well-known invention is the web application
security scanner, a tool that automates the process of web
application vulnerability assessment. Unfortunately,
according to experimental results of [6] and [7], current
state-of-the-art of automated web application vulnerability
assessment suffers from limitations of low test coverage, and
are tend to produce the false alarms, which including both
the false positive and false negative. In addition to that,
these research works also show present state-of-the-art does
not perform well in detecting security loopholes other than
simple injection-based vulnerabilities like reflected cross-
site scripting and reflected SQL injection. Consequently, a
quantitative study was conducted in this paper to clarify
present automated web application vulnerability
assessment’s quality for investigating advancement of the
state-of- the-art of automated web application vulnerability
assessment.

1.1 Related Works

The study of automated web application vulnerability
assessment had existed for decades. Presently, practitioners
had quantitatively quantified automated web application

The Preparation of Cross-site Scripting in Automated Web Application
Vulnerability Assessment: The Quantitative Analysis

Lim Kah Seng1,2, Norafida Ithnin2, Syed Zainudeen Mohd Shaid2
1OK Blockchain Centre Sdn Bhd, Johor, Malaysia

2School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor, Malaysia

 ISSN 2278-3091
Volume 8, No.1.6, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0981.62019.pdf

https://doi.org/10.30534/ijatcse/2019/0981.62019

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

58

vulnerability assessment performance through studying web
application security scanners’ performances, such as
Acunetix Web Vulnerability Scanner (WVS), HailStorm,
WebInSpect, AppScan, McAfee SECURE, Qualys Guard
PCI, NeXPose, in detecting vulnerabilities like cross-site
scripting, SQL injection, arbitrary file upload, remote file
inclusion, OS command injection, code injection, session
fixation, session prediction, cross-site request forgery, SSL
misconfiguration, insecure HTTP method, insecure
temporary file, path traversal, source code disclosure and
error message disclosure. These experimentations’
experimental results showed present state-of-the-art are
good at detecting the SQL injection only. The detection rate
of other vulnerabilities is low, which the tested scanners
showed the vulnerability detection rate of less than 60% [6].
In the meanwhile, [8] had quantitatively measured present
web application security scanners’ quality with parameters
of accuracy, time, and costs. Related experimental outcomes
showed the web application security scanners reported high
false positive and false negative, and this limitation had
caused automated web application vulnerability assessment
requiring more testing time than the manual testing. Besides
this, [9] had quantitatively compared performances of
automated static analysis tools and web application security
scanners. The experimental outcomes showed false positive
is common in automated static analysis tools, while web
application security scanners are susceptible to the false
negatives. Then, [10] and [11] studies showed present web
application security scanners are weak at detecting stored
SQL injection and stored cross-site scripting, which the
scanners have failed to reach hidden web pages that had the
attack string executed. On the other hand, [12] had
evaluated Wapiti, Skipfish, as well as Arachni performance.
Related experimental results showed the scanners had
succeeded in detecting all the SQL injection but with the
cross-site scripting detection rate of 87% only. Besides this,
[13] had classified existing defensive mechanisms of those
for securing web application from cross-site scripting, while
[14] had developed Fire Range for benchmarking web
application security scanners’ quality in detecting the cross-
site scripting. Overall, the experimental results showed web
application security scanners contain limitations of the false
positive and false negative. In addition to that, these
research works also showed present web application security
scanners only performed well in detecting the SQL injection
but not the other web vulnerabilities. Consequently, this
paper extended existing research works by quantitatively
analysing current web application security scanners’ state-
of-the-art in detecting cross-site scripting.

1.2 Web application security scanner

Web application security scanner is a computer program
invented to aid test engineer in assessing a web application
security automatically. Web application security scanner
simulates red team’s actions, compromises web application
confidentiality, integrity, and availability for vulnerability

detection [15][16]. Presently, web application security
scanner is designed to detect the well-known vulnerabilities,
as reported in [17] and [18], with both SQL injection and
cross-site scripting was the one that receives the most
attention. However, research works of [4], [8], and [19]
show present state-of-the-art merely excels in detecting the
SQL injection but not the cross- site scripting.
Consequently, this paper has defined the study scope to
cover the cross-site scripting only

1.3 Cross-site Scripting
Cross-site scripting is a security loophole that allows
execution of invalidated or malicious client-side scripts. The
history of cross-site scripting is closely related to the
invention of client-side technology named JavaScript by
Netscape. Consequently, this vulnerability had long existed
since the 1990s. Related client-side technology is invented
to enhance web application responsive, interactivity, and
presentation. Unfortunately, this client-side technology
possesses an extra feature that allows cross-site browsing
without the legitimate user consent. As a result, the attacker
leverages this security loophole to achieve cross-site
browsing for session stealing, legitimate user masquerading,
credential information stealing, and many more. The cross-
site scripting attack involves crafting and injecting the
unsanitized web application with the malicious script to lure
the legitimate user into executing the planted malicious
scripts. Conventionally, practitioners classify cross-site
scripting into three main categories based on its exploitation
technique namely reflected cross-site scripting, persistent
cross-site scripting, and DOM-based cross-site scripting
[20][21]. Then, [22] and [23] successfully discovered
another two cross-site scripting exploitation techniques
called UTF-7 cross-site scripting and mutation cross-site
scripting (mXSS). Figure 1 shows the taxonomy of cross-
site scripting with both mutation cross-site scripting and
UTF-7 cross-site scripting included.

Figure 1: Cross-site scripting taxonomy

The reflected, persistent, and DOM-based cross-site

scripting are the conventional cross-site scripting
exploitation techniques well known by the public. The
reflected cross-site scripting always involves direct
execution of malicious scripts that planted on the malicious
page. Persistent cross-site scripting, on the other hand, gets
its name due to a fact that the malicious script is
permanently writing to target web application, especially the
database. In the meanwhile, DOM-based cross-site scripting
is a client-side scripting vulnerability, which this cross-site

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

59

scripting attack directly modifies vulnerable web page’s
DOM document without sending the malicious script to the
web server [21]. Then, [22] and [23] discover the mutation
cross-site scripting and UTF7 cross-site scripting, which are
the subclass of conventional reflected cross-site scripting,
persistent cross-site scripting, and DOM-based cross-site
scripting. Mutation cross-site scripting leverages browser
default feature to convert the innocent string of text into
malicious and executable client-side scripts. Similarly,
mutation cross-site leverages default nature of modern web
browser’s to encode innocent text into the executable
malicious script. Details regarding both mutation cross-site
scripting and UTF7 cross-site scripting are reachable in [22]
and [23].
1.4 Contribution and Organizations

Even though the experimental outcomes of [6], [8], [12] and
[19] shows present state-of-the-art of automated web
application vulnerability assessment has excelled in
detecting the SQL injection, unfortunately, current state-of-
the-art is not capable of detecting the cross-site scripting
vulnerability. Therefore, this paper had conducted
experimental research to quantitatively analyse current web
application security scanners’ quality for investigating
whether improvements done on the state-of-the-art of
automated web application vulnerability assessment did
enhance the state-of-the-art performance in detecting the
cross-site scripting. In summary, the paper had achieved the
following contributions:

 We deliver the architecture and state-of-the-art of

automated web application vulnerability
assessment.

 We deliver the strengths and limitations of automated
web application vulnerability assessment.

 We deliver web application security scanner’s
capability in detecting the cross-site scripting.

Overall, the research paper is divisible into five
main sections. The remaining Section 2 presents the
experimental research methodology. Section 3 presents the
experimental results. Section 4 discusses the research
findings. Lastly, Section 5 concludes this research paper.

2. THE EXPERIMENT METHOLOGICAL
APPROACHES

The paper had performed the experiment to quantitatively
analyse web application security scanner’s performance in
detecting the cross-site scripting. The performance of
chosen web application security scanners was analysed
using the experimentation framework of [9]. This
experimental framework quantitatively measures the web
application security scanner’s performance with steps of
preparation, execution, verification, and analysis. Figure 2
illustrates the [9] experimentation framework.

Figure 2: The methodology of [9]’s experimental
framework.

The experimentation framework analysed web
application security scanners’ performance by having the
web application security scanners scan selected test-beds,
which are the vulnerable web applications. To ensure the
experimentation was conducted in a sustainable and secure
environment, we decided to use the virtual web application
penetration testing lab. This virtual web application
penetration testing lab was built upon guidelines provided
by [24]. Figure 3 shows the virtual web application
penetration testing lab’s set-up.

Figure 3: The set-up of virtual web application penetration

testing lab.

As depicted in Figure 3, the virtual web application
penetration testing lab was built using two PCs with
specifications of Intel I7 processor and 8GB memory. These
two machines were connected through a router for
producing the isolated local area network, to prevent the

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

60

web application security scanners from accidentally
scanning the World Wide Web (WWW). Besides this, in
each machine, a guest machine was created using the
virtualization technology. The virtualization was used to
enable the machines to support those web application
security scanners that executable on Linux platform only. In
the meanwhile, the container technology of docker was used
to host the test-beds.

2.1 Preparation

The preparation phase involves the selection of desired test-
beds and web application security scanners, as well as the
suitable measurement metrics to measure web application
security scanners’ quality. Overall, a total number of eleven
test-beds and six web application security scanners were
chosen to be evaluated in this quantitative analysis using the
measurement metrics of false positives, false negatives,
redundant tests, and true negative, as previously practised by
[9]. These test-beds and web application security scanners
were chosen based on criteria of [25] that they are easy to
use and install; they are ubiquitous; they are free or not too
expensive; they support cross-site scripting vulnerability,
and they are well-documented. A simple reason that test-
beds, which are the vulnerable web application, were used to
benchmark the web application security scanner’s quality
was to prevent the committing of cybercrime as in the web
application security scanner might harms a web application
security through the active scanning, which involves writing
of attack payloads into the web application attack vectors
and database. Table 1 presents the selected test-beds and
web application security scanners.

Table 1:. The Selected Test-beds and Web Application

Security Scanners
Object Name Technologies

Test-beds WackoPicko PHP

Test-beds Peruggia PHP

Test-beds bWAPP PHP

Test-beds Bodgeit JAVA

Test-beds JavaVulnerableLab JAVA

Test-beds Mutillidae II PHP

Test-beds Acuart PHP

Test-beds SecurityTweet Python

Test-beds AcuForum ASP

Test-beds AcuBlog ASP.NET

Web Application Security Scanner W3af JAVA

Web Application Security Scanner Skipfish C

Web Application Security Scanner ZAP Proxy JAVA

Web Application Security Scanner WebScarab JAVA

Web Application Security Scanner Paros Proxy JAVA

Web Application Security Scanner Wapiti Python

2.2 Execution

The execution phase involves configuring and
installing the chosen web application security scanners and
test-beds. Afterwards, having the web application security
scanners executed to scan the selected test-beds. During the
experimentation, the configurations and settings of selected
web application security scanners and test-beds were
configured following the guideline written in the
documentation.
2.3. Verification

The verification phase involves the inspection of
test results yielded by the selected web application security
scanner. In this activity, the test reports validity was
clarified manually using the manual testing.
2.4. Analysis

The analysis phase quantifies web application
security scanners’ quality with measurement metrics of false
positives, false negative, true negatives, and duplicate
results.

3. THE QUANTITATIVE ANALYSIS
Experimentation had been conducted in this paper

to quantitatively quantify present web application security
scanners’ performance in detecting the cross-site scripting.
Figure 4 presents quantitative analysis outcomes.

Figure 3: The quantitative analysis outcomes

3.1. The Number of True Negatives
The measurement metric of the number of true negatives
illustrates the benign cross-site scripting vulnerabilities that
a web application security scanner has successfully detected
[27]. According to the experimental outcome of Figure 4,
current web application security scanners only manage to
detect cross-site scripting in some test-beds, which have

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

61

simple business logic and without the authentication
scheme. Henceforth, the selected web application security
scanner was able to efficiently detect cross-site scripting
vulnerabilities in Acuart but not the others test-beds. This
experimental outcome was observed due to a fact that these
test-beds were custom built, hence, whenever the web
application security scanners scanned these test-beds in the
testing environment of black-box, the web application
security scanners failed to precisely locate the cross-site
scripting. Consequently, the number of benign cross-site
scripting vulnerabilities reported by the chosen web
application security scanner was generally low in number.

3.2. The Number of False Negatives
The measurement metric of false negative illustrates fake
cross-site scripting vulnerabilities that the web application
security scanners were reporting during the quantitative
analysis [28]. Figure 4 shows all the selected web
application security scanners yielded at least a false
negative. The outcome of the analysis showed the
authentication mechanism in the test-beds had prevented the
chosen web application security scanners from reaching the
hidden web contents, causing the cross-site scripting
security loopholes embedded in hidden web contents not
detected by the web application security scanners. Therefore,
false negatives were produced by chosen web application
security scanners, when scanning test-beds of Mutillidae II,
bWAPP, JavaVulnera- bleLab and WebGoat. The chosen
web application security scanners were just skipped these
web contents as it had never existed and ended the testing
session with an incomplete test. Thus, we conclude that
incomplete testing was the primary factor that contributes to
the research problem of false negatives.
3.3. The Number of False Positives
The measurement metric of false positive illustrates fake
cross-site scripting vulnerabilities yielded by the web
application security scanners [27]. Figure 4 shows selected
web application security scanners had produced false
positive results while scanning the test-beds. The
quantitative analysis showed current vulnerability detection
techniques of signature-based vulnerability detecting
mechanism and learning-based vulnerability detecting
mechanism are too conservative for assessing the cross-site
scripting vulnerabilities in test-beds. The web application
security scanners were always mistakenly interpreted the
sanitized attack payloads as the cross-site scripting
vulnerabilities. Besides this, these web application security
scanners also occasionally mistakenly assumed others
security loopholes as the cross-site scripting vulnerabilities.
However, the experimental results showed the number of
false positives produced by these web application security
scanners was rather low compared to the number of false
negatives.
3.4 Duplicate Results
The duplicate cross-site scripting illustrates duplicated
cross-site scripting that the web application security
scanners had produced during the quantitative analysis.

Figure 4 showed limitation in the present crawling
mechanism had caused current web application security
scanners yielded the duplicate cross-site scripting, which the
weak crawling made the web application security scanners
visits similar web contents for more than once. The
phenomenon was particularly common when the web
application security scanners assessed the test-beds that with
a lot of redundant and self-referencing links, such as the
test-beds of Mutillidae II, Acuart and AcuBlog.

4. DISCUSSION
The quantitative analysis shows present automated web
application vulnerability assessment’s state-of-the-art still
suffers from limitations of false positive, false negative, and
redundant test result, even after the decades of evolution.
Besides this, this study reveals existing web application
security scanners generally consist of three main
components, which are web application reconnaissance
component, vulnerability assessment component, as well as
the vulnerability detection component.

The web application reconnaissance solutions
generally comprised of a web crawling mechanism that
responsible for reverse-engineer the target web application
for discovery the data entry points and attack vectors. This
web crawling mechanism generally is a combination of a
web crawler, a proxy, and a form inputting mechanism. The
web crawler brute forces and statically parses web
application tree structure to reach web application contents.
In the meanwhile, the proxy is applied to inspect the
propagation of HTTP requests and HTTP responses that
flow between client and server. On the other hand, the form
inputting mechanism asks inputs from the tester to inputting
the web forms for reaching the hidden web contents.

The vulnerability assessment component then reads
the attack vectors to perform the web exploitation,
penetrating the attack vector security for compromising the
web application confidentiality, integrity or availability.
This component generally contains a brute forcing
mechanism that consists of an attack vector selector, an
attack string injector, and an attack library. The attack
vector selector selects the desired attack vector from a pool
of attack vectors. Subsequently, the string injector brute
forces the attack vector with fuzzing or fault injection
technique while the attack library delivers the payloads to
penetrating the attack vectors security.

After the vulnerability assessment, the vulnerability
detection component takes place by inspecting web
application responses, locating the anomalies, for
vulnerability detecting using the conventional signature-
based vulnerability detection mechanism or learning-based
vulnerability detection mechanism. A vulnerability is
deemed existed whenever the attack string has executed and
violated the security rules. Then, each detected vulnerability
is recorded and displayed in a test report. Unfortunately, the
existing automated web application vulnerability
assessment’s state-of-the-art suffers from limitations of false
positive, false negative and redundant test results

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

62

4.1. The Issue of False Positive and False Negative
The quantitative analysis showed weak web application
reconnaissance and vulnerability detection solutions have
caused present state-of-the-art produces both false positive
and false negative during the automated web application
vulnerability assessment. Current reconnaissance solution
had found failed to explore hidden web contents and
bypassing the web application authentication scheme,
causing many web contents not tested during the
vulnerability assessment session. In addition to that, the
weak crawling mechanism also had severely affected current
web application security scanner’s reputation with the
duplicate test results. On the other hand, the existing
vulnerability detection solutions are too conservative that
they were not capable of precisely detecting the cross-site
scripting vulnerabilities in deployed test-beds, resulted in
the generation of both false positives and false negatives.

5. CONCLUSION AND FUTURE WORK

The state-of-the-art of automated web application
vulnerability assessment had gone through the decades of
evolution, yet the experimental analysis still showed current
web application security scanners contained limitations of
false positives, false negative, and redundant results.
Presently, the state-of-the-art still heavily relies on the
conventional approaches of web reconnaissance,
vulnerability assessment and vulnerability detection with
slow pace improvements. The quantitative analysis showed
the weak reconnaissance and vulnerability detection
solutions are the primary factor the selected web application
security scanners suffer from limitations of false positive,
false negative and redundant test results. The future work
will involve improving the present state-of-the-art
limitations to reduce the false positive, false negative and
redundant results.

ACKNOWLEDGEMENTS
We would like to deliver the appreciations to OK
BlockChain Centre Sdn. Bhd. for funding this quantitative
analysis.

REFERENCES
1. A. Top, “500 Global Sites (2018),” URL Httpwww

Alexa Comtopsites, 2018.
2. 2019 edgescan vulnerability Stats report..
3. Web application vulnerabilities: statistics for 2018.

 [Online]. Available: https://www.ptsecurity.com/ww-
en/analytics/web-application-vulnerabilities-statistics-
2018/. [Accessed: 13-Mar-2019].

4. Juskaite, Loreta. “Analysis and Comparison of the
National Diagnostic Paper-Based and Online Tests.”
International Journal of Advanced Trends in Computer

Science and Engineering, vol. 8, no. 1, 2019, pp. 280–
86, doi:10.30534/ijatcse/2019/4981.12019.

5. Lefebvre, Olivier. “Mergers of Operators and
Regulation: A Game – Theoretic Approach.”
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 8, no. 1, 2019, pp. 73–
78, doi:10.30534/ijatcse/2019/1481.12019.

6. J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State
of the art: Automated black-box web application
vulnerability testing,” in Security and Privacy (SP),
2010 IEEE Symposium on, 2010, pp. 332–345.

7. F. van der Loo, “Comparison of penetration testing
tools for web applications,” PhD Thesis, Master’s
thesis, University of Radboud, Netherlands, 2011.

8. L. Suto, “Analyzing the accuracy and time costs of web
application security scanners,” San Franc. Febr., 2010.

9. N. Antunes and M. Vieira, “Benchmarking
vulnerability detection tools for web services,” in Web
Services (ICWS), 2010 IEEE International Conference
on, 2010, pp. 203–210.
https://doi.org/10.1109/ICWS.2010.76

10. N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl,
“An analysis of black-box web application security
scanners against stored SQL injection,” in Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE
Third Inernational Conference on Social Computing
(SocialCom), 2011 IEEE Third International
Conference on, 2011, pp. 1095–1101.

11. M. Parvez, P. Zavarsky, and N. Khoury, “Analysis of
effectiveness of black-box web application scanners in
detection of stored SQL injection and stored XSS
vulnerabilities,” in Internet Tech- nology and Secured
Transactions (ICITST), 2015 10th International
Conference for, 2015, pp. 186–191.

12. M. Alsaleh, N. Alomar, M. Alshreef, A. Alarifi, and
A. Al-Salman, “Performance-Based Com- parative
Assessment of Open Source Web Vulnerability
Scanners,” Secur. Commun. Netw., vol. 2017, 2017.

13. S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS)
attacks and defense mechanisms: classification and
state-of-the-art,” Int. J. Syst. Assur. Eng. Manag., vol.
8, no. 1, pp. 512–530, 2017.

14. E. Bazzoli, C. Criscione, F. Maggi, and S. Zanero,
“XSS Peeker: A Systematic Analysis of Cross-site
Scripting Vulnerability Scanners,” ArXiv Prepr.
ArXiv14104207, 2014.

15. P. Baral, “Web application scanners: a review of
related articles [Essay],” IEEE Potentials, vol. 30, no.
2, pp. 10–14, 2011.
https://doi.org/10.1109/MPOT.2010.939449

16. E. Fong and V. Okun, “Web application scanners:
definitions and functions,” in System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International
Conference on, 2007, pp. 280b–280b.

17. Z. Djuric, “A black-box testing tool for detecting SQL
injection vulnerabilities,” in Informatics and

Lim Kah Seng et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 57- 63

63

Applications (ICIA), 2013 Second International
Conference on, 2013, pp. 216–221.

18. D. E. Simos, K. Kleine, L. S. G. Ghandehari, B. Garn,
and Y. Lei, “A Combinatorial Approach to Analyzing
Cross-Site Scripting (XSS) Vulnerabilities in Web
Application Security Testing,” in IFIP International
Conference on Testing Software and Systems, 2016,
pp. 70–85.

19. L. Suto, “Analyzing the effectiveness and coverage of
Web application security scanners,” San Franc. Oct.,
2007.

20. K. Spett, “Cross-site scripting,” SPI Labs, vol. 1, pp.
1–20, 2005.

21. J. Grossman, XSS Attacks: Cross-site scripting
exploits and defense. Syngress, 2007.
https://doi.org/10.1016/B978-159749154-9/50005-6

22. Y. Hasegawa, “UTF-7 XSS cheat sheet,” Retrieved At,
p. 2, 2005.

23. M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius,
and E. Z. Yang, “mxss attacks: Attacking well-secured
web-applications by using innerhtml mutations,” in
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 777–
788.

24. K. Cardwell, Building Virtual Pentesting Labs for
Advanced Penetration Testing. Packt Pub- lishing Ltd,
2016.

25. A. Tetskyi, V. Kharchenko, and D. Uzun, “Neural
networks based choice of tools for penetra- tion testing
of web applications,” in 2018 IEEE 9th International
Conference on Dependable Systems, Services and
Technologies (DESSERT), 2018, pp. 402–405.
https://doi.org/10.1109/DESSERT.2018.8409167

26. “alexa top site - Google Scholar.” [Online]. Available:
https://scholar.google.com/scholar. [Ac- cessed: 03-
Oct-2018].

27. Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan,
“W-VST: A Testbed for Evaluating Web Vulnerability
Scanner,” in Quality Software (QSIC), 2014 14th
International Conference on, 2014, pp. 228–233.

28. Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan,
“A cost-effective approach to evaluat- ing security
vulnerability scanner,” in Network Operations and
Management Symposium (AP- NOMS), 2013 15th
Asia-Pacific, 2013, pp. 1–3.

