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ABSTRACT 
 
Software Configuration Management (SCM) is a discipline in 
software engineering for managing changes to software 
products using standard processes and tools. This article 
presents the evolution of SCM since its inception, 
highlighting the components, application to other areas, 
change management and software quality. Research and 
development in SCM are highly motivated by the problems at 
hand in software development. SCM process and activities are 
sound, guided by international standards and industry best 
practice. Commercial and proprietary tools are aplenty, and 
the underlying techniques are no longer confined to SCM. 
SCM has been applied to other areas since the turn of the 
century and change management has become a tool-oriented 
process, rather than a management-oriented process. The role 
of human in SCM has yet to be studied extensively compared 
to other areas in software engineering. Software quality is 
associated with defects and quality factors are measured 
differently based on projects and metrics. 
 
Key words: Software Configuration Management, Software 
Engineering, Software Testing, Software Quality. 
 
 
1. INTRODUCTION 
 
Software Configuration Management (SCM) can be loosely 
defined as “the ability of control and manage changes in a 
software project”. It is part of a larger field of Configuration 
Management (CM), and primarily used to control the 
evolution of software systems [1]. Formal definitions from 
IEEE, the Software Engineering Institute and ISO are: 
 

“a supporting-software life cycle process that benefits 
project management, development and maintenance 
activities, quality assurance activities, as well as the 
customers and users of the end product” [2].  
 
“discipline applying technical and administrative direction 
and surveillance to identify and document the functional 
and physical characteristics of a configuration item, control 
changes to those characteristics, record and report change  
 

 
 

processing and implementation status, and verify compliance 
with specified requirements” [3]. 

 
“a management activity that applies technical and 
administrative direction over the life cycle of a product, its 
configuration items, and related product configuration 
information. It provides identification and traceability, the 
status of achievement, and access to accurate information in 
all phases of the life cycle” [4]. 
 
This paper presents the evolution of SCM, discussing its 
components, application to other areas, change management 
and software quality. 
 
2. EVOLUTION 
 
SCM can be traced back to the aerospace industry in the 
1950s. Poorly documented engineering changes posed a 
problem to spacecraft production, and configuration 
management was applied to address it. When software 
managers faced similar problems of managing change, similar 
approach was adapted in the software development process 
[5]. 
 
2.1 1960s 
 
Only a handful of SCM-related works were carried out and 
they were heavily funded by the government. Several SCM 
concepts was introduced including management concept for 
software systems [6]; concepts for documentation and 
procedures in SCM [7]; configuration as a control mechanism 
in software development [8]; and concepts for program 
specifications [9]. It is worth mentioning that knowledge 
regarding early SCM research and systems has disappeared as 
dedicated platform such as software engineering scientific 
conferences did not exist [5]. In addition, SCM was largely 
integrated in the operating systems and documentation 
describing early SCM systems is difficult to find. 
 
2.2 1970s 
 
The Software Crisis amplified software manager’s problems 
of project cost and schedule overrun. Problems in software 
development were recognized and in 1973, software 
engineering was accepted as the solution to software 
manager’s problem.  
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The discipline of SCM was presented by Bersoff in 1978, 
outlining its components and role in the management process 
of the system life-cycle [10] and SCM was formally discussed 
in the International Conference of Software Engineering in 
1979 [11].  
 
Majority of research focused on the concepts and tools for 
SCM. These include approach for adapting CM in the 
software development life-cycle [12]; the Source Code 
Control System (SCCS) to control changes to source code 
[13]; Software Upgrade for systems generation and CM [14]; 
and Make, a program for maintaining up-to-date versions of 
programs [15]. Variants of SCCS and Make are still in use 
today. 
 
2.3 1980s 
 
Software development started embarking on programming 
large and complex software systems 
(Programming-in-Large). Early SCM systems focused on file 
control, emphasizing on versioning, building and 
composition. Works in SCM concepts continued with CM 
concepts in software life-cycle [16]; configuration control in 
software life-cycle [17]; configuration control in software 
process [18]; and system design documentation for CM and 
software control [19]. 
 
Interest in SCM modelling started to grow for example model 
for version and configuration control [20]; model for change 
request [21]; model of a CM environment [22]; framework for 
an active SCM system [23]; and framework for integrating 
CM and process management [24]. 
 
Development of tools thrived during the 1980s with with RCS 
[25]; LIFESPAN [26]; Adele [27-28]; Source Control System 
[29]; Portable Configuration Management [30]; configuration 
management toolkit [31]; and Configuration Management 
Assistant [32]. 
 
2.4 1990s 
 
As non-textual objects become common, new algorithms for 
storing and retrieving objects were needed. SCM started 
utilizing relational database and many of the SCM systems as 
we know it today came into the limelight.  
 
Concepts of programming large software systems continued 
such as CM to manage large design projects [33]; procedures 
and tools for modifying large software systems [34]; and 
Programming-in-the-Large concepts including SCM [35].  
 
General SCM concepts include user concepts of existing CM 
systems [36]; concepts of version control and CM in Ada [37]; 
effects of software development models on SCM [38]; and 
configuration approach to manage software development 
[39]. 
 

Conceptual SCM works has also attracted a lot of technical 
interest for example version control in hypertext systems [40]; 
distributed versioning on the Web [41]; lazy architecture for 
controlling change [42]; hierarchical and heuristics change 
detection [43-44]; event and lock mechanisms [45]; software 
merges using program slicing [46]; operation-based merging 
[47]; and integration algorithm [48]. 
 
Works in modelling too, has shifted to a more technical nature 
for example formal model for CM activities [49]; 
object-oriented semantic model of SCM [50]; 
process-oriented version and configuration control model 
[51]; model to support reuse [52]; model for configuration and 
version management [53]; model for managing changes to 
items of various types [54]; model for identifying and 
manipulating shared components in a software configuration 
[55]; framework for programming environments that handles 
versions and configurations [56]; and framework for process 
and version modelling [57]. 
 
Works in tools continued with HMS to support revision 
control and CM [58]; VMCM, a PCTE-based version and CM 
system [59]; change request management system [60]; 
Perforce SCM system [61]; automation of SCM in a project 
management system [62]; SRM to support software release 
management [63]; Distributed Version Control System to 
support software version control in distributed environment 
[64]; EPOS extensions for SCM [65]; APPL/A, to support 
change management [66]; structure-oriented merge tool for 
software documents [67]; and AVCS, an APL-oriented 
version control system [68]. 
 
2.5 2000s 
 
Software development moved to a more distributed and 
heterogeneous environment where web services and Global 
Software Development transformed traditional software 
development landscape into a more decentralized platform.  
 
Conceptual works continued focusing on technical aspects of 
SCM for example the use of aggregates as first-order entities 
to manage fine-grained artefacts [69]; scheme for revision 
identification of released components [70]; algorithm for 
detecting and visualizing structural changes [71]; application 
of aspect oriented programming to SCM to improve change 
control [72]; integration of collaboration into IDEs [73]; 
functional programming language for building software 
systems [74]; concern separation in the Stellation SCM 
system [75]; architecture evolution environment that 
integrates CM and architectural concepts [76]; impact of 
change to software product quality [77]; and change 
management process in the production system [78]. 
 
Works in modelling continued focusing on technical aspects 
of SCM for example semantic conflict detection for modelling 
language independent version control system [79]; model to 
support fine-grained version control [80]; formal merge 
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semantics [81]; language-specific operations for integration 
[82]; approaches for constructing version management tools 
[83]; technique for expressing fine-grained change [84]; 
mechanism for history-based change [85]; structure for 
uniform version management in component-based systems 
[86]; approach for conflict detection and resolution on models 
[87]; SCM approach for unified models [88]; 
component-based SCM model [89]; approach to modelling 
builds and class of build optimizations [90]; versioned 
hypermedia framework built on top of a SCM system [91]; 
return on investment model for in SCM [92]; and model and 
process for self-adaptation in change management [93]. 
 
Works in tools include TRICA, an integration tool coupled 
with SCM and issue tracking [94]; Palantir, a workspace 
awareness tool for SCM systems [95-96]; SCA, to detect 
semantic interference between parallel changes [97]; PARCS, 
to provide feedback to developers as to how a change affects 
the behaviour and performance of the overall application [98]; 
Odyssey-VCS, a version control system for fine-grained 
UML model elements [99]; Clever, a clone-aware SCM 
system [100]; Molhado, a hypertext versioning and SCM 
system [101-102]; Coven, an integrated programming 
environment and SCM system [103]; and MolhadoRef, a 
semantics-based SCM system [104]. 
 
2.6 2010s 
 
SCM challenges in the 2010s include component-based 
development, dynamically bound and reconfigured systems, 
and web-based systems. Conceptual works in SCM include 
evolutionary software development and software change 
[105]; vision of software evolution based on a 
feature-oriented perspectives [106]; strategy that leverages 
common SCM patterns for software development [107]; 
management of software release [108]; obstacles to CM 
success in the aerospace and defence industries [109]; CM 
concepts and principles in distributed development teams 
[110]; CM and the process of maintaining system integrity 
[111]; integration decisions by release managers [112]; and 
hidden costs in merging changes [113]. 
 

Works in modelling continued on the technical path with a 
lightweight solution to version incompatibility [114]; 
controlled delegation and authorization scheme for version 
control systems [115]; change tracking algorithm for 
measuring changes to single lines of code [116]; real-time 
integration with automatic conflict detection [117]; automatic 
technique for constructing fine-grained version control 
system from an existing SCM repository [118]; 
operation-based conflict detection [119]; versioning support 
for mashup environments [120]; framework to detect changes 
between distinct versions of source code [121]; empirical 
study of build maintenance [122]; methodology to compute 
effort and evaluate the quality of merge algorithms [123]; 
framework to scope a change impact analysis technique [124]; 
approach to automatically identify minimal number of code 
modifications [125]; and approach to improve 
multi-stakeholder configuration process [126]. 
 
Works in tools include Pluto, a build system with incremental 
building [127]; Gitless, an open-source distributed version 
control system [128]; FSTMERGE for semi-structured merge 
operations [129]; EMFStore, an operation-based Version 
Control System for models [130]; Storyteller, a version 
control system to support software developers learning 
activities in collaborative development environment [131]; 
VERCAST, a version control system for managing 
application states [132]; Cored, a collaborative development 
environment [133]; NEEDFEED, a system that models code 
relevance to personalize a developer’s change notification 
feed [134]; and CASI, a tool that informs the developers of 
changes that are taking place and the source code influenced 
by them [135]. 
 
Summarizing the evolution of SCM, research and 
development in this field are highly motivated by the 
problems at hand in software development. This is evident 
through R&D in programming large software systems in the 
1980s; object-oriented systems in the 1990s; web services in 
the 2000s; and late binding systems in the 2010s (Table 1). 
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3.  COMPONENTS 
 
There are three major aspects or components in SCM namely 
Process and Documentation, Tools, and People.  
 
3.1 Process and Documentation 
 
The concepts of SCM started as early as the 1960s with the 
ideas of configuration as a control mechanism in software 
development [8]; and concepts for program specifications [9]. 
The process underwent formalization throughout the 1970s 
with the recognition of software engineering as a new field in 
computing.  
 
In 1983 IEEE published the first standard for SCM, the IEEE 
828 Standard for Software Configuration Management Plans, 
which was revised in 1990, 1998, and 2005. The latest version 
was released in 2012 [136]. IEEE 828 establishes the 
minimum requirements for configuration management 
processes in systems and software engineering. ISO 
published a quality-related standard for SCM in 1995, the ISO 
10007 Quality Management - Guidelines for Configuration 
Management, which was revised in 2003. The latest version 
was released in 2017 [137]. ISO 10007 provides guidance on 
the use of configuration management within the organization.  
 
In addition to SCM-specific standards, there are also general 
standards related to SCM including IEEE 15939 [138]; 
ISO/IEC 15939 [139]; ISO/IEC/IEEE 24765 [140]; ISO/IEC 
12207 [141]; and ISO/IEC 15288 [142]. 
 
Based on these standards, the generic process for SCM 
involves Management and Planning; Software Configuration 
Identification; Software Configuration Control; Software 
Configuration Status Accounting; Software Configuration 
Auditing; and Software Release Management and Delivery. 
 
3.2 Tools 
 
The corpus of research in SCM has been in the modelling and 
development of tools to address the issues at hand. This has 
translated into a plethora of tools and systems for SCM. As 
such, SCM implementation has been highly dependent on 
tools as reported by [143-146].  
 
The first SCM tools emerged in the 1970s and targeted 
specific functionality for example SCSS [13] and Make [15]. 
First integrated SCM systems appeared in the 1980s, 
developed in-house and focussed mainly on file control. 
Examples include DSEE [147]; Adele [27]; and 
Aide-De-Camp [148]. Workspace and process supports were 
integrated into SCM systems throughout the 1990s and 2000s 
for example SourceSafe [149]; Sun/Forte [150]; Subversion 
[151]; CM/Synergy [152]; and ClearCase [153]. By 2010s, 
SCM systems have incorporated distributed collaboration 
capabilities for example Palantir [154]; Gitless [128]; and 
EMFStore [130]. 
 

To date, basic SCM tools are pervasive and the underlying 
techniques are no longer confined to SCM, but also in other 
areas including web protocol, services, and programming 
environments. Three types of tools that are common in SCM 
are versioning tools such as VERCAST [132], software build 
tools such as Pluto [127], and software release tools [155].  
 
3.3 People  
 
Works regarding people or human in SCM has focused on the 
process and outcome of SCM implementation for example: 
 

 To analyse collaboration activities such as conflict 
history data [156]; revision history [157]; and the 
impact of a change made by one developer to other 
developers[124]. 

 To report the result of SCM tools and approaches in 
the classroom for example the use of version control 
system in student development projects [158]; 
implementation of a distributed revision control 
system as part of the undergraduate and graduate 
curriculums [159]; and the integration of configuration 
management into the IT curriculum [160]. 

 To identify the correlation between a commit’s social 
characteristics and bugs [161]; the organization of bug 
reports into sets for effective management by 
developers [162]; and the relationship between 
developers' communication frequency and number of 
bugs [163] in debugging activities. 

 
However, the responsibilities and activities that should be 
carried out by people are mentioned in SCM standards for 
example a generic skill set for SCM is outlined in the IEEE 
Software Engineering Competency Model [164]. 
 
4. APPLICATION TO OTHER AREAS IN SOFTWARE 
ENGINEERING 
 
For the last 10 years, there have been much interest in the 
application of SCM to other areas in software engineering. 
This include Crosscutting Frameworks [165]; Scientific 
Workflow Management Systems [166]; embedded software 
systems [167]; and Product Line Engineering [168-169]. 
 
There are also interest in the integration of SCM and other 
systems for example integration of version control, security 
analysis and patching support [170]; integration of 
architectural and configuration management system [171]; 
integration of branch and merge functionalities to LibreOffice 
[172]; modification of BitKeeper, a distributed version 
control system to handle product line requirements [173]; 
change-aware process environment for system and software 
engineering [174]; integration of programming language 
technology and version control [175]; and the integration of 
SCM techniques and reference modelling to manage model 
variants [176]. 
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There are also interest in the area of Data Mining where 
SCM’s repository data is used to predict pre-release defects 
[177]; guide programmers regarding change [178]; measure 
the extent of delay [179]; understanding problems in parallel 
development [180]; and to investigate collaboration efforts in 
open source projects [181]. 
 
The trend of applying SCM processes and tools to other areas 
and systems are expected to continue in the future especially 
in the fields of Big Data, Internet of Things and 
Crowdsourcing. 
 
5. CHANGE MANAGEMENT 
 
The initial concept of change management in SCM seems to 
have disintegrated throughout the years. The management of 
change is now focused at a finer level such as source codes 
[116]; Java entities [118]; models [130]; product variants 
[182]; and documents [172]. Change management has also 
been delegated to SCM systems and tools such as Eclipse 
[183] and Git [128]. These factors has made change 
management to be a tool-oriented process, rather than a 
management-oriented process. 
 
6. SOFTWARE QUALITY 
 
Interest in software quality for SCM started as early as the 
1980s with studies of change control procedures in a Software 
Quality Control program [184]; a Software Quality 
Assurance program outlining the role of SCM in the 
implementation and maintenance phase [185]; and 
configuration management for attaining quality assurance 
[186]. 
 
To date, quality in SCM is mainly associated with source 
code defects and efforts are directed at reducing or 
eliminating them. Examples include real-time quality control 
through the analysis of code change [187]; consecutive 
changes and software defects [188]; tool for estimating 
defects and changes in software systems [189]; defect 
prediction with heterogeneous metric sets [190]; mechanism 
for presenting software defect metrics to aid analysis [191]; 
impact of product development strategy on defects [192]; and 
a decision support system to predict defects and enhance 
release management [177,193]. 
 
7. CONCLUSION 
 
This paper has presented the evolution of Software 
Configuration Management, highlighting the components, 
application to other areas, change management, and software 
quality. In a nutshell, research and development in SCM are 
highly motivated by the problems at hand in software 
development. This is evident through efforts focusing on 
programming large software systems in the 1980s, 
object-oriented paradigm in the 1990s, web services in the 
2000s, and late binding systems in the 2010s. 

The process and activities in SCM is mature with the 
publications of international standards since the 1980s and 
revised periodically. Most of the research in SCM are 
technical in nature involving SCM concepts, models and 
tools.Commercial and proprietary tools are aplenty, and the 
underlying techniques are no longer confined to SCM, but in 
other areas as well such as web services.  
 
SCM concepts and tools have been extensively applied to 
other areas since early 2000s and the trend is expected to 
continue. Change management has become a tool-oriented 
process, rather than a management-oriented process, drifting 
away from the initial purpose of SCM. The role of human in 
SCM has yet to be studied extensively compared to other 
areas in software engineering. Software quality in SCM is 
mainly associated with defects and quality factors are 
subjective and measured differently based on projects and 
metrics. 
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