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 
ABSTRACT 
 
For recommended number of bits Elliptic Curve Diffie 
Hellman (ECDH) key exchange protocol can be implemented 
in a variety of ways. But due to lack of built-in data types in 
structured programming language like C to manipulate larger 
numbers, we require the aid of a third party library that can 
accommodate and provide mathematical manipulations   of 
the larger custom built data types. To implement ECDH key 
exchange protocol for 163 bits at application level, we have 
implemented an abstract API on the top of BigDigits. This 
API enriches existing BigDigits by providing all necessary 
mathematical manipulations and variables to accommodate 
larger numbers for an efficient design of ECDH key exchange 
protocol. Using this library, standard algorithms are 
implemented efficiently as hierarchical API’s, by providing  
abstraction  for the application programmers to implement 
ECDH key exchange protocol without  knowing  the  details  
of  implementation  of  the BigDigits source code library. The 
final implementation is reusable as compact dynamic linked 
library and is language independent, therefore useable at 
application level wherever necessary. 
  
Key words: Cryptography, Elliptic Curve, API, Diffie 
Hellman, BigDigits, Key exchange. 
 
1. INTRODUCTION 
 
Key exchange protocols always play an important role in 
encryption algorithms. Two approaches are normally adopted 
to exchange keys, namely Symmetric and Asymmetric. Both 
of these differ in a sense that the former uses the same key at 
both receiver and transmission end. However, later uses two 
keys namely private and public to carry out the whole session 
of key exchange. 
In Public-key encryption also known as ‘Asymmetric 
Encryption’ normally two keys, a public key and a private key 
are incorporated. Everyone can have an access to the public 
keys but the corresponding private keys are not disclosed to 
anyone. The public key is used to encrypt the data meant for 
one user and private key is used to decrypt the data. This 
approach allows the publication of a public key and using this 
public key, only the intended communicant will be able to 
read encrypted data [9].  

 
 

 

Elliptic Curve Cryptography lies under the category of 
asymmetric encryption algorithms. In elliptic curve 
cryptography, points on elliptic curve are used to derive a 
public key i.e. a generator point in an elliptic curve group is 
agreed upon by the communicating parties. By multiplying 
this generator point by a randomly generated number, 
corresponding private key is generated. In case, the generator 
point and public keys are compromised, it is very hard 
problem for the intruder to get the private key by 
backtracking. Once computed, this public key can be utilized 
to achieve various cryptographic objectives e.g. the key 
exchange using Diffie-Hellman method.  
In mid 1970s, Diffie and Hellman put forward a practical 
public key algorithm for exchange of secret keys. Using this 
algorithm, two participants can securely exchange a secret key 
also known as session key. Using a symmetric key encryption 
algorithm, this secret key can be used in encryption of 
messages. Basically, this algorithm is restricted to key 
exchange only. The effectiveness of Diffie Hellman algorithm 
lies in the difficulty of calculating logarithms in discrete 
domain. In this scheme involvement of a third party is not 
required for key exchange [1]. Only two parties i.e. a receiver 
and a sender is involved. 

 

Figure 1:  API Structure for Implementation of ECDH 

The ECDH key exchange protocol is an extension of Diffie- 
Hellman protocol using elliptic curve cryptography. In 
Elliptic Curve Diffie-Hellman, two approaches are adopted 
together to carry out the key exchange more securely between 
the intended parties. To implement the ECDH key exchage 
protocol at application level, we have extended BigDigits [6] 
with an abstract API’s of ECDH key exchange protocol. The 
variables in the BigDigits library [6] serve as containers of 
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larger numbers and rich mathematical functions which are 
used to carry out the calculations required in the underlying 
ECDH algorithms. Implementation is performed in a 
structured programming language as a dynamically linked 
library (DLL) and which has separate interface for all the 
illustrated algorithms of the protocol. These algorithms can be 
hooked from application programs in any programming 
language that can include this DLL, as illustrated in Figure 1. 

This paper is organized as follows: Section 2 gives 
mathematical concepts of the Elliptic Curve Diffie Hellman 
key exchange protocol, Section 3 covers some overview of 
BigDigits Multiple precision arithmetic source  code  library,  
Section  4 is about the implementation details of the ECDH 
key exchange protocol using BigDigits library, Section 5 
contains the utilization of the ECDH APIs. Conclusion and 
future work are described in Section 6. 
 
2. ELLIPTIC CURVE DIFFIE HELLMAN KEY 
EXCHANGE PROTOCOL 

Elliptic Curve Diffie Hellman (ECDH) is a key exchange 
protocol that allows two communicants to exchange a shared 
secret over an insecure channel [7] [8], while each having an 
elliptic curve public-private key pair. This shared key or 
public key is used to derive another key namely session key 
that is used for encryption. To exchange keys between two 
parties by using ECDH, initially following domain parameters 
[11] are agreed upon: 

(m, f (x), a, b, tt, n, h)                (1) 
 

where a and b are the elliptic curve parameters, tt is a base 
point with coordinates (Gx, Gy) at the elliptic curve with an 
order n and f(x) is an irreducible polynomial with degree m 
[11]. In order to carry out the secure communication using 
ECDH key exchange protocol between the intended parties, a 
scenario has been discussed below based on the illustrations in 
[9]. For this, each party must have private key KSUser and a 
public key P where 

P  = KSUser × G                   (2) 
 

Let’s first party’s key pair be (KSUserA, PA) and other party’s 
key pair be (KSUserB , PB ) . Both parties mutually exchange 
public keys. Using these public keys, each user generates his 
session key as follows: 

KA = KSUserA × PB                           (3) 

KB = KSUserB × PA                           (4) 

Since Eq. 2 for User A and User B implies, 

PA  = KSUserA × G                (5) 

PB  = KSUserB × G                (6) 

Therefore Eq. 3 and Eq. 4, by substituting PA and PB from Eq. 

5 and Eq. 6, become: 

(Kx, Ky ) = KA = KSUserA × KsUserB × G (7) 

(Kx, Ky ) = KB = KSUserB × KSUserA × G (8) 

The shared key is Kx between the two users. The shared key as 
depicted by Eq. 7 and Eq. 8 above are equivalent. Public key 
is the only information about the private key that User A 
exposes. So, no user other than User A can determine User 
B’s private key, unless that user can solve the Elliptic Curve 
Discrete Logarithm problem [13]. User B’s private key is 
similarly secure. No user other than User A or User B can 
compute the shared secret, unless it solves the elliptic curve 
Diffie-Hellman problem. 

3. BIGDIGITS MULTIPLE PRECISION ARITHMETIC 
SOURCE CODE LIBRARY 

Cryptography calculations require calculations of large 
natural numbers. To carry out these calculations, a library 
BigDigits written in ANSI-C has been introduced by D.I. 
Management Services [6]. BigDigits is a library of multiple- 
precision arithmetic routines and its implementation has 
been built using the algorithms in [2] and [3] as the primary 
references. The classical multiple-precision arithmetic 
algorithms like add, subtract, multiply and divide are from 
[2].  This library also includes other functions such as 
modular multiplication, exponentiation and inversion; 
number theory function such as greatest common divisor 
and the Rabin-Miler Probabilistic Primality Test procedure 
from [4] and [5]. Rabin- Miler Probabilistic Primality Test 
procedure is used to show that a large integer is probably a 
prime [6]. Except the initial creation and final release of 
resources, this library also has a capability to handle 
memory allocation automatically   [6]. 

4. API IMPLEMENTATION 
For security purpose, elliptic curve domain parameters over 
F m must have following set of degrees of irreducible 
polynomials [11]: 

m = {113, 131, 163, 193, 233, 239, 283, 409, 571}     (9) 

But for all these numbers there are no data types except 
custom data types in any programming language to contain 
such large numbers and perform mathematical operation on 
such variables. Several modern programming languages have 
built-in support for bignums [12], others have libraries for 
floating point mathematics and arbitrary-precision integers. 
These implementations use variable length arrays of digits 
instead of storing values as fixed numbers of binary bits 
compatible with the register size of the microprocessor. We 
can use arbitrary precision in applications where we require 
precise results with very large numbers or where speed of 
arithmetic is not a limiting factor. One such library is 
BigDigits library for which attributes are listed in Table 1. It is 
a collection of C library routines with natural number types 
for calculation of large numbers. 
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Table 1: BigDigits Library 

Package / Library 
Name 

Number 
Type Language License 

BigDigits Naturals C Freeware 

 
The BigDigits library [6] files, we have used to perform our 
calculations are, 

 bigdigits.c 

 bigdigits.h 

 bigdtypes.h 
The functions that need to be implemented for Elliptic Curve 
Diffie Hellman are: 

 Field Adder Function 
 Field Multiplier Function 
 Field Inverter Function 
 EC Point Adder Function 
 EC Point Doubler Function 
 EC Point Multiplier Function 

We have selected m = 163 as Elliptic Curve Domain 
Parameter to perform our calculations. The irreducible 
polynomial over F163 is given in Eq. 10: 
 
         f (x) = x163 + x7 + x6 + x3 + 1                      (10) 

Decimal value of the above equation is calculated in a spread- 
sheet and given in Table 2. 
 
Table 2: Decimal & Hex Values of Irreducible Polynomial 

f (x) 11692013098647200000000000000000000000000000
000000.0 

f (x) 08 00000000 00000000 00000000 00000000 
 000000C9 (HEX) 

 
This large value cannot be converted in Hexadecimal value 
with ordinary calculator; therefore APICalc 2 [10] is used 
for this conversion. 

Other Elliptic Curve Domain Parameters over 2ܨ
163for the 

curve in Eq. 11, as recommended by ”Standards for Efficient 
Cryptography (SEC)” are given in Table 3. The 
corresponding equation of Elliptic Curve, irreducible 
polynomial and related domain parameters are selected from   
[11]: 

E : y2 + xy = x3 + ax2 + b                 (11) 

Scalar multiplication is the core operation involved in 
ECDH key exchange protocol. In order to carry out this 
operation we have to perform EC point addition and EC 
point code segments we have used the field 2ܨ

163  with 
irreducible polynomial as given in Eq. 10. We have 
incorporated algorithms in [14] and [15] to implement the 
ECDH key exchange protocol using BigDigits library [6]. 

To implement the functions as depicted in Figure. 2, we 
will require a minimal set of functions from BigDigits 
library [6]. The essential functions that we have imported 
are listed below: 

• mpSetEqual() Function 
• mpXorBits() Function 
• mpSetZero() Function 
• mpGetBit() Function 
• mpShiftLeft() Function 
• mpShiftRight() Function 

 
 
 
 
 
 
 

The implementation requirements are not limited to above 
listed functions. These library functions are utilized in the 
ECDH field arithmetic functions such as Field Adder, Field 
Multiplier and Field Inverter. These field arithmetic functions 
are then used to achieve the functionality of EC Point Adder 
and EC Point Doubler functions. Once implemented, EC 
Point Adder and EC Point Doubler are employed in EC Point 
Multiplier function. The implementation of four API 
functions requires the EC Point Multiplier function. 
 

 
Figure 2: ECDH Module 

Functional details and interfaces of each component 
described in Figure 2 are illustrated in the form of tables. 
Functions name, arguments and return value of the functions 
are given in the Table 4. 
DIGIT_T is a custom type for 32-bit unsigned integer. The 
ndigits is the size of array elements and for 163-bit 
implementation of ECDH key exchange protocol, we have 
selected ndigits=8. The ibit is the bit number to extract. 

Table 3: Standard Elliptic Curve Domain Parameters 
a 07 B6882CAA EFA84F95 54FF8428 BD88E246 

D2782AE2 
 
b 

07 13612DCD DCB40AAB 946BDA29 CA91F73A 
F958AFD9 

 
G 

040369 979697AB 43897789 56678956 7F78 
7A78 76A65400 435EDB42 EFAFB298 9D51FE FC 
E3C80988 F41FF883 

n 03 FFFFFFFF FFFFFFFF FFFF48AA B689C29C 
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4.1 Field Adder Function 
XOR operation is used to perform the addition of any two 
elements in the field 2ܨ

163 . This function requires the 
mpSetEqual() and mpXorBits() of the BigDigits 
library as illustrated in Table 4 to carry out the addition 
between the two elliptic curve parameters. The functional 
interfaces of this function are depicted in Table 5 and Table 8 
as Callee (the functions that are called by this function) and 
Caller (functions that call this function). 

Table 4: Function name, Argument and Return values 
Function Name Arguments Return 

Value 
Remarks 

mpSetEqual() DIGIT_T a[], 
size_t ndigits, 
const DIGIT_T b[] 

void Set
s 
a=b 

mpXorBits() DIGIT_T a[], 
const DIGIT_T b[], 
const DIGIT_T c[], 
size_t ndigits 

void Compute 
bitwise 
a=b 

mpSetZero() volatile DIGIT_T, 
a[], 
size_t ndigits 

volatile 

DIGIT_T 

Set
s 
a=0 

mpGetBit() DIGIT_T a[], 
size_t ndigits, 
size_t ibit 

int 1/0/-1 

mpShiftLeft() DIGIT_T a[], 
const DIGIT_T [b], 
size_t shift, 
size_t ndigits 

DIGIT_T Compute 
bitwise 
a=b 
<<Shift 

mpShiftRight() DIGIT_T a[], 
const DIGIT_T b[], 
size_t shift, 
size_t ndigits 

DIGIT_T Compute 
bitwise 
a=b 
>>Shift 

 
4.2 Field Multiplier Function 
Multiply function is used to achieve the functionality of 

modular multiplication. To implement this function, we 
require mpSetEqual(), mpSetZero(), 
mpGetBit(), mpXorBits(), mpShiftLeft() and 
mpShiftRight() functions of the BigDigits library. The 
callee and caller functions with required arguments and return 
values are given in Table 7 and Table 8 respectively. 

Table 5: Field Adder Callee  Functions 
Function Name Arguments Return 

Value 
Remarks 

mpSetEqual() var1,a,8 void a∈ 
F 163 

2 

mpSetEqual() var2,b,8 void b∈ 
F 163 

2 
mpXorBits() Result,var1,var2,8 void  

 
 

4.3 Field Inverter Function 
The field inverter function is implemented using 

FieldMul() and mpSetEqual() functions. This 

function is required by the ECPointAdd() and 
ECPointDoubler() functions. The interfaces of this 
function are given in Table 9 and Table 10. 

Table 6: Field Adder Caller Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointAdd() y2,y1 (y2+y1) y1,y2∈ 
F 163 

2 

ECPointAdd() x2,x1 (x2+x1) x1,x2∈ 
F 163 

2 

ECPointAdd() x3,x1 (x3+x1) x1,x3∈ 
F 163 

2 

ECPointDoubler() x1,(y1.(x1)−1) λ x1,y1∈ 
F 163 

2 

 
Table 7: Field Multiplier Callee Functions 

Function Name Arguments Retur
n 
Value 

Remark
s 

mpSetEqual(
) 

var1,a,8 void a ∈ 
F 163 

2 
mpSetEqual(
) 

var2,b,8 void b ∈ 
F 163 

2 

mpSetZero() var3,8 var3 var3=0 

mpXorBits() var3,var3,var1,8 void - 

mpGetBit() var1,8,1 1 var1(M
SB) 

mpShiftLeft
() 

var1,var1,1,8 var1 - 

mpShiftRight
() 

var2,var2,1,8 var2 - 

 
Table 8: Field Multiplier Caller Functions 

Function Name Arguments Return 
Value 

Remarks 

ECPointAdd() (y2+y1), λ x1,y1, 
 (x2+x1)−1  x2,y2 
   ∈ F 163 

2 

ECPointAdd() λ, λ λ2 λ ∈ F 163 
2 

ECPointAdd() λ 
,(x3+x1) 

 
λ(x3+x1) 

x1,x3∈ 
F 163 

2 

ECPointDoubler() y1,(x1)−1  
y1.(x1)−1 

x1,y1∈ 
F 163 

2 

ECPointDoubler() λ, λ λ2 λ ∈ F 163 
2 

ECPointDoubler() x1,x1  
x12 

 
x1∈  
F 163 

2 
ECPointDoubler() λ, x3 λ(x3) λ,x3∈ 

F 163 
2 

 
4.4 EC Point Adder Function 

This function is implemented using FieldAdder(), 
FieldMul() and FieldInv() functions discussed 
above. This function performs addition of any two points on 
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the elliptic curve in Eq. 11 such that the resultant also lies on 
the same curve. The Callee and Caller associated with this 
function are given in Table 11 and Table 12 respectively. 

Table 9: Field Inverter Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

mpSetEqual() var1,a,8 void a∈ 
F 163 
2 

FieldMul() var1,var1 var2 
2 

- 

FieldMul() var1,var2 var2 - 

FieldMul() var2,var2 var2 - 

 
Table 10: Field Inverter Caller Functions 

Function Name Arguments Return 
Value 

Remarks 

ECPointAdd() (x2+x1) (x2+x1)−1 x1,x2∈ 
F 163 

2 
ECPointDoubler() x1 x1−1  

x1∈ F 163 
2 
 

 
Table 11: EC Point Adder Callee Functions 

Function Name Arguments Return 
Value 

Remarks 

FieldAdder() y2,y1 (y2+y1) y1,y2∈ 
F 163 

2 
FieldAdder() x2,x1 (x2+x1) x1,x2∈ 

F 163 
2 

FieldAdder() x3,x1 (x3+x1) x1,x3∈ 
F 163 

2 
FieldMul() (y2+y1), λ x1,y1 

 (x2+x1)−1  x2,y2 
   ∈ F 163 

2 

FieldMul() λ, λ λ2  
λ ∈ F 163 

2 
FieldMul() λ ,(x3+x1) λ(x3+x1) x1,x3∈ 

F 163 
2 

FieldInv() (x2+x1) (x2+x1)−1 x1,x2∈ 
F 163 

2 

 
Table 12: EC Point Adder Caller Functions 

Function Name Arguments Return 
Value 

Remarks 

ECPointMul() R,S R R(x3,y3),S(x4,y4)∈ 
F 163 

2 

 
4.5 EC Point Doubler Function 

Field arithmetic functions FieldAdder(), FieldMul() 
and FieldInv() functions are used to implement this function. 
This function doubles a point on the elliptic curve in Eq. 11 
and resultant of this doubler function lies again on the same 
curve. The Callee and Caller functions details regarding this 
functions are given below in Table 13 and Table 14  
respectively. 

 

4.6 EC Point Multiplier Function 
Implementation of ECPointMul() function requires 
ECPointAdd() and ECPointDoubler() functions. 
This function is used to perform multiplication of any two 

points on the elliptic curve in Eq. 11 and resulting point lies on 
the same curve. The functional interfaces of this function are 
depicted in Table 15 and Table 16 respectively. 
 

Table 13: EC Point Doubler Callee Functions 
Function Name Arguments Return Value Remarks 
FieldAdder() x1,(y1.(x1)−1) λ x1,y1∈ 

F 163 
2 

FieldMul() y1,(x1)−1 y1.(x1)−1 x1,y1∈ 
F 163 

2 
FieldMul() λ, λ λ2 λ ∈ F 163 

2 

FieldMul() x1,x1 x12 x1∈ 
F 163 

2 
FieldMul() λ, x3 λ(x3) λ,x3∈ 

F 163 
2 

FieldInv() x1 x1−1 x1∈ 
F 163 

2 

 
Table 14: EC Point Doubler Caller Functions 

Function Name Arguments Return 
Value 

Remarks 

ECPointMul() S 2S  
S(x4,y4)∈ F 163 
                           2 

 
 

Table 15: EC Point Multiplier Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointAdd() R,S R R(x3,y3),S(x4,y4) 
          
             ∈ F 163 

  2 
 

ECPointDoubler
() 

) S 2S S(x4,y4)∈   
               F 163 

2 
  

Table 16: EC Point Multiplier Caller Functions 
Function 
Name 

Arguments Return 
Value 

Remarks 

CalculatePA() KsUserA , 
G(Gx, Gy ) 

PA G ∈ ܨଶଵ଺ଷ 

CalculatePB()  KsUserB , 
G(Gx, Gy) 

PB G ∈ ܨଶଵ଺ଷ 

KsA()  KsUserA , PB KsA -- 
KsB()  KsUserB , PA KsB -- 

4. API UTILIZATION 
In order to use ECDH key exchange protocol, a user will 
require four API functions. First, private numbers are selected 
by each user and based on these private numbers, public keys 
are generated by using API functions. These public keys are 
mutually exchanged and used in generation of session keys. 
One of the coordinates of the session keys is used for secure 
communication. The detailed functionality is depicted in 
Figure 3. 

The proposed library of ECDH key exchange protocol 
provides four API functions for application programmers. To 
use these API functions, both User A and User B will have to 
select private number KsUserA and KsUserB respectively, both 
of these numbers should be less than the order n of the base 
point (Gx,Gy). The APIs “CalculatePA()” and 
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“CalculatePB()” are used to generate the public keys for User 
A and User B respectively, from the randomly selected private 
numbers. Interfaces of each of these APIs are given Table 17 
and Table 18 respectively. 

 

 
Figure 3: ECDH Key Exchange Protocol Utilization 

 

The public keys are mutually exchanged between User A 
and User B. Using the API functions “KsA()” and “KsB()”, 
session keys are generated based on the public numbers.  

Table 17: Calculate PA Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointMul() KsUserA, G(Gx, Gy ) PA  
G ∈ ܨଶଵ଺ଷ  

The Session keys Ks(Kx, Ky ) generated at both ends  are  
same and only one of the coordinates either Kx or Ky is used 
as session key for secure communication between the two 
parties. The interfaces of these two API functions are given 
in Table 19 and Table 20 respectively. 

Table 18: Calculate PB Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointMul() KsUserB , G(Gx, Gy ) PB  
G ∈ ܨଶଵ଺ଷ  

Table 19: Calculate KsA Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointMul() KsUserA, PB KsA - 

Table 20: Calculate KsB Callee Functions 
Function Name Arguments Return 

Value 
Remarks 

ECPointMul() KsUserB , PA KsB - 

5. CONCLUSION 
In this paper, we have focused mainly on the implementation 
details of the 163-bit ECDH key exchange protocol. This key 
exchange protocol is considered to be secure for larger bit 
lengths. Therefore, using the approach illustrated in this 
paper, the ECDH key management scheme can be 
implemented for any bit length efficiently.  

The involved parameters used in computation are constant. 
However we can use random number generator to generate 
these parameters. The work done on this protocol library can 
be considered as a step towards the implementation of ECDH 
key management scheme in application programs and for 
real-time implementation in FPGA or ASIC based hardware. 
A hardware designer can use this library as a golden reference 
model and can validate the hardware implementation by 
comparing the results of ECDH key exchange protocol 
module with the software model. 
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