
Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

65


ABSTRACT

For recommended number of bits Elliptic Curve Diffie
Hellman (ECDH) key exchange protocol can be implemented
in a variety of ways. But due to lack of built-in data types in
structured programming language like C to manipulate larger
numbers, we require the aid of a third party library that can
accommodate and provide mathematical manipulations of
the larger custom built data types. To implement ECDH key
exchange protocol for 163 bits at application level, we have
implemented an abstract API on the top of BigDigits. This
API enriches existing BigDigits by providing all necessary
mathematical manipulations and variables to accommodate
larger numbers for an efficient design of ECDH key exchange
protocol. Using this library, standard algorithms are
implemented efficiently as hierarchical API’s, by providing
abstraction for the application programmers to implement
ECDH key exchange protocol without knowing the details
of implementation of the BigDigits source code library. The
final implementation is reusable as compact dynamic linked
library and is language independent, therefore useable at
application level wherever necessary.

Key words: Cryptography, Elliptic Curve, API, Diffie
Hellman, BigDigits, Key exchange.

1. INTRODUCTION

Key exchange protocols always play an important role in
encryption algorithms. Two approaches are normally adopted
to exchange keys, namely Symmetric and Asymmetric. Both
of these differ in a sense that the former uses the same key at
both receiver and transmission end. However, later uses two
keys namely private and public to carry out the whole session
of key exchange.
In Public-key encryption also known as ‘Asymmetric
Encryption’ normally two keys, a public key and a private key
are incorporated. Everyone can have an access to the public
keys but the corresponding private keys are not disclosed to
anyone. The public key is used to encrypt the data meant for
one user and private key is used to decrypt the data. This
approach allows the publication of a public key and using this
public key, only the intended communicant will be able to
read encrypted data [9].

Elliptic Curve Cryptography lies under the category of
asymmetric encryption algorithms. In elliptic curve
cryptography, points on elliptic curve are used to derive a
public key i.e. a generator point in an elliptic curve group is
agreed upon by the communicating parties. By multiplying
this generator point by a randomly generated number,
corresponding private key is generated. In case, the generator
point and public keys are compromised, it is very hard
problem for the intruder to get the private key by
backtracking. Once computed, this public key can be utilized
to achieve various cryptographic objectives e.g. the key
exchange using Diffie-Hellman method.
In mid 1970s, Diffie and Hellman put forward a practical
public key algorithm for exchange of secret keys. Using this
algorithm, two participants can securely exchange a secret key
also known as session key. Using a symmetric key encryption
algorithm, this secret key can be used in encryption of
messages. Basically, this algorithm is restricted to key
exchange only. The effectiveness of Diffie Hellman algorithm
lies in the difficulty of calculating logarithms in discrete
domain. In this scheme involvement of a third party is not
required for key exchange [1]. Only two parties i.e. a receiver
and a sender is involved.

Figure 1: API Structure for Implementation of ECDH

The ECDH key exchange protocol is an extension of Diffie-
Hellman protocol using elliptic curve cryptography. In
Elliptic Curve Diffie-Hellman, two approaches are adopted
together to carry out the key exchange more securely between
the intended parties. To implement the ECDH key exchage
protocol at application level, we have extended BigDigits [6]
with an abstract API’s of ECDH key exchange protocol. The
variables in the BigDigits library [6] serve as containers of

Implementation of 163-bit Elliptic Curve Diffie Hellman
(ECDH) Key Exchange Protocol Using BigDigits Arithmetic

Irfan Ahmad1, Muhammad Waseem2
 1Satellite Research and Development Center (SRDC), Lahore 54590, Pakistan, Email: irfahmad@gmail.com
2Satellite Research and Development Center (SRDC), Lahore 54590, Pakistan, Email: vasim98@gmail.com

 ISSN 2278-3091

Volume 5, No.4, July – August 2016
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse08542016.pdf

Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

66

larger numbers and rich mathematical functions which are
used to carry out the calculations required in the underlying
ECDH algorithms. Implementation is performed in a
structured programming language as a dynamically linked
library (DLL) and which has separate interface for all the
illustrated algorithms of the protocol. These algorithms can be
hooked from application programs in any programming
language that can include this DLL, as illustrated in Figure 1.

This paper is organized as follows: Section 2 gives
mathematical concepts of the Elliptic Curve Diffie Hellman
key exchange protocol, Section 3 covers some overview of
BigDigits Multiple precision arithmetic source code library,
Section 4 is about the implementation details of the ECDH
key exchange protocol using BigDigits library, Section 5
contains the utilization of the ECDH APIs. Conclusion and
future work are described in Section 6.

2. ELLIPTIC CURVE DIFFIE HELLMAN KEY
EXCHANGE PROTOCOL

Elliptic Curve Diffie Hellman (ECDH) is a key exchange
protocol that allows two communicants to exchange a shared
secret over an insecure channel [7] [8], while each having an
elliptic curve public-private key pair. This shared key or
public key is used to derive another key namely session key
that is used for encryption. To exchange keys between two
parties by using ECDH, initially following domain parameters
[11] are agreed upon:

(m, f (x), a, b, tt, n, h) (1)

where a and b are the elliptic curve parameters, tt is a base
point with coordinates (Gx, Gy) at the elliptic curve with an
order n and f(x) is an irreducible polynomial with degree m
[11]. In order to carry out the secure communication using
ECDH key exchange protocol between the intended parties, a
scenario has been discussed below based on the illustrations in
[9]. For this, each party must have private key KSUser and a
public key P where

P = KSUser × G (2)

Let’s first party’s key pair be (KSUserA, PA) and other party’s
key pair be (KSUserB , PB) . Both parties mutually exchange
public keys. Using these public keys, each user generates his
session key as follows:

KA = KSUserA × PB (3)

KB = KSUserB × PA (4)

Since Eq. 2 for User A and User B implies,

PA = KSUserA × G (5)

PB = KSUserB × G (6)

Therefore Eq. 3 and Eq. 4, by substituting PA and PB from Eq.

5 and Eq. 6, become:

(Kx, Ky) = KA = KSUserA × KsUserB × G (7)

(Kx, Ky) = KB = KSUserB × KSUserA × G (8)

The shared key is Kx between the two users. The shared key as
depicted by Eq. 7 and Eq. 8 above are equivalent. Public key
is the only information about the private key that User A
exposes. So, no user other than User A can determine User
B’s private key, unless that user can solve the Elliptic Curve
Discrete Logarithm problem [13]. User B’s private key is
similarly secure. No user other than User A or User B can
compute the shared secret, unless it solves the elliptic curve
Diffie-Hellman problem.

3. BIGDIGITS MULTIPLE PRECISION ARITHMETIC
SOURCE CODE LIBRARY

Cryptography calculations require calculations of large
natural numbers. To carry out these calculations, a library
BigDigits written in ANSI-C has been introduced by D.I.
Management Services [6]. BigDigits is a library of multiple-
precision arithmetic routines and its implementation has
been built using the algorithms in [2] and [3] as the primary
references. The classical multiple-precision arithmetic
algorithms like add, subtract, multiply and divide are from
[2]. This library also includes other functions such as
modular multiplication, exponentiation and inversion;
number theory function such as greatest common divisor
and the Rabin-Miler Probabilistic Primality Test procedure
from [4] and [5]. Rabin- Miler Probabilistic Primality Test
procedure is used to show that a large integer is probably a
prime [6]. Except the initial creation and final release of
resources, this library also has a capability to handle
memory allocation automatically [6].

4. API IMPLEMENTATION
For security purpose, elliptic curve domain parameters over
F m must have following set of degrees of irreducible
polynomials [11]:

m = {113, 131, 163, 193, 233, 239, 283, 409, 571} (9)

But for all these numbers there are no data types except
custom data types in any programming language to contain
such large numbers and perform mathematical operation on
such variables. Several modern programming languages have
built-in support for bignums [12], others have libraries for
floating point mathematics and arbitrary-precision integers.
These implementations use variable length arrays of digits
instead of storing values as fixed numbers of binary bits
compatible with the register size of the microprocessor. We
can use arbitrary precision in applications where we require
precise results with very large numbers or where speed of
arithmetic is not a limiting factor. One such library is
BigDigits library for which attributes are listed in Table 1. It is
a collection of C library routines with natural number types
for calculation of large numbers.

Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

67

2

Table 1: BigDigits Library

Package / Library
Name

Number
Type Language License

BigDigits Naturals C Freeware

The BigDigits library [6] files, we have used to perform our
calculations are,

 bigdigits.c

 bigdigits.h

 bigdtypes.h
The functions that need to be implemented for Elliptic Curve
Diffie Hellman are:

 Field Adder Function
 Field Multiplier Function
 Field Inverter Function
 EC Point Adder Function
 EC Point Doubler Function
 EC Point Multiplier Function

We have selected m = 163 as Elliptic Curve Domain
Parameter to perform our calculations. The irreducible
polynomial over F163 is given in Eq. 10:

 f (x) = x163 + x7 + x6 + x3 + 1 (10)

Decimal value of the above equation is calculated in a spread-
sheet and given in Table 2.

Table 2: Decimal & Hex Values of Irreducible Polynomial

f (x) 11692013098647200000000000000000000000000000
000000.0

f (x) 08 00000000 00000000 00000000 00000000
 000000C9 (HEX)

This large value cannot be converted in Hexadecimal value
with ordinary calculator; therefore APICalc 2 [10] is used
for this conversion.

Other Elliptic Curve Domain Parameters over 2ܨ
163for the

curve in Eq. 11, as recommended by ”Standards for Efficient
Cryptography (SEC)” are given in Table 3. The
corresponding equation of Elliptic Curve, irreducible
polynomial and related domain parameters are selected from
[11]:

E : y2 + xy = x3 + ax2 + b (11)

Scalar multiplication is the core operation involved in
ECDH key exchange protocol. In order to carry out this
operation we have to perform EC point addition and EC
point code segments we have used the field 2ܨ

163 with
irreducible polynomial as given in Eq. 10. We have
incorporated algorithms in [14] and [15] to implement the
ECDH key exchange protocol using BigDigits library [6].

To implement the functions as depicted in Figure. 2, we
will require a minimal set of functions from BigDigits
library [6]. The essential functions that we have imported
are listed below:

• mpSetEqual() Function
• mpXorBits() Function
• mpSetZero() Function
• mpGetBit() Function
• mpShiftLeft() Function
• mpShiftRight() Function

The implementation requirements are not limited to above
listed functions. These library functions are utilized in the
ECDH field arithmetic functions such as Field Adder, Field
Multiplier and Field Inverter. These field arithmetic functions
are then used to achieve the functionality of EC Point Adder
and EC Point Doubler functions. Once implemented, EC
Point Adder and EC Point Doubler are employed in EC Point
Multiplier function. The implementation of four API
functions requires the EC Point Multiplier function.

Figure 2: ECDH Module

Functional details and interfaces of each component
described in Figure 2 are illustrated in the form of tables.
Functions name, arguments and return value of the functions
are given in the Table 4.
DIGIT_T is a custom type for 32-bit unsigned integer. The
ndigits is the size of array elements and for 163-bit
implementation of ECDH key exchange protocol, we have
selected ndigits=8. The ibit is the bit number to extract.

Table 3: Standard Elliptic Curve Domain Parameters
a 07 B6882CAA EFA84F95 54FF8428 BD88E246

D2782AE2

b

07 13612DCD DCB40AAB 946BDA29 CA91F73A
F958AFD9

G

040369 979697AB 43897789 56678956 7F78
7A78 76A65400 435EDB42 EFAFB298 9D51FE FC
E3C80988 F41FF883

n 03 FFFFFFFF FFFFFFFF FFFF48AA B689C29C

Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

68

4.1 Field Adder Function
XOR operation is used to perform the addition of any two
elements in the field 2ܨ

163 . This function requires the
mpSetEqual() and mpXorBits() of the BigDigits
library as illustrated in Table 4 to carry out the addition
between the two elliptic curve parameters. The functional
interfaces of this function are depicted in Table 5 and Table 8
as Callee (the functions that are called by this function) and
Caller (functions that call this function).

Table 4: Function name, Argument and Return values
Function Name Arguments Return

Value
Remarks

mpSetEqual() DIGIT_T a[],
size_t ndigits,
const DIGIT_T b[]

void Set
s
a=b

mpXorBits() DIGIT_T a[],
const DIGIT_T b[],
const DIGIT_T c[],
size_t ndigits

void Compute
bitwise
a=b

mpSetZero() volatile DIGIT_T,
a[],
size_t ndigits

volatile

DIGIT_T

Set
s
a=0

mpGetBit() DIGIT_T a[],
size_t ndigits,
size_t ibit

int 1/0/-1

mpShiftLeft() DIGIT_T a[],
const DIGIT_T [b],
size_t shift,
size_t ndigits

DIGIT_T Compute
bitwise
a=b
<<Shift

mpShiftRight() DIGIT_T a[],
const DIGIT_T b[],
size_t shift,
size_t ndigits

DIGIT_T Compute
bitwise
a=b
>>Shift

4.2 Field Multiplier Function
Multiply function is used to achieve the functionality of

modular multiplication. To implement this function, we
require mpSetEqual(), mpSetZero(),
mpGetBit(), mpXorBits(), mpShiftLeft() and
mpShiftRight() functions of the BigDigits library. The
callee and caller functions with required arguments and return
values are given in Table 7 and Table 8 respectively.

Table 5: Field Adder Callee Functions
Function Name Arguments Return

Value
Remarks

mpSetEqual() var1,a,8 void a∈
F 163

2

mpSetEqual() var2,b,8 void b∈
F 163

2
mpXorBits() Result,var1,var2,8 void

4.3 Field Inverter Function
The field inverter function is implemented using

FieldMul() and mpSetEqual() functions. This

function is required by the ECPointAdd() and
ECPointDoubler() functions. The interfaces of this
function are given in Table 9 and Table 10.

Table 6: Field Adder Caller Functions
Function Name Arguments Return

Value
Remarks

ECPointAdd() y2,y1 (y2+y1) y1,y2∈
F 163

2

ECPointAdd() x2,x1 (x2+x1) x1,x2∈
F 163

2

ECPointAdd() x3,x1 (x3+x1) x1,x3∈
F 163

2

ECPointDoubler() x1,(y1.(x1)−1) λ x1,y1∈
F 163

2

Table 7: Field Multiplier Callee Functions

Function Name Arguments Retur
n
Value

Remark
s

mpSetEqual(
)

var1,a,8 void a ∈
F 163

2
mpSetEqual(
)

var2,b,8 void b ∈
F 163

2

mpSetZero() var3,8 var3 var3=0

mpXorBits() var3,var3,var1,8 void -

mpGetBit() var1,8,1 1 var1(M
SB)

mpShiftLeft
()

var1,var1,1,8 var1 -

mpShiftRight
()

var2,var2,1,8 var2 -

Table 8: Field Multiplier Caller Functions

Function Name Arguments Return
Value

Remarks

ECPointAdd() (y2+y1), λ x1,y1,
 (x2+x1)−1 x2,y2
 ∈ F 163

2

ECPointAdd() λ, λ λ2 λ ∈ F 163
2

ECPointAdd() λ
,(x3+x1)

λ(x3+x1)

x1,x3∈
F 163

2

ECPointDoubler() y1,(x1)−1
y1.(x1)−1

x1,y1∈
F 163

2

ECPointDoubler() λ, λ λ2 λ ∈ F 163
2

ECPointDoubler() x1,x1
x12

x1∈
F 163

2
ECPointDoubler() λ, x3 λ(x3) λ,x3∈

F 163
2

4.4 EC Point Adder Function

This function is implemented using FieldAdder(),
FieldMul() and FieldInv() functions discussed
above. This function performs addition of any two points on

Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

69

the elliptic curve in Eq. 11 such that the resultant also lies on
the same curve. The Callee and Caller associated with this
function are given in Table 11 and Table 12 respectively.

Table 9: Field Inverter Callee Functions
Function Name Arguments Return

Value
Remarks

mpSetEqual() var1,a,8 void a∈
F 163
2

FieldMul() var1,var1 var2
2

-

FieldMul() var1,var2 var2 -

FieldMul() var2,var2 var2 -

Table 10: Field Inverter Caller Functions

Function Name Arguments Return
Value

Remarks

ECPointAdd() (x2+x1) (x2+x1)−1 x1,x2∈
F 163

2
ECPointDoubler() x1 x1−1

x1∈ F 163
2

Table 11: EC Point Adder Callee Functions

Function Name Arguments Return
Value

Remarks

FieldAdder() y2,y1 (y2+y1) y1,y2∈
F 163

2
FieldAdder() x2,x1 (x2+x1) x1,x2∈

F 163
2

FieldAdder() x3,x1 (x3+x1) x1,x3∈
F 163

2
FieldMul() (y2+y1), λ x1,y1

 (x2+x1)−1 x2,y2
 ∈ F 163

2

FieldMul() λ, λ λ2
λ ∈ F 163

2
FieldMul() λ ,(x3+x1) λ(x3+x1) x1,x3∈

F 163
2

FieldInv() (x2+x1) (x2+x1)−1 x1,x2∈
F 163

2

Table 12: EC Point Adder Caller Functions

Function Name Arguments Return
Value

Remarks

ECPointMul() R,S R R(x3,y3),S(x4,y4)∈
F 163

2

4.5 EC Point Doubler Function

Field arithmetic functions FieldAdder(), FieldMul()
and FieldInv() functions are used to implement this function.
This function doubles a point on the elliptic curve in Eq. 11
and resultant of this doubler function lies again on the same
curve. The Callee and Caller functions details regarding this
functions are given below in Table 13 and Table 14
respectively.

4.6 EC Point Multiplier Function
Implementation of ECPointMul() function requires
ECPointAdd() and ECPointDoubler() functions.
This function is used to perform multiplication of any two

points on the elliptic curve in Eq. 11 and resulting point lies on
the same curve. The functional interfaces of this function are
depicted in Table 15 and Table 16 respectively.

Table 13: EC Point Doubler Callee Functions
Function Name Arguments Return Value Remarks
FieldAdder() x1,(y1.(x1)−1) λ x1,y1∈

F 163
2

FieldMul() y1,(x1)−1 y1.(x1)−1 x1,y1∈
F 163

2
FieldMul() λ, λ λ2 λ ∈ F 163

2

FieldMul() x1,x1 x12 x1∈
F 163

2
FieldMul() λ, x3 λ(x3) λ,x3∈

F 163
2

FieldInv() x1 x1−1 x1∈
F 163

2

Table 14: EC Point Doubler Caller Functions

Function Name Arguments Return
Value

Remarks

ECPointMul() S 2S
S(x4,y4)∈ F 163
 2

Table 15: EC Point Multiplier Callee Functions
Function Name Arguments Return

Value
Remarks

ECPointAdd() R,S R R(x3,y3),S(x4,y4)

 ∈ F 163

 2

ECPointDoubler
()

) S 2S S(x4,y4)∈
 F 163

2

Table 16: EC Point Multiplier Caller Functions
Function
Name

Arguments Return
Value

Remarks

CalculatePA() KsUserA ,
G(Gx, Gy)

PA G ∈ ܨଶଵ଺ଷ

CalculatePB() KsUserB ,
G(Gx, Gy)

PB G ∈ ܨଶଵ଺ଷ

KsA() KsUserA , PB KsA --
KsB() KsUserB , PA KsB --

4. API UTILIZATION
In order to use ECDH key exchange protocol, a user will
require four API functions. First, private numbers are selected
by each user and based on these private numbers, public keys
are generated by using API functions. These public keys are
mutually exchanged and used in generation of session keys.
One of the coordinates of the session keys is used for secure
communication. The detailed functionality is depicted in
Figure 3.

The proposed library of ECDH key exchange protocol
provides four API functions for application programmers. To
use these API functions, both User A and User B will have to
select private number KsUserA and KsUserB respectively, both
of these numbers should be less than the order n of the base
point (Gx,Gy). The APIs “CalculatePA()” and

Irfan Ahmad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 5(4), July - August 2016, 65 - 70

70

“CalculatePB()” are used to generate the public keys for User
A and User B respectively, from the randomly selected private
numbers. Interfaces of each of these APIs are given Table 17
and Table 18 respectively.

Figure 3: ECDH Key Exchange Protocol Utilization

The public keys are mutually exchanged between User A
and User B. Using the API functions “KsA()” and “KsB()”,
session keys are generated based on the public numbers.

Table 17: Calculate PA Callee Functions
Function Name Arguments Return

Value
Remarks

ECPointMul() KsUserA, G(Gx, Gy) PA
G ∈ ܨଶଵ଺ଷ

The Session keys Ks(Kx, Ky) generated at both ends are
same and only one of the coordinates either Kx or Ky is used
as session key for secure communication between the two
parties. The interfaces of these two API functions are given
in Table 19 and Table 20 respectively.

Table 18: Calculate PB Callee Functions
Function Name Arguments Return

Value
Remarks

ECPointMul() KsUserB , G(Gx, Gy) PB
G ∈ ܨଶଵ଺ଷ

Table 19: Calculate KsA Callee Functions
Function Name Arguments Return

Value
Remarks

ECPointMul() KsUserA, PB KsA -

Table 20: Calculate KsB Callee Functions
Function Name Arguments Return

Value
Remarks

ECPointMul() KsUserB , PA KsB -

5. CONCLUSION
In this paper, we have focused mainly on the implementation
details of the 163-bit ECDH key exchange protocol. This key
exchange protocol is considered to be secure for larger bit
lengths. Therefore, using the approach illustrated in this
paper, the ECDH key management scheme can be
implemented for any bit length efficiently.

The involved parameters used in computation are constant.
However we can use random number generator to generate
these parameters. The work done on this protocol library can
be considered as a step towards the implementation of ECDH
key management scheme in application programs and for
real-time implementation in FPGA or ASIC based hardware.
A hardware designer can use this library as a golden reference
model and can validate the hardware implementation by
comparing the results of ECDH key exchange protocol
module with the software model.

REFERENCES
1. Tahir Mehmood, “Security Services in Satellites”

University of Surrey, MS Thesis England: 2006.
2. Donald E. Knuth, “The Art of Computer

Programming”, Vol 2 Semi-numerical Algorithms, 3rd
edition, Addison-Wesley, 1998.

3. Alfred J. Menezes, Paul C. van Oorschot, Scott A
Vanstone, “Handbook of Applied Cryptography”, CRC
Press, 1997,

4. “Digital Signature Standard (DSS)”, FIPS PUB 186-2,
U.S. Department of Commerce/National Institute of
Standards and Technology, 2000.

5. ANSI X9.42-2003 “Public Key Cryptography for the
Financial Services Industry: Agreement of
Symmetric Keys Using Discrete Logarithm
Cryptography”, American National Standards Institute,
2003

6. DI Management, “BigDigits Multiple-Precision
Arithmetic Source code”, Version 2.2 Released 31st
July, 2008.

7. CCSDS “Next Generation Space Internet
(NGSI)End-to-End Security for Space Mission
Communications” CCSDS 733.5-O-1 (Apr 2003)

8. Roohi Banu “Satellite Encryption Report” University
of Surrey, England.

9. “Cryptography and Network Security Principles and
Practices”,William Stalling 3rd Ed.

10. “Beaconaut APICalc2”, Bignum Math, Beaconaut
Communications [11] Certicom Research, “SEC 2:
Recommended Elliptic Curve Domain

11. Parameters”, Version 1.0, September 20, 2000
12. “Cryptographic Services”, .Net Framework

Cryptography Model, MSDN Library.
13. A.M. Odlyzko,“Discrete logarithms in finite fields and

their crypto- graphic significance ”, Advances in
Cryptology - Eurocrypt ’84, Springer- Verlag (1984),
224-314.

14. Miguel Morales-Sandoval, “Hardware architecture for
elliptic curve cryptography and lossless data
compression”, a thesis presented to Computer Science
Department National Institute for Astrophysics, Optics
and Electronics, Tonantzintla, Puebla Mexico Dec. 2004

15. N. Mentens et al, “An FPGA Implementation of an
Elliptic Curve Processor over GF (2m)” Proceedings
of the 14th ACM Great Lakes symposium on VLSI 2004,
Boston, MA, USA.

