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ABSTRACT 

 

Federated Learning (FL), a new private and secure Machine 

Learning (ML) approach, faces a big difficulty when it comes 

to sharing profits with data producers. Shapley Values (SV) 

have been proposed as a fair incentive system to remedy this, 

but it is challenging to determine the SV with accuracy. 

Therefore, SV calculation is problematic since the number of 

necessary federated models rises exponentially with the 

number of data sources. As a result, an effective 

approximation approach is required. The One Round Model 

Reconstruction (OR) and Truncated Monte Carlo Shapley 

(TMC) approaches for SV approximation in FL are being 

improved and combined in this study. The proposed approach, 

Adjusted OR-TMC, combines TMC principles with OR and 

achieves a comparable level of accuracy over a shorter period. 

Because of this, Adjusted OR-TMC is the perfect OR 

replacement. The performance outcomes and underlying 

causes are covered in the study. 

 

Key words : Federated Learning; Machine Learning; One 

Round Model Reconstruction; Shapley Values; Truncated 

Monte Carlo Shapley 

 

1. INTRODUCTION 

 

A Machine Learning (ML) approach called Federated 

Learning (FL) overcomes the current privacy issues with data 

submission to a central database [1]. Data contributors 

(clients) in the FL scenario train their local models on their 

systems and only provide them after they are ready. They use 

local updates rather than sending the raw data to the main 

server. The global model on the server is then trained based 

on these local updates [2], [3]. A reward mechanism should be 

created to ensure that the benefits are distributed equally 

among the contributors and to encourage new organisations to 

join to completely adopt FL [4]. The Shapley Values (SV) is 

 
 

a just profit-sharing system for this kind of collaboration, 

according to the [5]. On the other hand, exact SV computation 

is exponentially challenging, and current SV approximation 

approaches still incur large time costs [6]. To make SV the 

default measure of values for data, we need more effective SV 

approximation approaches. Investigating current 

approximation approaches to develop a more effective 

strategy is the aim of this study. In this study, we enhance  

 One-Round Model Reconstruct (OR), a cutting-edge SV 

approximation approach for FL, employing the Truncated 

Monte Carlo Shapley approach (TMC- Shapley) [7]–[9]. The 

performance of the proposed approaches will be compared 

with that of the original OR approach in terms of speed as well 

as accuracy. The new combined approach's implementation is 

anticipated to run considerably faster than the previous OR 

approaches while deviating slightly more from the accurately 

calculated SV. The results of the experiment are examined and 

thoroughly described. An FL testbed will be created to realise 

the idea of the SV in the context of horizontal-supervised FL. 

The PyTorch package and the Python programming language 

will be used because these are common FL research tools. The 

calculations will be performed in a GPU-enabled 

environment. The dataset will be the MNIST dataset, a freely 

available benchmark for ML that enables researchers to 

quickly test image classification systems [10].  

To gain a thorough understanding of the terms used in this 

study, we shall see the background in Section 2. The related 

work to the context of this study is presented in Section 3. In 

Section 4, outlining of the current and proposed approaches is 

presented. The type of metrics employed, together with 

parameters and dataset descriptions, are covered in Section 5. 

A thorough result analysis for the proposed approaches is 

provided in Section 6. The paper's conclusion is provided in 

Section 7, and the limits of the proposed approaches are 

covered in Section 8, along with suggestions for further 

advancements. 
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2. BACKGROUND 

 

The background necessary to fully comprehend the concepts 

used in this study will be covered in this section.  

 

2.1 Figures and Tables 

 

The vast amount of data needed to train an ML model comes 

from a variety of sources. These data sources are commonly 

divided into the real world [4]. Stronger data sharing and 

storage laws, such as the General Data Protection Regulation 

of the European Union [11] and China's Cybersecurity Law 

[12], have been established as a result of growing concerns 

about data security and individual privacy. These 

laws increase the threshold for data integration even more, 

making it more difficult to apply ML to solve problems across 

various organisations. FL is one approach to dealing with 

these problems. In a typical ML, the server gathers all client 

data and uses it to train a model [4]. This involves enormous 

requirements and hazards that may or may not comply with 

existing data laws. But in the FL, every data contributor has 

their local training dataset, which the server never acquires. 

Instead, each client roughly updates their local copy of the 

server's current global model and sends it to the server. A new 

global model is then created by the server using all of the local 

updates, and it is then delivered to the contributors as an 

"updated global model". These local updates may be removed 

after implementation because they aim to enhance the current 

global model [13]. The FL approach does away with the need 

for acquiring and storing raw data as a result. It makes it 

possible for organisations to work together on the creation of 

an ML model without having to share private raw data.  

 

Based on dataset properties, Yang et al.'s [4] classify FL into 

three main classes. When datasets from multiple data sources 

correspond to have the same features, this scenario is referred 

to as horizontal FL (1st class) which is used in this study. For 

instance, data from different bankers may be included in two 

banks, but these data may share the same features like the 

amount of money, the date of deposit, and so on. Multiples 

organization may have multiple features in the vertical FL (2nd 

class). Examples include a bank and a telecoms company 

operating in the same space. They might each hold 

information about the same user, X, but it might be about 

different aspects of his life. For example, the bank might know 

about X's bank deposit, while the telecoms company might 

know about the lengths of his calls. The third FL method, 

known as Federated Transfer Learning (FTL), uses datasets 

with different features. 

 

2.2 Federated Learning Framework 

 

The framework suggested by McMahan et al. [13] serves as 

the foundation for the FL approach shown here. A simple FL 

approach is shown in Figure 1. Take into account that there 

are n clients (data contributors), each of whom has a dataset 

Di, where 𝑖 ∈ 𝑁 = 1,2, … . 𝑛 . Each global iteration 𝑡 ∈

0,1, … … , 𝑇 − 1 involves three steps. 

 The server sends all clients the global model 𝑀𝑡as 

demonstrated by the yellow arrows in Figure 1.  

 Using client i as an example, each client updates the 

local sub-model 𝑀𝑖
𝑡 and sends it back to the server. 

This is demonstrated by the green arrows in Figure 1. 

 To create a 𝑀𝑡+1, the server aggregates all of the sub-

models {𝑀𝑖
𝑡|𝑖 ∈ 𝑁}  using the Federated Average 

(FedAvg) approach [9]: 

 

𝑀𝑡+1 = ∑
|𝐷𝑖|

∑ |𝐷𝑖|𝑛
𝑖=1

. 𝑀𝑖
𝑡𝑛

𝑖=1                                      (1) 

 

The scenario examined by McMahan et al. [13] involves 100 

clients, all of which are mobile phone users who may not 

always be able to connect to the server. As a result, only a 

portion of the clients will receive a global model in step 1, 

train on their local datasets in step 2, and then the global model 

will train on their local datasets in step 3. Our 

hypothesis assumes that all clients will take part in all global 

iterations because there are organisations that are actively 

trying to develop a shared model. The three steps above will 

therefore be perfectly followed in this study. 

 
Figure 1: Federated learning framework 

 

2.3 Distribution of Profit and the Shapley Value 

 

Similar to typical ML, an FL model needs a large amount of 

high-quality data to operate at a high performance [14], [15]. 

This could mean persuading additional organisations with 

high-quality data to join the data federation [16]. Data 

contributors cover the costs of data collection, processing, 

training, and local server updates. It may be seen as 

compensation and an incentive to join the federation to have 

access to the final global model [17]. However, data 

contributors might anticipate receiving compensation for a 

piece of the profit if the trained global model is purchased and 

used by parties outside the federation. Furthermore, from a 

game-theoretic perspective, it has been determined that 

offering incentives is the most practicable option to gather 

high-quality data [18]. An incentive scheme will help to 

increase both the quantity and the quality of data if all data 

contributors are rational and cooperative [19]. This 
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demonstrates how challenging it is to distribute profits among 

contributors fairly. The value of each data contributor's 

contribution will decide how much they are compensated 

(Figure 2). The same settings as in Section 2.2 may be used to 

produce the Contribution Index (CI). 

 

Assume that there are n data contributors, each with a dataset 

Di, and that N, which holds all the indices of data contributors, 

has the value 𝑖 ∈ 𝑁 = 1,2, … . 𝑛. A standard test set T and an 

approach A is available for learning. The union of contributors' 

datasets for any subset S is denoted as DS. The model created 

by training DS on approach A is represented by MS(A), and for 

ease of use, its performance score on the standard test set T is 

denoted by U(M, T) or U(M). The black box U also accepts a 

model and produces a score. In the context of DN, A, and T, 

the CI of Di is denoted by (A, DN, T, Di) or ∅𝑖. The CI must 

have specific desirable features, as listed in [5], [7], [8], to 

guarantee a reasonable and fair distribution. These consist of: 

 

 Group Rationality: According to the formula 

𝑈(𝑀𝑁) = 𝑈(𝑀∅) + ∑ 𝑈(𝑀𝑖)
𝑛
𝑖  the value of the 

federation's datasets is distributed fairly among the 

data contributors. The model's value, 𝑈(𝑀∅ ), was 

chosen at random. 

 Symmetry: The CI of two datasets Di and Dj should 

be equal if they both contribute equally to the 

performance score under approach A on a test set T. 

In other words, if 𝑆 ⊆ 𝑁{𝑖, 𝑗}  = 𝑈(𝑀𝑆∪{i} ) 

=𝑈(𝑀𝑆∪{j}), then ∅𝑖 = ∅𝑗. 

 Dummy: The CI of a dataset Dj should be 0 if it has 

no impact on the performance of a model trained on 

a test set T using approach A. In other words, if 

𝑈(𝑀𝑆∪{i} = 𝑈(𝑀𝑆), ∀𝑆 ⊆ 𝑁{𝑖} then ∅𝑖 = 0. 

 Additivity: If Di adds values ∅𝑖(𝑇1) and ∅𝑖(𝑇2) to 

the test set T's predictions of test points 1 and 2, then 

Di's value in predicting both test points is ∅𝑖(𝑇1) + 

∅𝑖(𝑇2). 

 

It is important to note that any function matching the 

aforementioned properties must be consistent with the 

cooperative game theory notion of the SV. The SV, which 

here stands for the CI, is used to share the entire gains from a 

player alliance. The following formula for SV is derived from 

the aforementioned properties [5], [7], [8], [20]: 

∅𝑖 = ∑
𝑈(𝑀𝑆∪{𝑖})−𝑈(𝑀𝑆)

𝑛.(𝑛−1
|𝑆| )

𝑆⊆𝑁{𝑖}                                                  (2)                                                                                                                    

 

where |S| denotes the subset S's cardinality. The estimated 

marginal contribution of the dataset Di can be deduced from 

the equation on the right-hand side of Equation (2). This is 

accomplished by calculating the average marginal 

contributions across all possibilities for the orders in which the 

datasets could enter the federation. The denominator accounts 

for the probability of this occurrence, and the numerator 

indicates the marginal contribution of Di when it comes after 

the subset of dataset S. 

 
Figure 2: Distribution of profit and the SV 

 

3. RELATED WORKS 

 

A computational cost issue arises when using SV to distribute 

profits [5]. Calculating the performance of all 2n models MS in 

which 𝑆 ⊆ 𝑁  is required to accurately approximate the SV 

using Equation (2). To do this, train (2n-1) additional federated 

models. Since the data contributors must compute and send 

local updates for the training of the "extra" models, which are 

all models other than MN, this is computationally expensive. 

An easier option is to use an approach that can accurately 

predict the SV. For example, Ghorbani and Zou [7] suggested 

that the SV value computations do not need to be exact. U(M) 

only approximates the trained model's actual performance on 

the test distribution because the test set T is finite. As a result, 

SV evaluation up to the intrinsic noise in U(M) is adequate, 

and this evaluation may be done by observing the evolution of 

the performance of the same model over bootstrap samples of 

the test set.  

 

The researchers suggest two approaches to calculate the SV 

value of each data point in a typical ML. The marginal 

contributions of each data point are calculated for each 

permutation using the first approach, TMC-Shapley, and the 

results are averaged over all permutations to determine the 

approximated SV. When a predetermined threshold is 

achieved, truncation is used to minimise computations by 

assigning zero marginal contribution to the remaining data. 

Less than 3n2 models must be trained to calculate the SV, 

according to the researchers, who contend that 3n Monte Carlo 

samples are adequate for convergence. The FL does not lend 

itself well to the second approach. Jia et al.'s [5] exploration 

of the SV in a typical ML by proposing a Group Testing-

Based (GTB) approach to approximate the SV. This approach 

includes repeatedly choosing a random group of "users"—the 

individuals who provide data in a typical ML setting—and 

assessing the model's performance score using data from the 

chosen group of users. Song et al. [8] addressed the FL 

scenario and introduced two novel approaches, which aim to 

decrease the time and communication overheads required to 

build each of the additional model's MS,∀𝑆 ⊆ 𝑁.  

 

By utilising the local updates made when MN was being 

trained, the suggested approaches, OR and Multi-Round 

Model Reconstruction (MR), approximate the additional 

models. As a result, it requires less time and communication 
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to do extra training. The primary distinction between the two 

approaches is that OR approximates models during all global 

iterations and only assesses them to determine SV later, 

whereas MR approximates and evaluates models throughout 

each global iteration, as well as computing the marginal 

contribution for each global iteration. Therefore, MR requires 

more processing than OR. Song et al. [8] discovered that OR 

is the most time-efficient approach when compared to MR, 

federated TMC-Shapley, and federated GTB.  

 

Additionally, OR is somewhat more accurate than MR for data 

that are not noisy, but MR is most accurate for data that 

include noisy labels or features. Even though OR calculates 

SV more quickly than MR, federated TMC-Shapley, and 

federated GTB, it still needs to build and evaluate additional 

(2n-1) models, which can be costly computationally when the 

number of data contributors, model complexity, or test set size 

increases. Combining federated TMC-Shapley with OR may 

be one solution to this problem to improve the trade-off 

between speed and accuracy. This study tries to look at the 

viability and efficiency of this strategy. 

 

4. METHADOLOGY 

 

The various approaches to approximate SV are the variables 

used in this study. These approaches use FedAvg and 

Minibatch Stochastic Gradient Descent for supervised 

learning tasks. In Exact Federated Shapley, the ClientUpdate 

portion (Algorithm 1) will only be displayed once because it 

is the same for all approaches. 

 

4.1  Exact Federated Shapley 

 

Equation (2) is used in Algorithm 1 to calculate the SV of data 

contributors. The approach involves developing federated 

models on various contributor subsets S, which are then 

assessed using a standard test set. 

 

Algorithm 1: Exact Federated Shapley (FedAvg) 

START 

1. initialize {𝑀𝑆
0}. 𝑤ℎ𝑒𝑟𝑒 𝑆 ⊆ 𝑁 = {1,2, … … … . . , 𝑛}; 

2. for each subset 𝑆 ⊆ 𝑁 do 

3. for each round 𝑡 = 0,1,2, … … . , 𝑇 − 1 do 

4.  for each client 𝑖 ∈ 𝑆 in parallel do 

5.   Send  𝑀𝑡to all n clients 

6.   𝑀𝑆,𝑖
𝑡+1 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑖, 𝑀𝑡) 

7.   ∆𝑆,𝑖
𝑡+1 ←  𝑀𝑆,𝑖

𝑡 − 𝑀𝑆
𝑡 

8.  end for 

9.  𝑀𝑆
𝑡+1  ←  𝑀𝑆

𝑡 + ∑
|𝐷𝑖|

∑ |𝐷𝑖|𝑖∈𝑆
. ∆𝑆,𝑖

𝑡+1
𝑖∈𝑆   

10. end for 

11. end for 

12. for i=1,2,……,n do 

13. ∅𝑖 = ∑
1

𝑛.(
𝑛−1
|𝑆|

)
[𝑈(𝑀𝑆∪{𝑖}

𝑡 ) − 𝑈(𝑀𝑆
𝑡)]𝑆⊆𝑁{𝑖} ;  

14. end for 

15. return 𝑀𝑇and ∅1, ∅2, … . . , ∅𝑛; 

16. ClientUpdate(i, M): 

17. for each local epoch e = 1,2,…..,E  do 

18. for batch 𝑏 ∈ 𝐵 do 

19.  𝑀 ← 𝑀 − 𝜂𝛻𝐿(𝑀; 𝑏)  

20. end for 

21. end for 

22. return M to the server 

END 

 

4.2 One-Round Model Reconstruction (OR) 

 

By utilising the local updates created during the training of the 

primary federated model MN [8], OR (Algorithm 2) intends to 

approximate the models MS. This avoids the need for data 

contributors to execute additional computations or 

communicate with the server to train additional models. 

    

Algorithm 2: OR 

START 

1. initialize 𝑀0, {𝑀𝑆
0̃}, 𝑤ℎ𝑒𝑟𝑒 𝑆 ⊆ 𝑁 = {1, 2, … 𝑛}; 

2. for each round 𝑡 = 0,1,2, … . , 𝑇 − 1  do 

3. Send 𝑀𝑡 to all n clients; 

4. 𝑀𝑖
𝑡  ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑖, 𝑀𝑡);  

5. ∆𝑖
𝑡+1 ←  𝑀𝑖

𝑡 − 𝑀𝑡;  
6. 𝑀𝑡+1  ←  𝑀𝑡 + ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑛
𝑖=1

. ∆𝑡
𝑡+1;𝑛

𝑖=1   

7. for each subset 𝑆 ⊆ 𝑁 do 

8.  𝑀𝑆
𝑡+1  ← ̃ (𝑀𝑆

�̃�) + ∑
|𝐷𝑖|

∑ |𝐷𝑖|𝑖∈𝑆
. ∆𝑖

𝑡+1;𝑖∈𝑆   

9. end for 

10. end for 

11. for i=1,2,….,n do 

12. ∅𝑖 = ∑
1

𝑛.(
𝑛−1
|𝑆|

)
[𝑈(𝑀𝑆∪{𝑖}

𝑡 )̃ − 𝑈(𝑀𝑆
�̃�)]𝑆⊆𝑁{𝑖} ;  

13. end for 

14. return 𝑀𝑇 and ∅1, ∅2, … . . , ∅𝑛; 
END 
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It should be noticed that the federated model is roughly 

approximated by 𝑀𝑠
�̃� (Algorithm 2). A subset of S users served 

as the training data for 𝑀𝑠
𝑡 (Algorithm 1). The approximation 

stage involves updating the 𝑀𝑠
�̃�  with gradients ∆𝑖

𝑡+1 that are 

computed with respect to 𝑀𝑡. Mathematically, 𝑀𝑁
�̃�   = 𝑀𝑡, and 

since 𝑀∅
𝑡  is the randomly initialised model and is never 

updated, the loop in steps 7-8 only takes (2n -2) iterations. If 

there are many global iterations, the computing cost will be 

high. But a closer look at the mathematics underpinning this 

approach shows that: 

 

𝑀𝑠
�̃� = ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑖∈𝑆
. 𝑀{𝑖}

�̃�
𝑖∈𝑆                                                           (3)                                                                                                                                         

 

As seen in Algorithm 3, the approach is changed to reflect this 

idea. We can choose to update n models 𝑀{𝑖}
�̃�  and then 

calculate 𝑀𝑆
�̃� as a weighted average at the end (steps 11–12) 

rather than updating all approximated models 𝑀𝑆
�̃� with each 

global iteration. 

 

Algorithm 3: Adjusted OR 

START 

1. initialize 𝑀0, {𝑀𝑆
0̃}, 𝑤ℎ𝑒𝑟𝑒 𝑆 ⊆ 𝑁 = {1, 2, … 𝑛}; 

2. for each round 𝑡 = 0,1,2, … . , 𝑇 − 1  do 

3. Send 𝑀𝑡 to all n clients; 

4. 𝑀𝑖
𝑡  ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑖, 𝑀𝑡);  

5. ∆𝑖
𝑡+1 ←  𝑀𝑖

𝑡 − 𝑀𝑡;  
6. 𝑀𝑡+1  ←  𝑀𝑡 + ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑛
𝑖=1

. ∆𝑡
𝑡+1;𝑛

𝑖=1   

7. for each 𝑖 ∈ 𝑁={1,2,…., n} do 

8.  𝑀{𝑖}
𝑡+1  ← ̃ 𝑀{𝑖}

�̃�   + ∆𝑖
𝑡+1;  

9. end for 

10. end for 

11. for each subset 𝑆 ⊆ 𝑁 do 

12. 
𝑀𝑠

�̃�  ←  ∑
|𝐷𝑖|

∑ |𝐷𝑖|𝑖∈𝑆
. 𝑀{𝑖}

�̃�
𝑖∈𝑆 ;

̃
  

13. end for 

14. for i = 1,2,……,n do 

15. ∅𝑖 = ∑
1

𝑛.(
𝑛−1
|𝑆|

)
[𝑈(𝑀𝑆∪{𝑖}

𝑡 )̃ − 𝑈(𝑀𝑆
�̃�)]𝑆⊆𝑁{𝑖} ;   

16. end for 

17. return 𝑀𝑇 and ∅1, ∅2, … . . , ∅𝑛; 
END 

 

 

Both OR and Adjusted OR are likely to have low accuracy for 

noisy data. According to [8], compared to TMC-Shapley, 

GTB, and MR, OR has the lowest accuracy of data when there 

are different levels of noise in features or labels. One 

interpretation is that local updates from training the main 

federated model 𝑀𝑁  could be used to estimate the model 

reconstruction of 𝑀𝑠
�̃�. Because 𝑀𝑁 may have gradients that are 

noticeably different from 𝑀𝑆 due to variations in noise levels 

among datasets, 𝐷𝑖, these approximations for noised instances 

are worse than for non-noised instances. 

 

4.3 OR-TMC Combinations 

 

The current OR approach needs rebuilding and evaluating 2n 

models, which makes calculating a model's accuracy time-

consuming, especially when working with a large test set. The 

TMC approach can be used to lower the computing costs in 

steps 11 through 15 of the Adjusted OR approach (Algorithm 

3). This concept is incorporated into the OR-TMC approach 

(Algorithm 4), where steps 1–10 are the same as the Adjusted 

OR approach and TMC is used in steps 11–26. A random 

permutation of datasets is sampled, and while moving from 

one dataset to the next, the marginal contribution of each new 

dataset is calculated. The average of all the determined 

marginal contributions is used to approximate SV after this 

process is repeated through several permutations. The TMC 

error is the average percentage change in ∅𝑖 following a TMC 

iteration m, below which the loop terminates. The while loop 

continues to run until specific convergence requirements are 

satisfied. The termination process is described in steps 17 

through 18. As the size of subset S grows, the marginal 

contribution of the following dataset diminishes. 

Consequently, when the performance rating is 𝑣𝑗−1
𝑚 , then we 

can set the remaining datasets for that permutation to 0 if m is 

within a predetermined range of 𝑈(𝑀𝑁); this range is referred 

to as the "performance tolerance". One percent of 𝑈(𝑀𝑁) is 

the performance tolerance provided. It should be noted that all 

of the 𝑈(𝑀𝑆
𝑇) ̃  calculated will be retained in between 

permutations so that, if the subsequent permutations have the 

same S as in step 20, a value may be quickly retrieved in step 

22. 

 

Algorithm 4: OR TMC 

START 

1. initialize 𝑀0, {𝑀𝑆
0},̃ where 𝑆 ⊆ 𝑁 = {1,2, … … , 𝑛}; 

2. for each round 𝑡 = 0,1,2, … . , 𝑇 − 1  do 

3. Send 𝑀𝑡 to all n clients; 

4. 𝑀𝑖
𝑡  ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑖, 𝑀𝑡);  

5. ∆𝑖
𝑡+1 ←  𝑀𝑖

𝑡 − 𝑀𝑡;  

6. 𝑀𝑡+1  ←  𝑀𝑡 + ∑
|𝐷𝑖|

∑ |𝐷𝑖|𝑛
𝑖=1

. ∆𝑡
𝑡+1;𝑛

𝑖=1   

7. for each 𝑖 ∈ 𝑁 = {1,2,….,n} do 

8.  𝑀{𝑖}
𝑡+1  ← ̃ 𝑀{𝑖}

�̃�   + ∆𝑖
𝑡+1;  

9. end for 

10. end for 

11. initialize m = 0 

12. while Convergence criteria are not met do 
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13.  m = m+1 

14. 𝜋𝑚: 𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝐷𝑖  

15. 𝑣0
𝑚  ← 𝑈(𝑀∅

0)̃   

16. for 𝑗 ∈ {1,2, … … . , 𝑛} do 

17. if | 𝑈(𝑀𝑁) − 𝑣𝑗−1
𝑚 | <

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝒕𝒉𝒆𝒏 

18.  𝑣𝑗
𝑚 = 𝑣𝑗−1

𝑚   

19. else 

20.  𝑆 ← {𝜋𝑚[1], 𝜋𝑚[2], … . , 𝜋𝑚[𝑗]}  

21.  𝑀𝑆
�̃�  ←  ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑖𝜖𝑆
𝑖𝜖𝑆 . 𝑀{𝑖}

�̃�      

22.  𝑣𝑗
𝑚  ← 𝑈(𝑀𝑆

𝑇)̃   

23. end if 

24.  ∅𝜋𝑚[𝑗] ←
𝑚−1

𝑚
∅𝜋𝑚[𝑗] +

1

𝑚
(𝑣𝑗

𝑚 − 𝑣𝑗−1
𝑚 )  

25. end for 

26. end while 

27. return 𝑀𝑇 and ∅1, ∅2, … . . , ∅𝑛; 

END 

 

TMC-Shapley has poor accuracy and a slow convergence rate, 

according to [8]. This may be because the initial dataset only 

makes a little contribution to each permutation, which is why 

𝑣1
𝑡  is such a large amount. The fact that [7] calculate SV for 

individual data points, which is substantially less than SV for 

datasets, as we do in our study, maybe the reason why they 

obtain convergence after just 3n permutations. Giving each 

dataset an equal chance of becoming the first element of the 

permutation is a small tweak that may be made to ensure that 

OR-TMC converges more quickly. The process for doing this 

is shown in Algorithm 5. 

 

Algorithm 5: Adjusted OR TMC 

START 

1. initialize 𝑀0, {𝑀𝑆
0},̃ where 𝑆 ⊆ 𝑁 = {1,2, … … , 𝑛}; 

2. for each round 𝑡 = 0,1,2, … . , 𝑇 − 1  do 

3. Send 𝑀𝑡 to all n clients; 

4. 𝑀𝑖
𝑡  ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑖, 𝑀𝑡);  

5. ∆𝑖
𝑡+1 ←  𝑀𝑖

𝑡 − 𝑀𝑡;  
6. 𝑀𝑡+1  ←  𝑀𝑡 + ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑛
𝑖=1

. ∆𝑡
𝑡+1;𝑛

𝑖=1   

7. for each 𝑖 ∈ 𝑁={1,2,….,n} do 

8.  𝑀{𝑖}
𝑡+1  ← ̃ 𝑀{𝑖}

�̃�   + ∆𝑖
𝑡+1;    

9. end for 

10. end for 

11. initialize m = 0 

12. while Convergence criteria are not met do 

13. m = m+1 

14. for 𝑘 ∈ 𝑁 = {1,2, … . . , 𝑛} 𝒅𝒐 

15.  𝜋𝑚,𝑘: 𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝐷𝑖 , 

the first element must be k 

16.  𝑣0
𝑚,𝑘  ← 𝑈(𝑀∅

0)̃   

17.  for 𝑗 ∈ {1,2, … … . , 𝑛} do 

18.  if | 𝑈(𝑀𝑁) − 𝑣𝑗−1
𝑚,𝑘| <

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝒕𝒉𝒆𝒏 

19.   𝑣𝑗
𝑚,𝑘 = 𝑣𝑗−1

𝑚,𝑘
  

20.  else 

21.   𝑆 ← {𝜋𝑚,𝑘[1], 𝜋𝑚,𝑘[2], … . , 𝜋𝑚,𝑘[𝑗]}  
22.   

𝑀𝑆
�̃�  ←  ∑

|𝐷𝑖|

∑ |𝐷𝑖|𝑖𝜖𝑆
𝑖𝜖𝑆 . 𝑀{𝑖}

�̃�     
̃

  

23.   𝑣𝑗
𝑚,𝑘  ← 𝑈(𝑀𝑆

𝑇)̃   

24.  end if 

25.   ∅𝜋𝑚,𝑘[𝑗] ←
𝑛.(𝑚−1)+𝑘−1

𝑛.(𝑚−1)+𝑘
∅𝜋𝑚[𝑗] +

1

𝑛.(𝑚−1)+𝑘
(𝑣𝑗

𝑚,𝑘 − 𝑣𝑗−1
𝑚,𝑘)  

26.  end for 

27. end for 

28. end while 

29. return 𝑀𝑇 and ∅1, ∅2, … . . , ∅𝑛; 
END 

 

As compared to Algorithm 4's single permutation, each TMC 

iteration m now has n permutations. The OR-TMC's 

convergence criterion and performance tolerance are still in 

place. The quantity of TMC permutations required for 

Adjusted OR-TMC convergence may be calculated by 

multiplying the number of TMC iterations by n. 

 

5. EXPERIMENTAL SETUP 

 

The tests are run on Google Colab using a computer with an 

AMD E1-6010 APU running at 1.35 GHz and 4 GB of RAM. 

The key Python packages used to create the scripts are 

PyTorch 1.13.1 and NumPy 1.24.2. 

 

5.1 Dataset Description  

 

The studies are conducted using the standard MNIST dataset 

for handwritten black-and-white digits [10]. For pre-

processing data, [8] approach is applied. 10,000 test images 

and 60,000 training images are included in the MNIST dataset. 

Both the training and test sets may contain a different number 

of images with different labels, i.e., the number of images with 

the digit "1" may be different from that of images with the 

digit "2". There are 5420 images for each digit after we 

arbitrarily remove some images from the training set. The test 

data is unchanged. [8] were used to simulate real-world 

situations where the data volumes, distribution, and quality 

differed amongst different data providers. The training set is 

split into 5 datasets (for n = 5) using 5 different approaches, 

as can be seen below. Each of the five datasets is randomly 

split into two smaller datasets when the number of data 

contributors, n, exceeds 10. 
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 Case 1 (Same Size and Distribution): The size and 

number of images for each digit are the same across 

all datasets Di. In this example, each dataset 

comprises 1084 training images for each digit. 

 

 Case 2 (Same Dataset Size with Different 

Distribution): Although the training images are not 

divided equally for each digit, each dataset Di is the 

same size. "(2i-2)" makes up 40% of Di, "(2i-1)" 

makes up another 40%, and the remaining eight 

digits divide the remaining 20% equally. D1 contains 

271 images for every other digit in addition to 4336 

images of "0," "1," and other digits. 

 

 Case 3 (Different Dataset Sizes with the Same 

Distribution): The training set is split into five equal 

parts at random, with the following data size ratios: 

2:3:4:5:6. The proportion of the digits in each dataset 

Di is the same. D1 contains 5420 images, with 542 

images for each digit, whereas D2 includes 8130 

images, with 813 images for every digit. 

 

 Case 4 (Same Dataset Size with Noised Data on 

Label): First, we divided the training set similarly to 

Case 1's division. After then, the labels of the different 

datasets are changed at random by 0%, 5%, 10%, 15%, 

and 20%. According to this, 20% of the labels on the 

training images in D5 are inaccurate, compared to 5% 

of the labels on the training images in D2. 

 

 Case 5 (Same Dataset Size with Noised Data on 

Feature): First, we divided the training set similarly 

to Case 1's division. Then, 0-4x Gaussian noise is 

created, where 0x denotes the feature without noise. 

This is done by changing the standard deviation of the 

normal distribution. The different levels of noise are 

then added to each image in each dataset, resulting in 

D1 having the least amount of noise and D5 having the 

most. Figure 3 shows how noise affects images. 

 

Figure 3: Various gaussian noise levels in the images 

 

 

5.2 Parameters  

 

Except for Exact Federated Shapley, all approaches were 

subjected to the same controlled FL parameters. A 2-layer 

fully connected Multilayer Perceptron with ReLU as the 

activation function served as the federated model in the tests. 

Examples of the controlled parameters are shown in Table 1. 

It is important to note that because there is no additional 

communication beyond what was done during the training of 

the primary model MN, it is believed that the communication 

cost will be minimal. In addition, instead of using separate 

server and client machines as would be the case in real-world 

applications, all computations were carried out on a single 

system. 

 

Table 1: Controlled Parameters 

Controlled 

Parameter 

Symbol Value 

Number of Local 

Epochs 

E 10 

Minibatch Size B 64 

Learning Rate η 0.01 

Communication Cost  0 

 

5.3 Evaluation Metrics 

 

Two factors—Time and SV—are used for evaluation:  

 

 Time: It is the length of time it takes for computing 

SV to execute, not including the time it takes to train 

the primary model MN or save the data in files. 

 

 SV: Their performance is assessed using the 

accuracy function, which gauges how well the model 

predicts test sets. Different approaches are used to 

calculate the SV, and the results are compared. All 

estimated SV are first "standardised" by scaling them 

by a common factor so that ∑ ∅𝑖 = 1𝑛
𝑖=1  to compare 

the SV accuracy. This is appropriate because profit 

sharing will probably depend on the proportion of 

contributions. Let's use the notation ∅∗ <=
∅1

∗ , ∅2
∗ , … … … . . , ∅𝑛

∗ >  for the standardised SV 

vectors produced by the Exact Federated Shapley 

and ∅ =< ∅1, ∅2, … … … . , ∅𝑛 >  for the 

approximation approaches.  The following is a 

definition of the Euclidean Distance [8]. 

              𝐷𝐸 = √∑ (∅𝑖
∗ − ∅𝑖)2𝑛

𝑖=1                              (4) 

                                                                                                                                  

We'll use the Average Euclidean Distance (AED) and the 

Maximum Euclidean Distance (MED) from numerous 

iterations of the same procedure to compare it to other 

approaches. The AED and the MED will both have lower 

values as a result of a more precise approximation approach. 

 

6. RESULTS ANALYSIS 

 

The outcomes of the approaches suggested in Section 4 will 

be briefly discussed in this section. 
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6.1 OR vs Adjusted OR 

 

Since both approaches provide results that are theoretically 

similar in terms of accuracy, the comparison between the two 

approaches is exclusively based on the time needed to 

calculate the SV. Both approaches are run five times for each 

dataset creation case described in Section 5.1.1, and the 

average execution time is calculated from these iterations. The 

average duration for the five examples is also computed. 

 

6.1.1 Run for 5 Clients and 5 Global Iterations 

 

When there are five data contributors (n) and five global 

iterations (T), Figure 4 shows how long it takes to run the OR 

and Adjusted OR approaches. The vertical axis displays the 

time in seconds, and the horizontal axis displays the dataset 

divided according to Section 5.1.1. The OR 

approach regularly outperforms the Adjusted OR approach in 

terms of time, as seen in Figure 4. It is, on average, 3.0s or 

8.3% quicker than the OR approach. 

 

 

 
Figure 4: Time spent performing an OR vs. an Adjusted OR 

with n = 5 and T = 5 

 

 

6.1.2 Run for 5 Clients and 10 Global Iterations 

 

Figure 5 shows how long the OR and Adjusted OR approaches 

took for n = 5 and T = 10. In terms of time, Adjusted OR 

performs better than OR, just like the prior trial. Adjusted OR 

is 8.5% faster than OR on average. The average time spent 

increases by 6.3% for Adjusted OR and 6.5% for OR when the 

number of global iterations is doubled from Section 6.1.1 to 

6.1.2. This is an interesting finding. The reason for this is that 

whereas Adjusted OR updates only n approximate 

approaches, OR updates 2n-2 (or 30 for n = 5) approximate 

approaches per global iteration. As a result, it is anticipated 

that Adjusted OR will outperform OR in terms of time savings 

as the number of global iterations rises. 

 

 
Figure 5: Time spent performing an OR vs. an Adjusted OR 

with n = 5 and T = 10 

 

6.1.3 Run for 10 Clients and 5 Global Iterations 

 

The amount of time needed to run the OR and Adjusted OR 

approaches with 10 data contributors and 5 global iterations is 

shown in Figure 6. It should be noticed that each of the five 

datasets 𝐷𝑖 created from Section 5.1.1 for the n = 5 

configuration is randomly split into two smaller datasets to 

construct the datasets for the 10 clients. 

 

 
Figure 6: Time spent performing an OR vs. an Adjusted OR 

with n = 10 and T = 5 

 

Adjusted OR saves 63.01716s, or 5.1%, of runtime when 

compared to OR. From Section 6.1.1, this is a substantial 

departure. The time difference between Adjusted OR and OR 

increases by more than 20 times when the number of clients 

doubles. Given the time savings of updating n approximation 

approaches rather than 2n-2, this is to be expected. As n grows, 

more approaches will be used in each global iteration. Figure 

7 shows the typical amount of time needed for OR and 

Adjusted OR when different parameters are used. Runtime is 

barely affected when the number of global iterations T is 

doubled while n stays the same. The runtime for both 

approaches grows by more than 30 times when T is kept 

constant while the number of data contributors is increased. 

Adjusted OR streamlines the model reconstruction process, 

however, it ignores the fundamental problem of evaluating 2n 

models to calculate SV. 
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Figure 7: Time spent on average for OR vs. Adjusted OR with 

different parameters 

 

6.2 Adjusted OR vs OR-TMC vs Adjusted OR-TMC 

 

In the following sections, experiments with lower and higher 

n are conducted to see how n affects how much time OR-TMC 

and Adjusted OR-TMC can save. 

 

6.2.1 Run for 5 Clients and 10 Global Iterations 

 

For each dataset split, the Exact Federated Shapley approach 

is run three times in Section 5.1.1. The benchmark is the 

average of the standardised SV over the three runs. The 

Euclidean Distance is computed in Section 5.1.3 with 

reference to this standard. The OR-TMC and Adjusted OR-

TMC approximation approaches are run five times for each 

dataset configuration, and the average runtime, MED, and 

AED are calculated. The TMC error and performance 

tolerance for OR-TMC and Adjusted OR-TMC are both 

configured at 1%. The resulting Euclidean Distance will be 

less than 0.11 if an approximation approach generates a 

standardised SV that deviates by 0.05 or less from the values 

produced by Exact Federated Shapley. Since at least one 

standardised ∅𝑖  differs by more than 0.05 from the value 

determined by Exact Federated Shapley, a Euclidean Distance 

higher than 0.11 denotes this. 

 

6.2.1.1 Case 1: Same Size and Distribution 

 

The average amount of time needed by approximation 

approaches to calculate the SV of data sources is shown in 

Figure 8 (Left). Adjusted OR-TMC, which is 2.5% faster than 

Adjusted OR, has the smallest runtime. The longest runtime is 

OR-TMC (14.3% longer than Adjusted OR). 

 

 
 

Figure 8: The average time required to execute various 

approximation approaches for the n = 5 and T = 10 values 

(Left). 

 

The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

Large numbers of permutations are necessary for OR-TMC to 

converge, most likely for the reasons outlined in Section 4.3. 

OR-TMC requires more than 2.5 times as many permutations 

to converge as Adjusted OR-TMC. TMC's OR behaviour is 

also erratic: in one test run (not shown here), convergence 

occurs after just two permutations. The permutations' 

randomization may be to blame for this. When the first two 

permutations are comparable (with a 1/120 chance for n = 5), 

the convergence criteria are immediately satisfied. Contrary to 

Section 6.2.2.1, OR-TMC and Adjusted OR-TMC are not 

noticeably faster than Adjusted OR for n = 5. This is due to 

the lower number of n.  Almost all of 𝑈(𝑀𝑆
𝑇)̃ , 𝑆 ⊆ 𝑁  have 

been determined after 40+ permutations (there are only 32 

such subsets S for n = 5), therefore the runtime of these two 

approaches is comparable to that of Adjusted OR. 

Nevertheless, the time needed to compute SV has been 

decreased by more than 65x using all three approximation 

approaches. Exact Federated Shapley, which is not depicted 

on the graph, typically completes in 2772 seconds. The MED 

and AED for the three approximation approaches are shown 

in Figure 9. The performance of Adjusted OR is superior to 

OR, with approximately 1.5x the AED and 2x MED. The least 

effective approach is OR-TMC; its AED and MED are 

approximately four times those of OR, respectively. 
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Figure 9: MED and AED for different approximation 

approaches with n = 5 and T = 10 

 

6.2.1.2 Case 2: Same Dataset Size with Different 

Distribution 

 

The average runtimes of the three approaches are comparable 

in this situation, with OR-TMC running slightly slower than 

Adjusted OR-TMC (2.6% more time) and OR-TMC running 

slightly quicker (0.4% less time) than Adjusted OR (see 

Figure 10, left). It's interesting to see that compared to Section 

6.2.2.1, OR-TMC and Adjusted OR-TMC require 

considerably fewer permutations to converge. In particular, 

OR-TMC runs slower than Adjusted OR-TMC but needs on 

average 5.6 fewer permutations to converge (see Figure 10, 

right). These findings highlight how different amounts of time 

are spent on different permutations. The three approaches 

perform similarly in terms of AED, with Adjusted OR-TMC 

being the most accurate for both measures (as shown in Figure 

11). The MED is still shown by OR-TMC. 

 
Figure 10: The average time required to execute various 

approximation approaches for the n = 5 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 11: MED and AED for different approximation 

approaches with n = 5 and T = 10 

 

6.2.1.3 Case 3: Different Dataset Sizes with the Same 

Distribution 

 

Figure 12 resembles Figure 8 in appearance. While OR-TMC 

takes slightly longer (11.9% more time) than Adjusted OR, 

Adjusted OR-TMC runs slightly faster (1.4% less time) than 

Adjusted OR. Additionally, compared to Adjusted OR-TMC, 

OR-TMC requires 2.5 times as many permutations to 

converge. Adjusted OR-TMC performs somewhat better on 

average than Adjusted OR in terms of accuracy, but slightly 

worse in terms of MED. The least accurate of the three 

approaches is still OR-TMC. Overall, compared to Section 

6.2.2.1, all three approaches in this scenario had much lower 

accuracy. In particular Figure 13, Adjusted OR and OR-TMC 

demonstrate AED that are 4 times and approximately 2 times 

bigger, respectively, than the equivalent approaches in Section 

6.2.2.1. The AED for the approach in Section 6.2.2.1 is almost 

6 times greater for Adjusted OR. The FedAvg and OR 

approaches' workings may be able to explain this behaviour. 

By averaging the local changes clients have received, FedAvg 

simply approximates the gradients to the global approach. 

Exact Federated Shapley may not be as "precise" as it first 

appears as a result of the SV created deviating from the trend 

discovered by the Non-Federated approach. The average 

standardised SV generated using different approaches is 

compared in Table 2. It should be noted that the Exact Non-

Federated Shapley results are the average of five runs that 

differ from the others in that they assume 𝑈(𝑀∅)=0  rather 

than equals the value of a model with a randomly initialised 

value. However, this has little impact on the SV trend. 
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Figure 12: The average time required to execute various 

approximation approaches for the n = 5 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 13: MED and AED for different approximation 

approaches with n = 5 and T = 10 

 

Table 2:The Standardised SV Average was Calculated using 

Different Approaches for n = 5 and T=10 

 

Approximati

on 

Approaches 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 

Exact Non-

Federated 

Shapley 

0.191

8 

0.196

6 

0.201

7 

0.204

4 

20.55 

Exact 

Federated 

Shapley 

0.200

1 

0.198

8 

0.200

4 

0.201

3 

0.200

1 

Adjusted OR 0.149

9 

0.140

0 

0.210

0 

0.230

1 

0.250

0 

OR-TMC 0.155

5 

0.140

1 

0.233

3 

0.180

0 

0.270

0 

Adjusted OR-

TMC 

0.140

0 

0.140

0 

0.200

9 

0.250

0 

0.244

4 

 

Exact Non-Federated Shapley's trend fits expectations for 

datasets with a range of sizes but a uniform distribution. 

Particularly, ∅𝑖  should strictly rise as i grow. For Exact 

Federated Shapley, which produces SV values that are 

extremely close, this is not the case. This indicates that a more 

difficult work that necessitates a greater amount of data to 

obtain the same level of accuracy would be better suitable for 

analysis and that the MNIST challenge may be too 

straightforward for dataset size to have a meaningful impact. 

In Section 8, this subject is covered in further detail. 

Interestingly, while magnifying the trend, Adjusted OR shows 

higher consistency with the trend seen in Exact Non-Federated 

Shapley than in Exact Federated Shapley. The model 

approximation 𝑀𝑆
�̃� , as described in Section 4.2, may be to 

blame for this. Similar to OR-TMC, Adjusted OR-TMC has 

the same trend as Adjusted OR, which is to be expected given 

that both approaches are intended to imitate the (Adjusted) OR 

approach. Results using OR-TMC, however, seem to be a little 

sporadic.  

 

6.2.1.4 Case 4: Same Dataset Size with Noised Data on 

Label  

 

According to Figure 14, Adjusted OR-TMC and Adjusted OR 

runtimes are practically identical (Adjusted OR-TMC only 

takes 0.8% longer), but OR-TMC is still the slowest of the 

three, taking 11.5% longer to complete. Although Adjusted 

OR-TMC takes significantly longer to converge in this 

situation than it does in Sections 6.2.2.1, 6.2.2.2, and 6.2.2.3, 

OR-TMC converges with fewer permutations than Adjusted 

OR-TMC. This might be because different amounts of label 

noise result in noticeably varying data quality. 

 

 
Figure 14: The average time required to execute various 

approximation approaches for the n = 5 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

Figure 15 illustrates how poorly all three approximation 

approaches perform in this scenario in terms of accuracy. If 

the AED is greater than 0.4, at least one data contributor has a 

calculated SV value that is at least 0.18 off the real value. As 

a result, the data contributor will either gain or lose 18% of the 

overall profit awarded relative to what they contribute if any 
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of the approximation approaches are utilised for profit 

distribution. On both criteria, Adjusted OR-TMC performs 

marginally better than Adjusted OR, although the difference 

is negligible. While Adjusted OR's AED is slightly higher 

(1.5% greater), OR-TMC's MED is the highest. 

 

 
Figure 15: MED and AED for different approximation 

approaches with n = 5 and T = 10 

 

After examining the average standardised SV produced by the 

different approaches in Table 3, we can see that, except for an 

anomaly at ∅1 , the trend presented by Exact Federated 

Shapley substantially resembles the declining trend displayed 

by Exact Non-Federated Shapley. While the values decline 

dramatically, the other approximation approaches likewise 

show the same tendency of decline. The accuracy of the 

estimated models 𝑀𝑆
�̃� is decreased by including local updates 

from the fifth data contributor, as shown by the fact that all 

three approximation approaches have negative values for ∅5. 

Since the fifth data contributor still considerably adds to the 

federated model, as seen by the value of 0.1989 obtained by 

Exact Federated Shapley, these approaches do not accurately 

reflect the true value for this scenario. 

 

Table 3: The Standardised SV Average Generated Using a 

Variety of Approaches n = 5 and T = 10. 

 

Approximati

on 

Approaches 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 

Exact Non-

Federated 

Shapley 

0.201

2 

0.202

2 

0.200

7 

0.180

0 

0.190

0 

Exact 

Federated 

Shapley 

0.199

9 

0.201

9 

0.200

1 

0.190

1 

0.196

6 

Adjusted OR 0.440

0 

0.350

0 

0.150

1 

0.025

5 

-

0.031

5 

OR-TMC 0.470

0 

0.360

1 

0.160

0 

0.027

7 

-

0.028

8 

Adjusted OR-

TMC 

0.460

0 

0.362

2 

0.170

2 

0.023

4 

-

0.024

3 

6.2.1.5 Case 5: Same Dataset Size with Noised Data on 

Feature  

 

Similar to Section 6.2.2.4, Adjusted OR-TMC takes about the 

same amount of time to compute as Adjusted OR (Figure 16). 

However, OR-TMC requires more permutations to converge 

than Adjusted OR-TMC and has the longest running duration 

(10.4% longer than Adjusted OR). Figure 17, which shows the 

shortest MED and AED, shows that Adjusted OR-TMC 

obtains the maximum accuracy. The accuracy of OR-TMC, on 

the other hand, is the worst. All three approximation 

approaches for this situation have accuracy that is inferior to 

that in Section 6.2.2.1 but superior to that in Section 6.2.2.4, 

which is similar to Section 6.2.2.3. This could suggest that 

these approaches do better when there is noise in the data 

features rather than the labels. A more thorough review of the 

derived numbers in Table 4, however, points in a different 

direction. 

 

 
Figure 16: The average time required to execute various 

approximation approaches for the n = 5 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 17: MED and AED for different approximation 

approaches with n = 5 and T = 10 
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Table 4: The Average Standardised SV Produced by Various 

Approaches for n = 5 and T=10 

 

Approximation 

Approaches 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 

Exact Non-

Federated 

Shapley 

0.2026 0.2024 0.2014 0.1988 0.1921 

Exact Federated 

Shapley 

0.2022 0.2033 0.2007 0.1982 0.1932 

Adjusted OR 0.1111 0.1319 0.2399 0.2633 0.2400 

OR-TMC 0.0976 0.1341 0.2400 0.2700 0.2416 

Adjusted OR-

TMC 

0.1256 0.1201 0.2398 0.2601 0.2418 

 

Different datasets were employed in the experiment, with 𝐷𝑖  

having the lowest level of noise and 𝐷5  having the most. 

Except for an outlier at ∅1 for Exact Federated Shapley, both 

Exact Non-Federated Shapley and Exact Federated Shapley 

exhibit a declining trend in the quality of datasets 𝐷𝑖  as i grow. 

However, this pattern is not at all present in the findings 

produced by the three approximation approaches. Instead, 

they exhibit a rise in ∅𝑖as i rises from 1 to 4, followed by a fall 

when i = 5. This behaviour could be explained by the OR 

model reconstruction step's failure to precisely approximate 

𝑀𝑆 , as was previously mentioned in Section 4.2. All three 

approximation approaches greatly speed up the calculation of 

SV when compared to Exact Federated Shapley, which is in 

line with the findings in Section 6.2.2. However, there are 

differences in the approaches' accuracy, with OR-TMC and 

Adjusted OR-TMC regularly performing the poorest. For this 

value of n, OR-TMC fails to reduce runtime compared to 

Adjusted OR due to the higher number of permutations 

needed to converge. Due to the fewer data contributors, 

Adjusted OR-TMC also shortens runtime compared to 

Adjusted OR, but the difference is not as notable as in Section 

6.2.2. The OR-based reconstruction approach has a flaw that 

should be highlighted, and the low accuracy of all three 

approximation approaches on noisy data points to a future 

study topic. 

 

6.2.2 Run for 10 Clients and 10 Global Iterations 

 

A large amount of time required to execute Exact Federated 

Shapley for n = 10 and the time limit allowed on Google 

Colab prevent the experimental achievement of the SV values 

for benchmarking the accuracy of approximation approaches. 

Instead, the average standardised SV produced by Exact 

Federated Shapley for n = 5 is divided by 2 to determine the 

accuracy benchmarking results for n = 10. This is because it 

is assumed that the two smaller datasets will equally share the 

SV of the large dataset when each of the five large datasets is 

randomly split into two equal smaller datasets. For each 

dataset configuration, the three approximation approaches —

Adjusted OR, OR-TMC, and Adjusted OR-TMC—are run 

five times each. The average run time, MED, and AED are 

then calculated. Both OR-TMC and Adjusted OR-TMC have 

the same 1% TMC error and 1% performance tolerance. If all 

standardised SV produced by an approximation approach 

differ by 0.05 from the values produced by Exact Federated 

Shapley, the Euclidean Distance is 0.16. Therefore, a 

Euclidean Distance larger than 0.16 denotes at least one 

standardised ∅𝑖  differs by more than 0.05 from the value 

produced using Exact Federated Shapley. This is a significant 

error for n = 10 since the SV for each data source is smaller. 

 

6.2.2.1 Case 1: Same Size and Distribution 

 

The average amount of time needed by approximation 

approaches to calculate the SV of data sources is shown in 

Figure 18 (Left). Compared to training the primary federated, 

the adjusted OR takes more than 1100 seconds to finish. 

Model MN is therefore not workable. Adjusted OR-TMC is 

45.5% faster than Adjusted OR, while OR-TMC has a runtime 

that is 36.7% faster than Adjusted OR (Figure 18). This is 

because fewer models are being looked at. Using adjusted OR, 

the performance score 𝑈(𝑀𝑆
𝑇)̃  for 1024 is determined. With 

1024 subsets S, OR-TMC and Adjusted OR-TMC evaluate a 

lot fewer models. Figure 18 (Right) shows how many TMC 

permutations are necessary for OR-TMC and Adjusted OR-

TMC to converge.  

 

As stated in Section 4.3, this value is obtained for Adjusted 

OR-TMC by multiplying the number of TMC iterations by n. 

OR-TMC requires more than twice as many permutations to 

converge than Adjusted OR-TMC does. The runtime of OR-

TMC is not twice as long as that of Adjusted OR-TMC since 

the amount of time spent on each permutation varies. To stop 

the calculations for a permutation once the performance 

tolerance is reached. Additionally, each permutation is created 

at random, and the 𝑈(𝑀𝑆
𝑇)̃  is kept in between permutations 

(see Section 4.3). The computation times for two permutations 

with more identical portions, such as (1, 2, 3, 4, 5) and (1, 2, 

3, 5, 4), can be shorter because the majority of the time is spent 

evaluating the accuracy of the estimated models.  

 

The theoretical maximum number of models that OR-TMC 

may evaluate is about 1260, although many of these 

evaluations are skipped because of termination inside a 

permutation and information saving in between permutations. 

Because of this, OR-TMC is still much faster than Adjusted 

OR-TMC even though it is slower than Adjusted OR. 

However, OR-TMC performs the worst on both metrics, with 

more than double the AED and MED as the other two 

approaches. Figure 19 indicates that Adjusted OR and 

Adjusted OR-TMC exhibit identical accuracy. This means 

that the worst-case and average performance of OR-TMC is 

low. 
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Figure 18: The average time required to execute various 

approximation approaches for the n = 10 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 19: MED and AED for different approximation 

approaches with n = 10 and T = 10 

 

6.2.2.2 Case 2: Same Dataset Size with Different 

Distribution 

 

In this case, OR-TMC is the shortest, saving 56.0% over 

Adjusted OR (Figure 20). Adjusted OR-TMC performs 14.6% 

better than Adjusted OR. It is important to note how quickly 

OR-TMC converges in this dataset example. Similar to the 

example in Section 6.2.2.1 with n = 5, OR-TMC converges 

after about 50 fewer iterations than Adjusted OR-TMC. On 

both criteria, OR-TMC continues to have the lowest accuracy 

(Figure 21). Adjusted OR-TMC performs admirably on 

average, with an AED that is only 0.0031 larger than that of 

Adjusted OR. The MED of Adjusted OR-TMC is 0.017 

greater than that of Adjusted OR. 

 
Figure 20: The average time required to execute various 

approximation approaches for the n = 10 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 21: MED and AED for different approximation 

approaches with n = 10 and T = 10 

 

6.2.2.3 Case 3: Different Dataset Sizes with the Same 

Distribution 

 

Both OR-TMC and Adjusted OR-TMC runtimes are 

comparable, and Adjusted OR-TMC is around 40% faster than 

OR (Figure 22). OR-TMC requires approximately twice as 

many variations to converge as Adjusted OR-TMC. With 

AEDs ranging from 1.6x to 4.3x larger than the similar 

procedures in Section 6.2.2.1, all three approaches outperform 

the case for the same distribution and dataset size in that 

section. The Adjusted OR and Adjusted OR-TMC perform 

equally well on each criterion. With an AED 35.5% higher 

than Adjusted OR and a MED 53.4% higher, OR-TMC 

performs the worst (Figure 23). 
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Figure 22: The average time required to execute various 

approximation approaches for the n = 10 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 23: MED and AED for different approximation 

approaches with n = 10 and T = 10 

 

6.2.2.4 Case 4: Same Dataset Size with Noised Data on 

Label 

 

The runtime of OR-TMC is 36.4% less than that of Adjusted 

OR. On the other hand, Adjusted OR converges after about 20 

more permutations and is 6.9% faster than OR-TMC (Figure 

24). OR-TMC and Adjusted OR-TMC perform better on both 

criteria than Adjusted OR to boost accuracy. AED greater than 

0.25 (Figure 25), which denotes that a data contributor's 

computed SV differs from the real value by more than 0.05, 

indicates that all three approximation approaches perform 

poorly in this case. The average standardised SV generated 

using different approaches is compared in Table 5. Exact 

Federated Shapley values are derived from the values for n = 

5 rather than being empirically determined. 

 
Figure 24: The average time required to execute various 

approximation approaches for the n = 10 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 

 
Figure 25: MED and AED for different approximation 

approaches with n = 10 and T = 10 

 

 

Table 5:  Average Standardised SV was created at n = 10 and T = 10. 

 

Approximation 

Approaches 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 ∅𝟔 ∅𝟕 ∅𝟖 ∅𝟗 ∅𝟏𝟎 

Exact Federated 0.0998 0.0998 0.1008 0.1008 0.1002 0.0996 0.0996 0.0996 0.0995 0.0995 

Adjusted OR 0.2166 0.2188 0.1688 0.1666 0.0912 0.0955 0.0336 0.0244 -0.0066 -0.0088 

OR-TMC 0.2103 0.2133 0.1566 0.1644 0.0882 0.1055 0.0399 0.0227 0.0031 -0.0033 

Adjusted OR-TMC 0.2177 0.2551 0.1681 0.1709 0.0927 0.0966 0.0355 0.0322 -0.0116 0.0066 
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The SV of data contributors should show a falling trend, as 

seen in the row for the Exact Federated Shapley because the 

degree of noise for 𝐷𝑖  grows by 2 for every rise in i. The SV 

of the approximation approaches similarly displays the 

expected downward trend, but it is larger than the actual one, 

with negative values for ∅9  and ∅10 . This suggests that 

including local updates from the ninth and tenth data 

contributors reduces the 𝑀𝑆
�̃�  estimated models' accuracy. 

However, as each of the contributors with indexes, 9 and 10 

still contributes 0.0994, or nearly 10% of the overall 

contribution, these negative numbers do not adequately 

represent the true values of these contributors. The 

discrepancy is most likely due to the OR reconstruction 

approach. The study of [8], who demonstrate that OR is 

sensitive to noised labels but does not evaluate the values 

acquired, is supplemented by this intriguing result. 

 

6.2.2.5 Case 5: Same Dataset Size with Noised Data on 

Feature 

 

Both OR-TMC and Adjusted OR-TMC runtimes are 

comparable, and Adjusted OR-TMC is around 37% faster than 

OR (Figure 26). In comparison to OR-TMC, adjusted OR-

TMC executes faster on average and converges more quickly. 

The three approximation approaches perform better in terms 

of accuracy than cases 1 and 2 (Sections 6.2.2.1 and 6.2.2.2), 

but not as well as cases 3 and 4 (Sections 6.2.2.3 and  

 

6.2.2.4). With an AED 15.8% less than Adjusted OR, 

Adjusted OR-TMC outperforms Adjusted OR, whereas OR-

TMC exceeds Adjusted OR on both metrics shown in Figure 

27. The SV values produced do not follow the anticipated 

downward pattern (Table 6), although the three approaches 

are more accurate in this case than in case 4. Similar to the 

results in Table 6 for n = 5, they do not follow the projected 

pattern, and this is probably because of the OR reconstruction 

stage. Therefore, noised feature contexts are inappropriate for 

OR-based approaches. The table extends the findings of [8], 

who demonstrate the sensitivity of OR to noisy characteristics 

but do not assess the values generated. 

 

 
Figure 26: The average time required to execute various 

approximation approaches for the n = 10 and T = 10 values 

(Left). The number of TMC permutations required for the 

convergence of OR-TMC and Adjusted OR-TMC (Right). 

 
Figure 27: MED and AED for different approximation 

approaches with n = 10 and T = 10 

 

 

Table 6.:Average Standardised SV was created at n = 10 and T = 10. 

 

Approximation 

Approaches 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 ∅𝟔 ∅𝟕 ∅𝟖 ∅𝟗 ∅𝟏𝟎 

Exact Federated 0.1012 0.1012 0.1019 0.1019 0.1006 0.1006 0.0999 0.0999 0.0976 0.0976 

Adjusted OR 0.0786 0.0699 0.0766 0.0866 0.1188 0.1166 0.1188 0.1187 0.1155 0.1022 

OR-TMC 0.0722 0.0688 0.0833 0.0891 0.1155 0.1256 0.1066 0.1228 0.1126 0.1033 

Adjusted OR-

TMC 

0.0815 0.0788 0.0788 0.0901 0.1099 0.1111 0.1188 0.1177 0.1109 0.1055 

The runtime of Adjusted OR is significantly shortened when 

n = 10 by OR-TMC and Adjusted OR-TMC. They do this 

because it is more practical, especially when there are several 

data contributors. OR-TMC and Adjusted OR-TMC's 

accuracy is frequently lower than Adjusted OR's because they 

use the TMC approximation to shorten the time required by 

Adjusted OR. Despite this, Adjusted OR-TMC consistently 

outperforms OR-TMC in accuracy and is comparable to 

Adjusted OR. Therefore, Adjusted OR-TMC is a superior 

option to Adjusted OR, which is superior to the current OR 

approach. In other circumstances, all three approaches still fall 

short, as in cases 4 and 5, when the computed SV does not 

even follow the expected trend. This highlights how the OR-

based reconstruction approach has limitations when working 

with noisy data. 
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7. CONCLUSION 

 

This study's goal is to improve the existing SV approximation 

approaches in a horizontal FL situation. The suggested 

Adjusted OR approach maintains the same results while 

cutting computation time by 5-8%. The OR-TMC approach 

uses the TMC notion to further optimise runtime, and 

Adjusted OR-TMC is made to converge more quickly in the 

business FL environment. OR-TMC and Adjusted OR-TMC 

can save runtime by up to 40% for n = 10 contributors.  

 

However, their capacity to save time is less noticeable when 

there are only 5 contributors. For both n = 5 and n = 10, 

Adjusted OR-TMC delivers accuracy that is comparable to 

Adjusted OR while consuming less time. On the other hand, 

OR-TMC has the worst accuracy. As a result, adjusted OR-

TMC is a more logical replacement for OR as an efficient 

approach for approximating SV, especially for larger values 

of n and in situations where OR has been shown to work as 

expected, such as case 1 or case 2. All OR-based 

approximation approaches fail to capture the SV of data 

contributors when the datasets of data contributors contain 

varied levels of noise on labels or features. 

 

8. LIMITATIONS AND FUTURE WORKS 

 

The 2-layer fully linked Multilayer Perceptron is the only 

model architecture type that is taken into account in this study, 

which may restrict the applicability of the findings to other 

model architectures. Future research must examine additional 

model architectures to get more conclusive findings. It may be 

argued that the MNIST handwriting classification test utilised 

in the study was too easy to appropriately assess the SV. Exact 

Non-Federated Shapley provides highly consistent results, as 

seen in Tables 2, 3, and 4, although data amount and quality 

vary widely between datasets. Additionally, models that were 

trained on datasets with plenty of labels or feature noise still 

had up to 94% accuracy. This may help to explain why the SV 

trend produced by the Exact Federated Shapley approach is 

not exactly what is expected. Future research can take into 

account harder learning problems that call for larger and better 

training data to see a pattern more clearly. The study does not 

examine hyperparameters such as the number of local epochs, 

local minibatch size, or learning rate. These hyperparameters 

can be changed to produce various outcomes. Future research 

can look into how these hyperparameters affect how well the 

approximation approaches perform. Despite efforts to 

maintain a similar experimental environment on Google 

Colab, there might still be differences in how the experiments 

distribute server resources. Future research can be done on a 

platform that enables the definition of virtual machine 

capabilities to address this. Additionally, as an alternative to 

OR, additional model approximation approaches like MR 

should be researched. Due to the calculation of SV for each 

global iteration and their subsequent averaging, MR is 

demonstrably slower than OR even if it has been proved to be 

more accurate on noisy datasets. However, employing the 

concept of TMC, similar to OR-TMC, would be able to 

quicken the MR approach. 
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