
Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

41


ABSTRACT

In the last two decades, the amount of available Arabic text
data on the World Wide Web is dramatically growing,
making it the fourth most used language on the web.
Accordingly, the demand for efficient Arabic text
classification is increasing, especially for web page content
filtering, information retrieval, and e-mail spam detection.
Several Machine Learning algorithms have been
implemented to classify Arabic documents. However, the
results achieved are not comparable with those obtained in
other languages such as English, primarily when using
preprocessing techniques that do not take into consideration
the Arabic language features. This paper investigates the
impact of wisely selected preprocessing techniques on the
efficiency of different text classification algorithms. The
effects of stop words removal, stemming, lemmatization, and
all possible combinations are examined. The reported results
(+10.75% to +28.73%) prove the effectiveness of using these
techniques either individually or in combination.

Key words: Arabic text classification, Lemmatization,
Stemming, Stop words removal, Text preprocessing.

1. INTRODUCTION

There have been a lot of efforts and studies were devoted to
Arabic natural language processing and its applications [1].
Last years have witnessed remarkable progress in building
Arabic corpora [2] and developing robust morphological
analyzers [3], which paved the way for highly data-driven
approaches like text classification, information retrieval, and
machine translation.

In terms of Arabic text classification, several Machine
Learning algorithms have been successfully implemented
such as Naïve Bayes (NB), Support Vector Machine (SVM),
Decision Tree (DT), K-Nearest Neighbors (K-NN), Artificial
Neural Network (ANN) [4]. However, for the Arabic

language, the text classifier performance is not only
influenced by the algorithm implemented; also, the nature of
the language has a great impact on the developed classifier.
Therefore, most scholars have often involved some text
preprocessing techniques that can deal effectively with the
richness morphology and lexicon of such language. Moreover,
deriving text preprocessing techniques from western scholars,
even if they were the forerunner in natural language
processing, is a drawback for a morphologically complex
language such as Arabic. Expressly, the morphology of
Arabic differs from western languages (e.g., English), and
adopting such techniques without considering the language
features will lead to different results than expected.

Text preprocessing techniques are normally used to reduce
the document size, facilitate feature selection, and increase
the processing speed. Regarding the text classification, the
main purpose of involving a text preprocessing task is dealing
with the problem of the high dimensionality of data. In other
words, we need to reduce as much as possible the size of text
features without leading to a system’s deterioration. To
overcome this issue, several techniques have been proposed.
These include, among others, stop words elimination,
stemming, and lemmatization.

Stop words elimination aims to remove redundant words that
carry no significant information or indicate the subject of the
processed document. Whereas, stemming and lemmatization
are dedicated to regroup the words that are morphologically
and semantically related.

In this paper, we will demonstrate that selecting the right text
preprocessing techniques may lead to positive outcomes in
Arabic text classification. To this end, we deeply examined
the contributions of common techniques, namely stop words
removal, stemming, and lemmatization to classification
accuracy of three well-known algorithms, Naïve Bayesian,
Support Vector Machines, and Decision Trees.

After this introduction, the main content of the paper is
structured as follows: Section 2 presents the challenges faced

The effects of Pre-Processing Techniques on

Arabic Text Classification
Anoual El Kah1, Imad Zeroual2

1Faculty of Sciences, Mohammed First University, Morocco, elkah.anoual.mri@gmail.com
2 L-STI, T-IDMS, Faculty of Sciences and Techniques, Moulay Ismail University, Morocco,

mr.imadine@gmail.com

ISSN 2278-3091
Volume 10, No.1, January - February 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse061012021.pdf

https://doi.org/10.30534/ijatcse/2021/061012021

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

42

by text classifiers due to particular Arabic language
characteristics. Next, the corpus we compiled exclusively for
this study is presented in Section 3. Section 4 introduces
different preprocessing techniques that we implemented.
Section 5 exposes the feature extraction and selection
methods used for reduction the data dimensionality.
Furthermore, three classifiers, that are commonly
implemented to automatically classify documents, are
presented. Finally, the results of the experimental
investigation are illustrated. In Section 6, conclusions and
future directions are constituting the final section.

2. ARABIC TEXT CLASSIFICATION CHALLENGES

Dealing with Arabic language features and implementing the
right text preprocessing techniques always have, and still are,
intriguing researchers in the field of Arabic text
classification.

Arabic is an old Semitic language and its morphology is
deeply rooted and well established a long time ago, which
makes it one of the most highly inflected languages. Thus, a
word can represent a whole sentence through sequential
concatenation. For instance, the Arabic word
“ َاسْتَسْ ف َ َیْناَكُمُوھاَأ ق ”, which contains 15 letters and 10 diacritics,
means in English “Then did we asked you for it to drink”.
Besides, according to a study [5] that investigated the average
length of Arabic words in news articles using a corpus of one
billion words, 75% of the words have a length above six
letters. Moreover, Arabic has very rich lexicon of synonyms.
E.g., it is believed that the word “lion” in Arabic has between
350 to 500 synonyms1. As a result, it is recommended to
involve preprocessing techniques that aim to deal with such
language features.

Since the aim of the preprocessing techniques is to minimize
information loss while maximizing reduction in data
dimensionality, stop words elimination is then recommended
in most cases. However, random removal of stop words may
deteriorate the text classifier performance. Therefore, a stop
words list must be wisely chosen, because the purpose for
which it is generated influences the performance of the
classifier.

An interested survey [6], that covered 17 studies that
investigated the stemming impact on Arabic text
classification performance, reported that nine experiments
proved that there is an enhancement if stemming was
performed; whereas, eight experiments claimed the opposite.
Not surprisingly, it looks like we are in front of a debate
regarding the impact of stemming. According to the authors,
this may return to the stemming algorithm implemented.

1 https://ar.wikipedia.org/wiki/ العربیة_اللغة_في_الأسد_أسماء_قائمة

Note that, there are two main types of Arabic stemmers, the
light stemmer and the root-based/heavy stemmer. The light
stemmer aims to remove clitics/affixes without trying to find
roots (e.g., [7]). The heavy stemmer reduces inflected words
to their roots (e.g., [8]). Thus, if a root-based stemming is
performed, information like the grammatical features, the
part of speech, and the meaning of all the words will be lost.
For example, the words “عَیْن” (i.e., eye), “ انيِعَ مَ ” (i.e.,
meanings), “ ُ ینُ عِ أ ” (i.e., I help), “ نویُ عُ ” (i.e., fountains) are
related to the same root “عین”. Consequently, the
preprocessing techniques that are based totally or partially on
root-based stemming will experience a deterioration in
performance; otherwise, no improvement will be assumed
(e.g., [9]). It is worth mentioning that the reason why a
root-based stemmer is used may return to the fact that is very
efficient in feature vector dimension reduction.

Typically, lemmatization reduces indexing data dimension
more than stemming, while still enhancing the text
classification performance [10]. The reason is that a
lemmatizer regroups semantically related words although
they are morphologically different from each other. For
instance, the lemma of the words “ُب َات“ ,(i.e., books) ”كُت ”كُتَیِّب
(i.e., manuals), and “َان ,.i.e) ”كِتاَب“ is (i.e., two books) ”كِتاَب
book). In comparison to the stemming techniques, the light
stemmer cannot relate the three given words to the same stem;
instead, each word will be considered as an independent stem.
On the contrary, the heavy stemmer will relate the three
words to the same root “كتب”. However, if we add the word
َة“ ِیب to the text, the heavy stemmer still relates (i.e., troop) ”كَت
this new word to the same previous root “كتب” although the
word troop has different meaning from the other words (books
and manuals). Whereas, the lemmatizer will relate it to
another lemma that shares the same meaning.

3. DATASETS

The World Wide Web becomes a vital source of digital
documents due to the tremendous growth of its content
primarily in news websites and social media. Since the Arabic
language is currently the fourth most used language on the
web 2 , compiling Arabic datasets is more manageable
especially with the availability of free web crawlers that make
web scraping easier and accessible to everyone. These
include, among others, HTTRACK3, Heritrix4, and Scrapy5.

In order to build our corpus, we crawled different Arabic
websites around the world using the HTTRACK web crawler.
Then, a cleaning and normalizing process were performed to

2 https://www.internetworldstats.com/stats7.htm
3 http://www.httrack.com/
4 https://github.com/internetarchive/heritrix3/wiki
5 https://scrapy.org/

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

43

keep only Arabic text. Since each website has different
categories, we decided to build category-based datasets rather
than website-based. Thus, we selected the most common
categories namely politics, culture, economy, sport, health,
and technology.

A published study [11] stated that the length of texts, as well
as the number of articles in a given category, have an
influence in Arabic news texts classification. Besides, our
goal is to make the overall corpus representative and balance.
To this end, we decided to collect for each category 50,000
articles. The final corpus includes a total of 300,000 articles,
containing over 153 million words. In addition, each article
consists of an average of 512 words, with a minimum of 287
words and a maximum of 737 words.

The criteria adopted to select the crawled websites are
simples. First, over 40 news websites were selected based on
their popularity in their region or country. Then, each website
was reviewed if it includes at least the six categories that we
mentioned earlier. Consequently, only nine websites were
crawled according to these criteria. Table 1 present the list of
crawled websites.

Table 1: List of crawled websites

Region/Country Website
United Nations www.news.un.org/ar/

Middle-east www.aljazeera.net
UK www.bbc.com/arabic

USA www.arabic.cnn.com
Russia www.arabic.rt.com

Germany www.dw.com/ar/
Morocco www.marocpress.com
Tunisia www.turess.com

Iran www.alalamtv.net/

4. TEXT PRE-PROCESSING

This section describes the preprocessing methods that we
applied on the compiled datasets. The preprocessing methods
assessed are stop words elimination, stemming, and
lemmatization.

4.1 Stop Words Elimination

A stop word is a term that frequently appears in a text and
carries no significant information or indicates the subject of
the processed text. Compiling a stop words list mainly rely on
two techniques. The first one is a rule-based technique that
involves the use of morphological analysis (e.g., [12]). The
generated list is a domain-independent list which is devoted
for a general use. The second technique is a statistical
approach that consists of using a frequency feature of a
particular corpus (e.g., [13]). This is often the case when we

have to generate a domain-dependent list that is used for a
specific field.

Stop word elimination plays a major role in the
pre-processing stage of text classification as well as other text
processing applications. For instance, information retrieval
[14], text summarization [15], and automatic translation [16].

Note that, the stop words elimination in the text classification
context doesn’t apply to consider only the particles; there are
nouns and verbs which are also considered as stop-words.
Besides, reference [17] claimed that random removal of stop
words may significantly deteriorate text classification
performance and lead to different results than expected.

Since our purpose is achieving a higher preprocessing
efficiency without affecting the text classification
performance, our approach consists to build a stop words list
for a general use that includes all basic stop words and its
inflected forms.

The basic stop words were collected from previously
published lists. After reviewing and filtrating the compiled
lists, we created a new list of roughly 1,000
domain-independent stop words. Then, we generated their
inflected forms following a proposed technique that involves
123 Arabic clitics [18]. As a result, the final list comprises
11,403 stop words.

4.2 Stemming

In the case of the Arabic language, stemming has been the
subject of several studies that have shown its effectiveness in
both text classification and clustering [4], [6], [19], [20].
However, three recent comparative studies investigated
different Arabic stemmers in the field of Arabic text
classification. The first one [21] reported that the
classification was more efficient with Tashaphyne light based
stemmer 6 followed by Farasa [22], Khoja stemmer [8],
Light10 [7], and finally Al Khalil Morph Sys [23]. What’s
more, this study found that the stemmer accuracy does not
have an impact on the classifier efficiency in topic
identification. The second study [24] focused on the impact of
stemming techniques namely Information Science Research
Institute (ISRI) [25], Tashaphyne, and ARLStem v1.0 [26] on
Arabic document classification. Findings of this paper
indicated that the ARLStem v1.0 outperforms the ISRI and
Tashaphyne stemmers. The third study [27] claimed that the
original ARLSTem v1.0 achieved the best result over
different stemmers in Arabic text classification. The overall
ranking for the rest of the stemmers came as follows:
ARLSTem v1.1, Light10, Assem’s stemmer7, ISRI stemmer,
and Soori’s stemmer [28].

6 https://pypi.org/project/Tashaphyne/ [last accessed: January 24, 2021]
7 https://arabicstemmer.com/ [last accessed: January 24, 2021]

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

44

All in all, the three previous studies covered 10 Arabic
stemmers and investigated their performances when applied
in the field of Arabic text classification. As reported, the
ARLSTem v1.08 is the best stemmer that demonstrated how
its use may result positive outcomes in Arabic text
classification. Therefore, it is the one implemented in our
study.

ARLSTem is a light stemmer that is based on an algorithm of
six tasks. The first three tasks are normalization, prefixes
removal, and suffixes removal. The fourth and the fifth tasks
are dedicated to stem nouns by transforming the plural to
singular and the feminine to masculine. The sixth task is
devoted to stem conjugated verbs.

4.3 Lemmatization

If text stemming regroups the words that are morphologically
related; then, text lemmatization aims to regroup
semantically related words. Unfortunately, involving the
lemmatization as a preprocessing task in Arabic text
classification is fairly limited. Maybe the raison is that the
lemmatization is a complex level of text processing and most
Arabic lemmatizers are proprietary and not publicly available
compared to Arabic stemmers. However, several studies
reported that using lemmatization is found to be efficient, in
particular, for information retrieval [29], text summarization
systems [30], and text indexation [31].

Generally, as much as the meaning of document content is
well represented, its classification will be easier. Besides,
lemmatization is regrouping semantically equivalent words
that are written in different syntactic forms and relates them
to their canonical base representation called lemma (i.e., a
dictionary lookup form). Thus, involving lemmatization as a
preprocessing task for text classification supposed to be quite
advantageous.

As many other studies dedicated to Arabic text classification,
the datasets we collected are from news websites, meaning
they are written in the modern Arabic language. Therefore,
the selected lemmatizer must successfully deal with such a
language and hopefully be trained on a large amount of
Arabic news articles. To this end, the lemmatizer of
Madamira v2.1 [32] was used.

5. EXPERIMENTAL WORK
Basically, text classification systems followed the same
methodology, which consists of collecting a corpus or
datasets, applying preprocessing techniques, feature
extraction (i.e., text representation), feature selection, and
finally conducts the classification task. Since the focus of this
paper is investigating the impact of the preprocessing phase
on the whole classification procedure, the selection of

8 https://www.nltk.org/_modules/nltk/stem/arlstem.html [last accessed:
January 24, 2021]

algorithms used in subsequent phases was based on the
recommendations of relevant prior works. In the sequel,
feature extraction, feature selection, and classification tasks,
are performed using WEKA (Waikato Environment for
Knowledge Analysis) [33].

5.1 Feature extraction

Feature extraction is a task concerning the transformation of
raw data into suitable inputs (i.e., features) that can be
consumed by a particular Machine Learning algorithm.
Expressly, the extracted features must represent the primary
textual content in a format that will best fit the needs of the
selected classifier algorithm. Except for deep learning neural
networks, which can perform feature extraction by
themselves, a minimum of feature extraction is always
needed. Moreover, it is believed that a poor classifier fed with
meaningful features may perform better than a robust
classifier fed with low-quality features.

Regarding Arabic text classification, Bag-of-Words (BoW),
Bag-of-Concepts (BoC), and Term Frequency–Inverse
Document Frequency (TF-IDF) are the common techniques
used for feature extraction [34], [35]. In this study, the
TF-IDF is applied.

BoW simply generates a set of vectors containing the count of
word occurrences in a given document. On the other hand, the
TF-IDF associates each word in a document with a number
that represents how relevant this word is in that document.
Then, each document will contain information on the more
important words and the less important ones as well.
Consequently, documents with similar relevant words will
have similar vectors. Although, both BoW and TF-IDF have
been popular in their regard, TF-IDF usually performs better
in Arabic text classification.

5.2 Feature selection

Feature selection or attribute selection is the natural successor
task of feature extraction. It aims to identify a subset of the
most significant features from the sparse feature space
without affecting the classifier performance [36]. A quite
number of comprehensive investigations and reviews on
feature selection approaches that are explicitly designed for
text classification have been published (e.g., [37]). In general,
there are four feature selection approaches, namely filter
method (e.g., [38]), wrapper method (e.g., [39]), embedded
method (e.g., [40]), and hybrid method (e.g., [41]). Each one
of these approaches has its pros and cons. These methods
have strong theoretical foundations and have proved their
superiority in feature selection. However, most feature
selection approaches for text classification belong to the
filter-based method due to its simplicity and efficiency.
Chi-squared test (χ2 test) is a filter method that is
computationally fast, simple and has the ability to deal with a

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

45

large dimensional feature. Chi-square proved its efficiency
especially when applied with TF-IDF extracted features [42].

After feature extraction is implemented on the training
datasets by calculating the TF-IDF score for each feature,
Chi-square is performed for the feature selection. Expressly,
the Chi-squared test is used for testing the independence
between the occurrence of a specific feature and the
occurrence of a specific category. The null hypothesis of the
Chi-Squared test means that no relationship exists between
them; i.e., they are independent. Next, we ranked the features
by their score. Only top-rank features are then selected to
serve as inputs for the next phase, the classification phase.

5.3 Classifiers

Many standard classifiers have been designed to
automatically classify documents. In this section, we will
focus on the following models: Naïve Bayesian algorithm
(NB), Support Vector Machines (SVMs), and Decision Trees
(J48). It is worth mentioning that the purpose of this phase is
not to determine the best classifiers for Arabic documents
classification but to investigate the effectiveness of the
selected preprocessing techniques on the performance of the
classifier.

The NB classifier assumption is that the probability of each
input feature appearing in a given document is independent of
the occurrence of another feature in the same document.
Further, NB computes the probability that a particular
document belongs to each of the categories with which the
system has trained; then, assigns this document to the specific
category with the highest probability. Since NB can output a
probability for each possible category, it is possible to identify
multiple categories to which a document may belong.

SVMs determines the best decision boundary between
features that belong, and not belong as well, to a given
category. It is stated by [43] that SVMs are not affected by the
high dimensionality of the feature space, meaning they can
manage all the features even if no feature selection techniques
are performed. Consequently, SVMs are well suited for
classification problems with dense concepts and sparse
instances.

DT classifier is used to rebuild the pre-classified training
dataset by constructing well-defined true/false-queries in the
form of a tree structure. In this tree, the internal nodes are
labeled by features, leaves represent the categories of
documents, and branches represent conjunctions of features
that lead to those categories. Given a document to classify, the
constructed decision tree is used to predict which category the
document should belong to. However, DT classifiers suffer
badly in high dimensional feature spaces.

5.4 Results and discussion

As mentioned in the previous sections, we have compiled a
corpus by selecting and crawling nine relevant news websites.
This corpus includes category-based datasets that cover six
categories, namely politics, culture, economy, sport, health,
and technology. Each category comprises 50,000 articles.
Each article consists of an average of 512 words, with a
minimum of 287 words and a maximum of 737 words.

After cleaning and preparing the corpus, three different
preprocessing techniques were performed, Stop Words (SWs)
elimination, stemming, and lemmatization. Then, TF-IDF
and Chi-square were implemented for feature extraction and
feature selection, respectively. Finally, three well-known
algorithms (NB, SVM, and DT J48) were used for the
classification. Note that, the 10-fold cross-validation were
used for the evaluation of performance accuracy.

During the experiments, the three preprocessing techniques
and all their possible combinations were considered: SW
removal, stemming, lemmatization, SWs removal and
stemming, SWs removal and lemmatization, stemming and
lemmatization, and finally, all the three techniques
combined. Needless to say, the effectiveness of these
techniques is compared with the case when none of these
techniques is used. Table 2 exhibits the accuracies achieved
by the classifiers without using any preprocessing technique
and after involving each preprocessing technique and the
possible combinations.

Table 2: 10 Folds cross-validation scores for evaluating
preprocessing effectiveness on the classifiers

Preprocessing
techniques

10 Folds cross-validation scores (%)

NB SVM DT J48

Without
preprocessing 64.68 71.15 57.17

SW removal 81.30 87.90 74.70

Stemming 74.71 81.05 69.50

Lemmatization 79.29 83.42 69.83

SWs removal
& Stemming 90.88 90.76 86.85

SWs removal &
Lemmatization 92.48 92.75 89.29

Stemming &
Lemmatization 80.95 85.42 73.33

All techniques 93.47 94.91 90.81

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

46

For more illustration, Figure 1 depicts the percentages of the
improvement recorded for each classifier (i.e., BN, SVM, and
DT J48) when the preprocessing techniques and their
combinations were involved.

Figure 1: Improvement recorded in the classifiers when

preprocessing techniques were involved

The results obtained prove the effectiveness of the
preprocessing techniques selected (+10.75% to +16.97%).
What's more, combining more techniques leads to better
improvement than only individual technique does (+15.57%
to +28.73%).

In this experiment, we observe that the average impact of the
SWs removal (+16,97%) on the three classifiers performance
is greater than those of stemming (+10,75%) and
lemmatization (+13,18%). Similarly, the combinations that
include SWs removal -i.e., SWs removal with stemming (an
average of +25,16%) and SWs removal with lemmatization
(an average of+27,17%)- perform better than the one that
does not include SWs removal -i.e., stemming and
lemmatization (an average of +15,57%)-. In fact, applying
exclusively SWs removal (+16,97%) is more useful than
using stemming and lemmatization combined (+15,57%).
This implies that involving SWs removal is highly
recommended especially if the classifier is based on a decision
tree algorithm. A simple computation was conducted on our
corpus shows that stop words represent 35% to 43% of the
document content. Thus, removing these stop words
maximize the reduction in data dimensionality, which
enhances classifiers that suffer badly in high dimensional
feature spaces such as DT J48.

On the other hand, when comparing stemming to
lemmatization effects, the results show that this latter is
slightly more beneficial. Expressly, the lemmatization
enhances the classification by an average of +13.18%;
whereas, +10.75% is the enhancement average recorded
when stemming is involved. Likewise, the combination,
which includes lemmatization and SWs removal, passes the
combination of stemming and SWs removal by (+2.01%).
This can be explained by the similarities found in the results

obtained from the selected light stemmer (ARLSTem) and
lemmatizer (Madamira lemmatizer). The most similarities
are found between verbs stems and lemmas.

Finally, all the classifiers achieved the best results when all
the three preprocessing techniques were involved (an average
of +28.73%). Note that, the SVMs are the most accurate
classifier in most cases, followed by NB and DT (J48).

6. CONCLUSION
This paper investigates the impact of widely used
preprocessing techniques including stop words elimination,
stemming, and lemmatization. Besides, all possible
combinations of those preprocessing techniques are
considered. To this end, we compiled a new balanced and
large corpus with 300,000 articles which are equally
distributed into six categories. Additionally, a new stop words
list was generated. Based on our state-of-the-art review,
robust developed tools were used for stemming and
lemmatization. Similarly, feature extraction, feature
selection, and text classification algorithms were selected
based on previously published works.

The performed experiments confirm that well-selected
preprocessing techniques have a great impact on Arabic text
classification. Stop words removal has been shown to be the
most beneficial techniques, especially for classification
algorithms that suffer badly in high dimensional feature
spaces like decision trees. However, the usability of the
proposed preprocessing techniques, either individually or in
combination, was verified and demonstrates how its use led to
positive outcomes. However, this work is always subject to
further evaluations, yet, deeper investigations are at hand.
The authors provide guidance for others who need to improve
their Arabic classifiers, especially that the tools selected are
available to the research community.

Finally, the results reported here open up avenues for further
research in order to advance the state of Arabic text
classification. The next objective of this study will be
investigating other ways to improve the classification task
focusing on other phases, namely feature extraction, feature
selection, and the classification algorithms. Besides, building
well-designed language resources for both single and
multi-category Arabic text classification is always
recommended.

REFERENCES
1. I. Guellil, H. Saâdane, F. Azouaou, B. Gueni, and D.

Nouvel, Arabic natural language processing: An
overview, Journal of King Saud University - Computer
and Information Sciences, Feb. 2019.

2. I. Zeroual and A. Lakhouaja, Arabic Corpus
Linguistics: Major Progress, but Still a Long Way to

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

47

Go, in Intelligent Natural Language Processing: Trends
and Applications, Springer, Cham, 2018, pp. 613–636.

3. O. Obeid, N. Zalmout, S. Khalifa, D. Taji, M. Oudah, B.
Alhafni, G. Inoue, F. Eryani, A. Erdmann, and N.
Habash, CAMeL tools: An open source python toolkit
for Arabic natural language processing, in
Proceedings of the 12th language resources and
evaluation conference, 2020, pp. 7022–7032.

4. M. Sayed, R. K. Salem, and A. E. Khder, A survey of
Arabic text classification approaches, International
Journal of Computer Applications in Technology, Vol.
59, no. 3, pp. 236–251, Jan. 2019.

5. I. Zeroual, D. Goldhahn, T. Eckart, and A. Lakhouaja,
OSIAN: Open Source International Arabic News
Corpus - Preparation and Integration into the
CLARIN-infrastructure, in Proceedings of the Fourth
Arabic Natural Language Processing Workshop,
Florence, Italy, 2019, pp. 175–182.

6. F. S. Al-Anzi and D. AbuZeina, Stemming impact on
Arabic text categorization performance: A survey, in
2015 5th International Conference on Information
Communication Technology and Accessibility (ICTA),
2015, pp. 1–7.

7. L. S. Larkey, L. Ballesteros, and M. E. Connell, Light
stemming for Arabic information retrieval, in Arabic
computational morphology, Springer, 2007, pp.
221–243.

8. S. Khoja and R. Garside, Stemming arabic text,
Lancaster, UK, Computing Department, Lancaster
University, 1999.

9. A. Wahbeh, M. Al-Kabi, Q. Al-Radaideh, E.
Al-Shawakfa, and I. Alsmadi, The effect of stemming
on arabic text classification: an empirical study,
International Journal of Information Retrieval Research
(IJIRR), Vol. 1, no. 3, pp. 54–70, 2011.

10. D. Namly, K. Bouzoubaa, A. El Jihad, and S. L.
Aouragh, Improving Arabic Lemmatization Through
a Lemmas Database and a Machine-Learning
Technique, in Recent Advances in NLP: The Case of
Arabic Language, Springer, 2020, pp. 81–100.

11. A. Chouigui, O. B. Khiroun, and B. Elayeb, ANT
corpus: an Arabic news text collection for textual
classification, in 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications
(AICCSA), 2017, pp. 135–142.

12. D. Namly, K. Bouzoubaa, R. Tajmout, and A. Laadimi,
On Arabic Stop-Words: A Comprehensive List and a
Dedicated Morphological Analyzer, in Arabic
Language Processing: From Theory to Practice, Cham,
2019, pp. 149–163.

13. A. Alajmi, E. M. Saad, and R. R. Darwish, Toward an
ARABIC stop-words list generation, International
Journal of Computer Applications, Vol. 46, no. 8, pp.
8–13, 2012.

14. I. A. El-Khair, Effects of stop words elimination for
Arabic information retrieval: a comparative study,
arXiv preprint arXiv:1702.01925, 2017.

15. R. Z. Al-Abdallah and A. T. Al-Taani, Arabic
single-document text summarization using particle
swarm optimization algorithm, Procedia Computer
Science, Vol. 117, pp. 30–37, 2017.

16. K. K. Arora and S. S. Agrawal, Pre-Processing of
English-Hindi Corpus for Statistical Machine
Translation, Computación y Sistemas, Vol. 21, no. 4,
pp. 725–737, 2017.

17. Z. Jianqiang and G. Xiaolin, Comparison Research on
Text Pre-processing Methods on Twitter Sentiment
Analysis, IEEE Access, Vol. 5, pp. 2870–2879, 2017.

18. I. Zeroual, M. Boudchiche, A. Mazroui, and A.
Lakhouaja, Developing and Performance Evaluation
of a New Arabic Heavy/Light Stemmer, in
Proceedings of the 2Nd International Conference on Big
Data, Cloud and Applications, Tetouan, Morocco, 2017,
p. 17:1-17:6.

19. O. A. Ghanem and W. M. Ashour, Stemming
Effectiveness in Clustering of Arabic Documents,
International Journal of Computer Applications, Vol.
49, no. 5, pp. 1–6, Jul. 2012.

20. S. Bahassine, A. Madani, and M. Kissi, Arabic text
classification using new stemmer for feature selection
and decision trees, Journal of Engineering Science and
Technology, Vol. 12, no. 6, pp. 1475–1487, 2017.

21. M. Naili, A. H. Chaibi, and H. H. B. Ghezala,
Comparative study of Arabic stemming algorithms
for topic identification, Procedia Computer Science,
Vol. 159, pp. 794–802, 2019.

22. A. Abdelali, K. Darwish, N. Durrani, and H. Mubarak,
Farasa: A fast and furious segmenter for arabic, in
Proceedings of the 2016 conference of the North
American chapter of the association for computational
linguistics: Demonstrations, 2016, pp. 11–16.

23. M. Boudchiche, A. Mazroui, M. O. A. O. Bebah, A.
Lakhouaja, and A. Boudlal, AlKhalil Morpho Sys 2: A
robust Arabic morpho-syntactic analyzer, Journal of
King Saud University-Computer and Information
Sciences, Vol. 29, no. 2, pp. 141–146, 2017.

24. Y. A. Alhaj, J. Xiang, D. Zhao, M. A. Al-Qaness, M.
Abd Elaziz, and A. Dahou, A study of the effects of
stemming strategies on arabic document
classification, IEEE Access, Vol. 7, pp. 32664–32671,
2019.

25. K. Taghva, R. Elkhoury, and J. Coombs, Arabic
stemming without a root dictionary, in null, 2005, pp.
152–157.

26. K. Abainia, S. Ouamour, and H. Sayoud, A novel robust
Arabic light stemmer, Journal of Experimental &
Theoretical Artificial Intelligence, pp. 1–17, 2016.

27. K. Abainia and H. Rebbani, Comparing the
Effectiveness of the Improved ARLSTem Algorithm
with Existing Arabic Light Stemmers, in 2019
International Conference on Theoretical and
Applicative Aspects of Computer Science (ICTAACS),
2019, Vol. 1, pp. 1–8.

Anoual El Kah et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January – February 2021, 41 – 48

48

28. H. Soori, J. Platoš, and V. Snášel, Simple stemming
rules for Arabic language, in Proceedings of the Third
International Conference on Intelligent Human
Computer Interaction (IHCI 2011), Prague, Czech
Republic, August, 2011, 2013, pp. 99–108.

29. I. Zeroual and A. Lakhouaja, Arabic information
retrieval: Stemming or lemmatization?, in 2017
Intelligent Systems and Computer Vision (ISCV), Fez,
Morocco, 2017, pp. 1–6.

30. T. El-Shishtawy and F. El-Ghannam, A Lemma Based
Evaluator for Semitic Language Text Summarization
Systems, arXiv preprint arXiv:1403.5596, 2014.

31. F. K. Hammouda and A. A. Almarimi, Heuristic
Lemmatization for Arabic Texts Indexation and
Classification, Journal of Computer Science, Vol. 6, no.
6, pp. 660–665, Jun. 2010.

32. A. Pasha, M. Al-Badrashiny, M. T. Diab, A. El Kholy, R.
Eskander, N. Habash, M. Pooleery, O. Rambow, and R.
Roth, MADAMIRA: A Fast, Comprehensive Tool for
Morphological Analysis and Disambiguation of
Arabic., in LREC, 2014, Vol. 14, pp. 1094–1101.

33. S. R. Garner, Weka: The waikato environment for
knowledge analysis, in Proceedings of the New Zealand
computer science research students conference, 1995,
Vol. 1995, pp. 57–64.

34. L. A. Qadi, H. E. Rifai, S. Obaid, and A. Elnagar,
Arabic Text Classification of News Articles Using
Classical Supervised Classifiers, in 2019 2nd
International Conference on new Trends in Computing
Sciences (ICTCS), 2019, pp. 1–6.

35. A. Alahmadi, A. Joorabchi, and A. E. Mahdi,
Combining Words and Concepts for Automatic
Arabic Text Classification, in Arabic Language
Processing: From Theory to Practice, Cham, 2018, pp.
105–119.

36. P. Kumbhar and M. Mali, A survey on feature selection
techniques and classification algorithms for efficient
text classification, International Journal of Science and
Research, Vol. 5, no. 5, p. 9, 2016.

37. X. Deng, Y. Li, J. Weng, and J. Zhang, Feature
selection for text classification: A review, Multimed
Tools Appl, Vol. 78, no. 3, pp. 3797–3816, Feb. 2019.

38. A. S. Ghareb, A. A. Bakara, Q. A. Al-Radaideh, and A.
R. Hamdan, Enhanced filter feature selection methods
for Arabic text categorization, International Journal
of Information Retrieval Research (IJIRR), Vol. 8, no. 2,
pp. 1–24, 2018.

39. H. Chantar, M. Mafarja, H. Alsawalqah, A. A. Heidari, I.
Aljarah, and H. Faris, Feature selection using binary
grey wolf optimizer with elite-based crossover for
Arabic text classification, Neural Computing and
Applications, Vol. 32, no. 16, pp. 12201–12220, 2020.

40. N. S. M. Nafis and S. Awang, The Evaluation of
Accuracy Performance in an Enhanced Embedded
Feature Selection for Unstructured Text
Classification, Iraqi Journal of Science, pp. 3397–3407,
2020.

41. M. Hijazi, A. Zeki, and A. Ismail, Arabic Text
Classification Using Hybrid Feature Selection
Method Using Chi-Square Binary Artificial Bee
Colony Algorithm, Computer Science, Vol. 16, no. 1,
pp. 213–228, 2021.

42. H. Tang, L. Zhou, X. Chengjie, and Q. Zhu, A Method
of Text Dimension Reduction Based on CHI and
TF-IDF, in 2015 4th International Conference on
Mechatronics, Materials, Chemistry and Computer
Engineering, 2015.

43. T. Joachims, Text categorization with support vector
machines: Learning with many relevant features, in
European conference on machine learning, 1998, pp.
137–142.

