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 
ABSTRACT 
 
In the last two decades, the amount of available Arabic text 
data on the World Wide Web is dramatically growing, 
making it the fourth most used language on the web. 
Accordingly, the demand for efficient Arabic text 
classification is increasing, especially for web page content 
filtering, information retrieval, and e-mail spam detection. 
Several Machine Learning algorithms have been 
implemented to classify Arabic documents. However, the 
results achieved are not comparable with those obtained in 
other languages such as English, primarily when using 
preprocessing techniques that do not take into consideration 
the Arabic language features. This paper investigates the 
impact of wisely selected preprocessing techniques on the 
efficiency of different text classification algorithms. The 
effects of stop words removal, stemming, lemmatization, and 
all possible combinations are examined. The reported results 
(+10.75% to +28.73%) prove the effectiveness of using these 
techniques either individually or in combination.  
 
Key words: Arabic text classification, Lemmatization, 
Stemming, Stop words removal, Text preprocessing.  
 
1. INTRODUCTION 
 
There have been a lot of efforts and studies were devoted to 
Arabic natural language processing and its applications [1]. 
Last years have witnessed remarkable progress in building 
Arabic corpora [2] and developing robust morphological 
analyzers [3], which paved the way for highly data-driven 
approaches like text classification, information retrieval, and 
machine translation. 
 
In terms of Arabic text classification, several Machine 
Learning algorithms have been successfully implemented 
such as Naïve Bayes (NB), Support Vector Machine (SVM), 
Decision Tree (DT), K-Nearest Neighbors (K-NN), Artificial 
Neural Network (ANN) [4]. However, for the Arabic 

 
 

language, the text classifier performance is not only 
influenced by the algorithm implemented; also, the nature of 
the language has a great impact on the developed classifier. 
Therefore, most scholars have often involved some text 
preprocessing techniques that can deal effectively with the 
richness morphology and lexicon of such language. Moreover, 
deriving text preprocessing techniques from western scholars, 
even if they were the forerunner in natural language 
processing, is a drawback for a morphologically complex 
language such as Arabic. Expressly, the morphology of 
Arabic differs from western languages (e.g., English), and 
adopting such techniques without considering the language 
features will lead to different results than expected. 
 
Text preprocessing techniques are normally used to reduce 
the document size, facilitate feature selection, and increase 
the processing speed. Regarding the text classification, the 
main purpose of involving a text preprocessing task is dealing 
with the problem of the high dimensionality of data. In other 
words, we need to reduce as much as possible the size of text 
features without leading to a system’s deterioration. To 
overcome this issue, several techniques have been proposed. 
These include, among others, stop words elimination, 
stemming, and lemmatization. 
 
Stop words elimination aims to remove redundant words that 
carry no significant information or indicate the subject of the 
processed document. Whereas, stemming and lemmatization 
are dedicated to regroup the words that are morphologically 
and semantically related. 
 
In this paper, we will demonstrate that selecting the right text 
preprocessing techniques may lead to positive outcomes in 
Arabic text classification. To this end, we deeply examined 
the contributions of common techniques, namely stop words 
removal, stemming, and lemmatization to classification 
accuracy of three well-known algorithms, Naïve Bayesian, 
Support Vector Machines, and Decision Trees. 
 
After this introduction, the main content of the paper is 
structured as follows: Section 2 presents the challenges faced 
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by text classifiers due to particular Arabic language 
characteristics. Next, the corpus we compiled exclusively for 
this study is presented in Section 3. Section 4 introduces 
different preprocessing techniques that we implemented. 
Section 5 exposes the feature extraction and selection 
methods used for reduction the data dimensionality. 
Furthermore, three classifiers, that are commonly 
implemented to automatically classify documents, are 
presented. Finally, the results of the experimental 
investigation are illustrated. In Section 6, conclusions and 
future directions are constituting the final section. 
 
2. ARABIC TEXT CLASSIFICATION CHALLENGES 
 
Dealing with Arabic language features and implementing the 
right text preprocessing techniques always have, and still are, 
intriguing researchers in the field of Arabic text 
classification. 
 
Arabic is an old Semitic language and its morphology is 
deeply rooted and well established a long time ago, which 
makes it one of the most highly inflected languages. Thus, a 
word can represent a whole sentence through sequential 
concatenation. For instance, the Arabic word 
“ َاسْتَسْ  ف َ َیْناَكُمُوھاَأ ق ”, which contains 15 letters and 10 diacritics, 
means in English “Then did we asked you for it to drink”. 
Besides, according to a study [5] that investigated the average 
length of Arabic words in news articles using a corpus of one 
billion words, 75% of the words have a length above six 
letters. Moreover, Arabic has very rich lexicon of synonyms. 
E.g., it is believed that the word “lion” in Arabic has between 
350 to 500 synonyms1. As a result, it is recommended to 
involve preprocessing techniques that aim to deal with such 
language features. 
 
Since the aim of the preprocessing techniques is to minimize 
information loss while maximizing reduction in data 
dimensionality, stop words elimination is then recommended 
in most cases. However, random removal of stop words may 
deteriorate the text classifier performance. Therefore, a stop 
words list must be wisely chosen, because the purpose for 
which it is generated influences the performance of the 
classifier. 
 
An interested survey [6], that covered 17 studies that 
investigated the stemming impact on Arabic text 
classification performance, reported that nine experiments 
proved that there is an enhancement if stemming was 
performed; whereas, eight experiments claimed the opposite. 
Not surprisingly, it looks like we are in front of a debate 
regarding the impact of stemming. According to the authors, 
this may return to the stemming algorithm implemented. 

 
1 https://ar.wikipedia.org/wiki/ العربیة_اللغة_في_الأسد_أسماء_قائمة  

Note that, there are two main types of Arabic stemmers, the 
light stemmer and the root-based/heavy stemmer. The light 
stemmer aims to remove clitics/affixes without trying to find 
roots (e.g., [7]). The heavy stemmer reduces inflected words 
to their roots (e.g., [8]). Thus, if a root-based stemming is 
performed, information like the grammatical features, the 
part of speech, and the meaning of all the words will be lost. 
For example, the words “عَیْن” (i.e., eye), “ انيِعَ مَ  ” (i.e., 
meanings), “  ُ ینُ عِ أ ” (i.e., I help), “ نویُ عُ  ” (i.e., fountains) are 
related to the same root “عین”. Consequently, the 
preprocessing techniques that are based totally or partially on 
root-based stemming will experience a deterioration in 
performance; otherwise, no improvement will be assumed 
(e.g., [9]). It is worth mentioning that the reason why a 
root-based stemmer is used may return to the fact that is very 
efficient in feature vector dimension reduction. 
 
Typically, lemmatization reduces indexing data dimension 
more than stemming, while still enhancing the text 
classification performance  [10]. The reason is that a 
lemmatizer regroups semantically related words although 
they are morphologically different from each other. For 
instance, the lemma of the words “ُب َات“ ,(i.e., books) ”كُت  ”كُتَیِّب
(i.e., manuals), and “َان  ,.i.e) ”كِتاَب“ is (i.e., two books) ”كِتاَب
book).  In comparison to the stemming techniques, the light 
stemmer cannot relate the three given words to the same stem; 
instead, each word will be considered as an independent stem. 
On the contrary, the heavy stemmer will relate the three 
words to the same root “كتب”. However, if we add the word 
َة“ ِیب  to the text, the heavy stemmer still relates (i.e., troop) ”كَت
this new word to the same previous root “كتب” although the 
word troop has different meaning from the other words (books 
and manuals). Whereas, the lemmatizer will relate it to 
another lemma that shares the same meaning. 
 
3.  DATASETS 
 
The World Wide Web becomes a vital source of digital 
documents due to the tremendous growth of its content 
primarily in news websites and social media. Since the Arabic 
language is currently the fourth most used language on the 
web 2 , compiling Arabic datasets is more manageable 
especially with the availability of free web crawlers that make 
web scraping easier and accessible to everyone. These 
include, among others, HTTRACK3, Heritrix4, and Scrapy5. 
 
In order to build our corpus, we crawled different Arabic 
websites around the world using the HTTRACK web crawler. 
Then, a cleaning and normalizing process were performed to 

 
2 https://www.internetworldstats.com/stats7.htm 
3 http://www.httrack.com/ 
4 https://github.com/internetarchive/heritrix3/wiki 
5 https://scrapy.org/ 
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keep only Arabic text. Since each website has different 
categories, we decided to build category-based datasets rather 
than website-based. Thus, we selected the most common 
categories namely politics, culture, economy, sport, health, 
and technology. 
 
A published study [11] stated that the length of texts, as well 
as the number of articles in a given category, have an 
influence in Arabic news texts classification. Besides, our 
goal is to make the overall corpus representative and balance. 
To this end, we decided to collect for each category 50,000 
articles. The final corpus includes a total of 300,000 articles, 
containing over 153 million words. In addition, each article 
consists of an average of 512 words, with a minimum of 287 
words and a maximum of 737 words. 
 
The criteria adopted to select the crawled websites are 
simples. First, over 40 news websites were selected based on 
their popularity in their region or country. Then, each website 
was reviewed if it includes at least the six categories that we 
mentioned earlier. Consequently, only nine websites were 
crawled according to these criteria. Table 1 present the list of 
crawled websites. 
 

Table 1: List of crawled websites 
 

Region/Country Website 
United Nations www.news.un.org/ar/ 

Middle-east www.aljazeera.net 
UK www.bbc.com/arabic 

USA www.arabic.cnn.com 
Russia www.arabic.rt.com 

Germany www.dw.com/ar/ 
Morocco www.marocpress.com 
Tunisia www.turess.com 

Iran www.alalamtv.net/ 
 
4.  TEXT PRE-PROCESSING 
 
This section describes the preprocessing methods that we 
applied on the compiled datasets. The preprocessing methods 
assessed are stop words elimination, stemming, and 
lemmatization. 
 
4.1 Stop Words Elimination 
 
A stop word is a term that frequently appears in a text and 
carries no significant information or indicates the subject of 
the processed text. Compiling a stop words list mainly rely on 
two techniques. The first one is a rule-based technique that 
involves the use of morphological analysis (e.g., [12]). The 
generated list is a domain-independent list which is devoted 
for a general use. The second technique is a statistical 
approach that consists of using a frequency feature of a 
particular corpus (e.g., [13]). This is often the case when we 

have to generate a domain-dependent list that is used for a 
specific field. 
 
Stop word elimination plays a major role in the 
pre-processing stage of text classification as well as other text 
processing applications. For instance, information retrieval 
[14], text summarization [15], and automatic translation [16]. 
 
Note that, the stop words elimination in the text classification 
context doesn’t apply to consider only the particles; there are 
nouns and verbs which are also considered as stop-words. 
Besides, reference [17] claimed that random removal of stop 
words may significantly deteriorate text classification 
performance and lead to different results than expected. 
 
Since our purpose is achieving a higher preprocessing 
efficiency without affecting the text classification 
performance, our approach consists to build a stop words list 
for a general use that includes all basic stop words and its 
inflected forms. 
 
The basic stop words were collected from previously 
published lists. After reviewing and filtrating the compiled 
lists, we created a new list of roughly 1,000 
domain-independent stop words. Then, we generated their 
inflected forms following a proposed technique that involves 
123 Arabic clitics [18]. As a result, the final list comprises 
11,403 stop words.  
 
4.2 Stemming 
 
In the case of the Arabic language, stemming has been the 
subject of several studies that have shown its effectiveness in 
both text classification and clustering [4], [6], [19], [20]. 
However, three recent comparative studies investigated 
different Arabic stemmers in the field of Arabic text 
classification. The first one [21] reported that the 
classification was more efficient with Tashaphyne light based 
stemmer 6   followed by Farasa [22], Khoja stemmer [8], 
Light10 [7], and finally Al Khalil Morph Sys [23]. What’s 
more, this study found that the stemmer accuracy does not 
have an impact on the classifier efficiency in topic 
identification. The second study [24] focused on the impact of 
stemming techniques namely Information Science Research 
Institute (ISRI) [25], Tashaphyne, and ARLStem v1.0 [26] on 
Arabic document classification. Findings of this paper 
indicated that the ARLStem v1.0 outperforms the ISRI and 
Tashaphyne stemmers. The third study [27] claimed that the 
original ARLSTem v1.0 achieved the best result over 
different stemmers in Arabic text classification. The overall 
ranking for the rest of the stemmers came as follows: 
ARLSTem v1.1, Light10, Assem’s stemmer7, ISRI stemmer, 
and Soori’s stemmer [28]. 
 

 
6 https://pypi.org/project/Tashaphyne/ [last accessed: January 24, 2021] 
7 https://arabicstemmer.com/ [last accessed: January 24, 2021] 
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All in all, the three previous studies covered 10 Arabic 
stemmers and investigated their performances when applied 
in the field of Arabic text classification. As reported, the 
ARLSTem v1.08 is the best stemmer that demonstrated how 
its use may result positive outcomes in Arabic text 
classification. Therefore, it is the one implemented in our 
study. 
 
ARLSTem is a light stemmer that is based on an algorithm of 
six tasks. The first three tasks are normalization, prefixes 
removal, and suffixes removal. The fourth and the fifth tasks 
are dedicated to stem nouns by transforming the plural to 
singular and the feminine to masculine. The sixth task is 
devoted to stem conjugated verbs. 
 
4.3 Lemmatization 
 
If text stemming regroups the words that are morphologically 
related; then, text lemmatization aims to regroup 
semantically related words. Unfortunately, involving the 
lemmatization as a preprocessing task in Arabic text 
classification is fairly limited. Maybe the raison is that the 
lemmatization is a complex level of text processing and most 
Arabic lemmatizers are proprietary and not publicly available 
compared to Arabic stemmers. However, several studies 
reported that using lemmatization is found to be efficient, in 
particular, for information retrieval [29], text summarization 
systems [30], and text indexation [31]. 
 
Generally, as much as the meaning of document content is 
well represented, its classification will be easier. Besides, 
lemmatization is regrouping semantically equivalent words 
that are written in different syntactic forms and relates them 
to their canonical base representation called lemma (i.e., a 
dictionary lookup form). Thus, involving lemmatization as a 
preprocessing task for text classification supposed to be quite 
advantageous. 
 
As many other studies dedicated to Arabic text classification, 
the datasets we collected are from news websites, meaning 
they are written in the modern Arabic language. Therefore, 
the selected lemmatizer must successfully deal with such a 
language and hopefully be trained on a large amount of 
Arabic news articles. To this end, the lemmatizer of 
Madamira v2.1 [32] was used. 

5. EXPERIMENTAL WORK 
Basically, text classification systems followed the same 
methodology, which consists of collecting a corpus or 
datasets, applying preprocessing techniques, feature 
extraction (i.e., text representation), feature selection, and 
finally conducts the classification task. Since the focus of this 
paper is investigating the impact of the preprocessing phase 
on the whole classification procedure, the selection of 

 
8 https://www.nltk.org/_modules/nltk/stem/arlstem.html [last accessed: 
January 24, 2021] 

algorithms used in subsequent phases was based on the 
recommendations of relevant prior works. In the sequel, 
feature extraction, feature selection, and classification tasks,  
are performed using WEKA (Waikato Environment for 
Knowledge Analysis) [33]. 
 
5.1 Feature extraction 
 
Feature extraction is a task concerning the transformation of 
raw data into suitable inputs (i.e., features) that can be 
consumed by a particular Machine Learning algorithm. 
Expressly, the extracted features must represent the primary 
textual content in a format that will best fit the needs of the 
selected classifier algorithm. Except for deep learning neural 
networks, which can perform feature extraction by 
themselves, a minimum of feature extraction is always 
needed. Moreover, it is believed that a poor classifier fed with 
meaningful features may perform better than a robust 
classifier fed with low-quality features. 
 
Regarding Arabic text classification, Bag-of-Words (BoW), 
Bag-of-Concepts (BoC), and Term Frequency–Inverse 
Document Frequency (TF-IDF) are the common techniques 
used for feature extraction [34], [35]. In this study, the 
TF-IDF is applied. 
 
BoW simply generates a set of vectors containing the count of 
word occurrences in a given document. On the other hand, the 
TF-IDF associates each word in a document with a number 
that represents how relevant this word is in that document. 
Then, each document will contain information on the more 
important words and the less important ones as well. 
Consequently, documents with similar relevant words will 
have similar vectors. Although, both BoW and TF-IDF have 
been popular in their regard, TF-IDF usually performs better 
in Arabic text classification. 
 
5.2 Feature selection 
 
Feature selection or attribute selection is the natural successor 
task of feature extraction. It aims to identify a subset of the 
most significant features from the sparse feature space 
without affecting the classifier performance [36]. A quite 
number of comprehensive investigations and reviews on 
feature selection approaches that are explicitly designed for 
text classification have been published (e.g., [37]). In general, 
there are four feature selection approaches, namely filter 
method (e.g., [38]), wrapper method (e.g., [39]), embedded 
method (e.g., [40]), and hybrid method (e.g., [41]). Each one 
of these approaches has its pros and cons. These methods 
have strong theoretical foundations and have proved their 
superiority in feature selection. However, most feature 
selection approaches for text classification belong to the 
filter-based method due to its simplicity and efficiency. 
Chi-squared test (χ2 test) is a filter method that is 
computationally fast, simple and has the ability to deal with a 
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large dimensional feature. Chi-square proved its efficiency 
especially when applied with TF-IDF extracted features [42].  
 
After feature extraction is implemented on the training 
datasets by calculating the TF-IDF score for each feature, 
Chi-square is performed for the feature selection. Expressly, 
the Chi-squared test is used for testing the independence 
between the occurrence of a specific feature and the 
occurrence of a specific category. The null hypothesis of the 
Chi-Squared test means that no relationship exists between 
them; i.e., they are independent.  Next, we ranked the features 
by their score. Only top-rank features are then selected to 
serve as inputs for the next phase, the classification phase. 
 
5.3 Classifiers 
 
Many standard classifiers have been designed to 
automatically classify documents. In this section, we will 
focus on the following models: Naïve Bayesian algorithm 
(NB), Support Vector Machines (SVMs), and Decision Trees 
(J48). It is worth mentioning that the purpose of this phase is 
not to determine the best classifiers for Arabic documents 
classification but to investigate the effectiveness of the 
selected preprocessing techniques on the performance of the 
classifier. 
 
The NB classifier assumption is that the probability of each 
input feature appearing in a given document is independent of 
the occurrence of another feature in the same document. 
Further, NB computes the probability that a particular 
document belongs to each of the categories with which the 
system has trained; then, assigns this document to the specific 
category with the highest probability. Since NB can output a 
probability for each possible category, it is possible to identify 
multiple categories to which a document may belong. 
 
SVMs determines the best decision boundary between 
features that belong, and not belong as well, to a given 
category. It is stated by [43] that SVMs are not affected by the 
high dimensionality of the feature space, meaning they can 
manage all the features even if no feature selection techniques 
are performed. Consequently, SVMs are well suited for 
classification problems with dense concepts and sparse 
instances. 
 
DT classifier is used to rebuild the pre-classified training 
dataset by constructing well-defined true/false-queries in the 
form of a tree structure. In this tree, the internal nodes are 
labeled by features, leaves represent the categories of 
documents, and branches represent conjunctions of features 
that lead to those categories. Given a document to classify, the 
constructed decision tree is used to predict which category the 
document should belong to. However, DT classifiers suffer 
badly in high dimensional feature spaces. 

5.4 Results and discussion 
 
As mentioned in the previous sections, we have compiled a 
corpus by selecting and crawling nine relevant news websites. 
This corpus includes category-based datasets that cover six 
categories, namely politics, culture, economy, sport, health, 
and technology. Each category comprises 50,000 articles. 
Each article consists of an average of 512 words, with a 
minimum of 287 words and a maximum of 737 words. 
 
After cleaning and preparing the corpus, three different 
preprocessing techniques were performed, Stop Words (SWs) 
elimination, stemming, and lemmatization. Then, TF-IDF 
and Chi-square were implemented for feature extraction and 
feature selection, respectively. Finally, three well-known 
algorithms (NB, SVM, and DT J48) were used for the 
classification. Note that, the 10-fold cross-validation were 
used for the evaluation of performance accuracy. 
 
During the experiments, the three preprocessing techniques 
and all their possible combinations were considered: SW 
removal, stemming, lemmatization, SWs removal and 
stemming, SWs removal and lemmatization, stemming and 
lemmatization, and finally, all the three techniques 
combined. Needless to say, the effectiveness of these 
techniques is compared with the case when none of these 
techniques is used. Table 2 exhibits the accuracies achieved 
by the classifiers without using any preprocessing technique 
and after involving each preprocessing technique and the 
possible combinations. 
 

Table 2: 10 Folds cross-validation scores for evaluating 
preprocessing effectiveness on the classifiers 

 

Preprocessing 
techniques 

10 Folds cross-validation scores (%) 

NB SVM DT J48 

Without 
preprocessing 64.68 71.15 57.17 

SW removal 81.30 87.90 74.70 

Stemming 74.71 81.05 69.50 

Lemmatization 79.29 83.42 69.83 

SWs removal 
& Stemming 90.88 90.76 86.85 

SWs removal & 
Lemmatization 92.48 92.75 89.29 

Stemming & 
Lemmatization 80.95 85.42 73.33 

All techniques 93.47 94.91 90.81 
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For more illustration, Figure 1 depicts the percentages of the 
improvement recorded for each classifier (i.e., BN, SVM, and 
DT J48) when the preprocessing techniques and their 
combinations were involved. 
 

 
Figure 1: Improvement recorded in the classifiers when 

preprocessing techniques were involved 
 
The results obtained prove the effectiveness of the 
preprocessing techniques selected (+10.75% to +16.97%). 
What's more, combining more techniques leads to better 
improvement than only individual technique does (+15.57% 
to +28.73%). 
 
In this experiment, we observe that the average impact of the 
SWs removal (+16,97%) on the three classifiers performance 
is greater than those of stemming (+10,75%) and 
lemmatization (+13,18%). Similarly, the combinations that 
include SWs removal -i.e., SWs removal with stemming (an 
average of +25,16%) and SWs removal with lemmatization 
(an average of+27,17%)- perform better than the one that 
does not include SWs removal -i.e., stemming and 
lemmatization (an average of +15,57%)-. In fact, applying 
exclusively SWs removal (+16,97%) is more useful than 
using stemming and lemmatization combined (+15,57%). 
This implies that involving SWs removal is highly 
recommended especially if the classifier is based on a decision 
tree algorithm. A simple computation was conducted on our 
corpus shows that stop words represent 35% to 43% of the 
document content. Thus, removing these stop words 
maximize the reduction in data dimensionality, which 
enhances classifiers that suffer badly in high dimensional 
feature spaces such as DT J48. 
 
On the other hand, when comparing stemming to 
lemmatization effects, the results show that this latter is 
slightly more beneficial. Expressly, the lemmatization 
enhances the classification by an average of +13.18%; 
whereas, +10.75% is the enhancement average recorded 
when stemming is involved. Likewise, the combination, 
which includes lemmatization and SWs removal, passes the 
combination of stemming and SWs removal by (+2.01%). 
This can be explained by the similarities found in the results 

obtained from the selected light stemmer (ARLSTem) and 
lemmatizer (Madamira lemmatizer). The most similarities 
are found between verbs stems and lemmas. 
 
Finally, all the classifiers achieved the best results when all 
the three preprocessing techniques were involved (an average 
of +28.73%). Note that, the SVMs are the most accurate 
classifier in most cases, followed by NB and DT (J48).  

6. CONCLUSION 
This paper investigates the impact of widely used 
preprocessing techniques including stop words elimination, 
stemming, and lemmatization. Besides, all possible 
combinations of those preprocessing techniques are 
considered. To this end, we compiled a new balanced and 
large corpus with 300,000 articles which are equally 
distributed into six categories. Additionally, a new stop words 
list was generated. Based on our state-of-the-art review, 
robust developed tools were used for stemming and 
lemmatization. Similarly, feature extraction, feature 
selection, and text classification algorithms were selected 
based on previously published works. 
 
The performed experiments confirm that well-selected 
preprocessing techniques have a great impact on Arabic text 
classification. Stop words removal has been shown to be the 
most beneficial techniques, especially for classification 
algorithms that suffer badly in high dimensional feature 
spaces like decision trees. However, the usability of the 
proposed preprocessing techniques, either individually or in 
combination, was verified and demonstrates how its use led to 
positive outcomes. However, this work is always subject to 
further evaluations, yet, deeper investigations are at hand. 
The authors provide guidance for others who need to improve 
their Arabic classifiers, especially that the tools selected are 
available to the research community. 
 
Finally, the results reported here open up avenues for further 
research in order to advance the state of Arabic text 
classification. The next objective of this study will be 
investigating other ways to improve the classification task 
focusing on other phases, namely feature extraction, feature 
selection, and the classification algorithms. Besides, building 
well-designed language resources for both single and 
multi-category Arabic text classification is always 
recommended. 
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