
Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October
2019, 1831 - 1840

1831

SOAP and RESTful web service anti-patterns: A scoping review

Fuad Alshraiedeh1,2, Norliza Katuk2

1Ministry of Education, Jordan, fuad.alshraideh@yahoo.com
2School of Computing, Universiti Utara Malaysia, Malaysia, k.norliza@uum.edu.my

ABSTRACT

Web services provide a uniform framework to achieve a high
level of interaction between distributed heterogeneous
software systems and data resources shared over the Internet.
Producing a well-designed web service is significant because
it leads to a more understandable service and a higher level
of interaction and leads to effective software maintainability.
However, web service is suffering from a poor design
problem named anti-patterns. Analysis of the literature
returned a plethora of studies on anti-patterns that caused
difficulties for developers to synthesize and summarized the
possible types of anti-patterns and further comprehend each
of them. Due to this limitation, this paper aims to provide
organized literature on the types of anti-patterns found in
web services. A scoping review was conducted by searching
scholarly documents, analyzing, and classified them based
on their anti-pattern types. The review provided in this paper
could be used as a guide for developers to identify the anti-
patterns that could be found in web services.

Key words: Anti-pattern, Anti-pattern Detection, Web
Service, Web Service Design, Interface Design

1. INTRODUCTION

Web service is a group of loosely coupled applications, self-
describing software, that can be published, located and
accessed flexibly and smoothly [1]-[3]. It provides a uniform
framework to achieve a high level of interaction between the
distributed heterogeneous software system and data resource
sharing over the Internet [4]-[6]. In a simple word, web
service can be described as independent software
components that accept requests and return responses over
the Internet. Web services are the components used in
establishing service-oriented architecture (SOA) architecture
[7]-[12] that converts the Internet from a repository of data to
a repository of interactive services [13],[14]. Web service
technology also opens a new cost-efficient form for software
engineers to quickly develop and publish web applications
by dynamically combining their applications with other
published web service components to execute new business
transactions [15].

There are two major protocols of web service
implementation; first, Simple Object Access Protocol
(SOAP) and second, Representational State Transfer
(RESTful). SOAP is the earliest web service protocol that
communicating data in Extensible Markup Language (XML)
format and transported them in various messaging protocols
primarily Hypertext Transfer Protocol (HTTP), Simple Mail
Transfer Protocol (SMTP), and File Transfer Protocol (FTP).
On the other hand, RESTful is a newer protocol that uses
HTTP for transporting data in a various format including
XML, Hypertext Markup Language (HTML), JavaScript
Object Notation (JSON) and plaintext.

Web service can be openly accessed by external web
applications regardless of the platform in which it is
developed or deployed [3]. It is possible as it is invoked
through its machine-processable format, which called web
service interface [16],[17]; a set of operations that depicts
interactions between service requesters and web service
functionality [18]. Web services are programmed in similar
way programmers programmed other computer-based
systems. Like other computer-based systems, anti-patterns
problems are found in web services due to inappropriate
programming practices, designs, and implementations [19].
It caused accessibility issues in which the function of the
services is difficult to comprehend [20],[21]; thus, making
the process of designing interface complex and low quality.
Eventually, the web service becomes abandoned due to low
usage [22].

Many researchers attempt to improve anti-patterns problem
in web services through detecting the anti-patterns and
recommend the solutions to overcome the problem.
However, web service anti-pattern problem is complex to
resolve completely as each type of anti-pattern requires
different approaches and distinct from others. Therefore,
many past studies in the literature have been studying a
particular type of web service anti-pattern. The increase of
independent studies in anti-patterns has caused the need for
synthesizing the available literature, summarizing and
disseminating the types of anti-patterns so that it could help
developers to avoid such anti-patterns; hence, producing
high-quality and maintainable web services. As far as the
authors are aware, no study synthesizing the types of web-
service anti-patterns that exist. Apart from that, a question
arises whether similar anti-patterns happen in the two

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse05852019.pdf

https://doi.org/10.30534/ijatcse/2019/05852019

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1832

prominent web service protocols (i.e., SOAP and RESTful);
or they just totally distinct. Therefore, this paper intends to
address the limitation in the current studies by reviewing the
literature on the types of web service anti-pattern for SOAP
and RESTful, and further find overlapping problems.

The paper has three sections. Section 2 discusses the method
for conducting the study. Next, Section 3 describes the
results of the study based on specific research questions.
Then, section 4 summarizes the findings.

2. METHOD

A scoping review [23]-[26] was conducted to identify the
possible anti-patterns found in RESTful and SOAP web
services. They are five stages of the process in conducting
the scoping review as illustrated in Figure 1. The process of
the scoping review starts with identifying research questions.
Then an electronic search was conducted to identify relevant
studies and followed by selecting the studies for further
review. After that, the data are recorded and tabulated, and
finally, the results were synthesized, summarized, and
reported in this paper. A scoping review is a kind of review
that provides a systematic way of collecting background
information [27]. It is also an effective method to focus on
the relevant literature to the researchers aiming at providing
a quick mapping of the main concepts that underpin the
research [28].

Figure 1: The process for conducting the scoping review [25],[26]

Stage 1: Identify research questions
This scoping review aims to synthesize and summarize the
possible types of web-service anti-patterns. As there are two
prominent web service protocols (i.e., SOAP and RESTful);
the number of anti-patterns could be substantial. Therefore,
the authors analyzed the anti-patterns based on their
occurrence found on the protocol style they were developed.
Three research questions guide the scoping review as below:

RQ1: What are the types of anti-pattern found in SOAP
web service?
RQ2: What are the types of anti-pattern found in
RESTful web service?
RQ3: What are the common anti-patterns of SOAP and
RESTful?

Stage 2: Identify relevant studies
A comprehensive electronic document search on Google
Scholar was done using the search phrase “web service anti-
patterns”. It focused on documents written in English and
published between the year 2000 and September 2019. The
search results returned 673 documents, as summarized in
Table 1. Year-based searching was conducted to get accurate
search results. The search returned no documents for the year
1999. It could be justified by the fact that the web service
technology has not emerged yet.
Stage 3: Select studies
A filtering process was conducted to select the relevant
documents that provide information on the types of anti-
patterns. The study selected scholarly articles, including
journal articles, conference articles, theses, and technical
reports. Books and presentation slides were excluded from
the results. Finally, fifty-two documents were selected, and
the full list of the documents are listed in Table 2. The
earliest study on web service anti-patterns was found
published in 2016. The number of the study gradually and
consistently growing; however, at a slow pace.
Stage 4: Chart the data
The bibliographic information, abstract, and full-text of the
documents were acquired and maintained using EndNote
reference manager. The individual full-text documents were
further analyzed to obtain the types of web-service anti-
patterns that the researchers studied. The analysis was
conducted based on the pre-defined RQs.
Stage 5: Collate, summarize, and report the results
Finally, the analysis were systematically recorded in word
processing documents, and they were further synthesized and
summarized as reported in Section 3 of this paper.

Table 1: The number of total documents and relevant documents
selected for the scoping study

Year Total
Documents

Found

Number of
relevant

documents
2000 1 0
2001 1 0
2002 1 0
2003 7 0
2004 7 0
2005 7 0
2006 17 2
2007 17 1
2008 24 2
2009 41 1
2010 46 4
2011 46 3
2012 70 1
2013 55 4
2014 54 3
2015 49 6
2016 59 4
2017 69 6
2018 66 8

Sept 2019 36 7
TOTAL 673 52

Stage
1

• Identify research questions

Stage
2

• Identify relevant studies

Stage
3

• Select studies

Stage
4

• Chart the data

Stage
5

• Collate, summarize, and report the results

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1833

Table 2: List of the documents included in this study.
Num. Year Authors Title

1 2006 Kokash [29] “A Comparison of Web Service Interface Similarity Measures”
2 2006 Zheng and Krause [30] “Asynchronous Semantics and Anti-Patterns for Interacting Web Services”
3 2007 He and Yen [31] “Adaptive User Interface Generation for Web Services”
4 2008 Beaton, et al. [32] “Usability Challenges for Enterprise Service-Oriented Architecture APIs”
5 2008 Hacigümüs [33] “Anti-Patterns: Integrating Distributed and Heterogeneous Data Sources in SOAs”
6 2009 Král and Žemlicka [34] “Popular SOA Antipatterns”
7 2010 Crasso, et al. [35] “Revising WSDL Documents: Why and How”
8 2010 Rodriguez, et al. [36] “Improving Web Service Descriptions for Effective Service Discovery”

9 2010 Rodriguez, et al. [37] “The EASYSOC Project: A Rich Catalog of Best Practices for Developing Web Service
Applications”

10 2010 Rodriguez, et al. [38] “Automatically Detecting Opportunities for Web Service Descriptions Improvement”
11 2011 Batra and Bawa [39] “Semantic Discovery of Web Services Using Principal Component Analysis”
12 2011 Mateos, et al. [40] “Detecting WSDL Bad Practices in Code-First Web Services”
13 2011 Rodriguez, et al. [41] “Bottom-Up and Top-Down COBOL System Migration to Web Services”
14 2012 Mateos, et al. [42] “Avoiding WSDL Bad Practices in Code-First Web Services”
15 2013 Coscia, et al. [43] “Anti-Pattern Free Code-First Web Services for State-Of-The-Art Java WSDL Generation Tools”
16 2013 Han, et al. [44] “Definition and Detection of Control-Flow Anti-Patterns in Process Models”
17 2013 Palma, et al. [45] “SOA Antipatterns: An Approach for their Specification and Detection”

18 2013 Rodriguez, et al. [46] “An Approach for Web Service Discoverability Anti-Pattern Detection for Journal of Web
Engineering”

19 2014 Coscia, et al. [47] “Refactoring Code-First Web Services for Early Avoiding WSDL Anti-Patterns: Approach and
Comprehensive Assessment”

20 2014 Palma, et al. [48] “Detection of REST Patterns and Antipatterns: A Heuristics-Based Approach”

21 2014 Torkamani and Bagheri [49] “A Systematic Method for Identification of Anti-Patterns in Service-Oriented System
Development”

22 2015 Mateos, et al. [50] “Measuring the Impact of The Approach to Migration in the Quality of Web Service Interfaces”

23 2015 Mateos, et al. [51] “A Tool to Improve Code-First Web Services Discoverability Through
Text Mining Techniques”

24 2015 Mateos, et al. [52] “A Stitch in Time Saves Nine: Early Improving Code-First Web Services Discoverability”
25 2015 Palma, et al. [53] “Are Restful APIs Well-Designed? Detection of Their Linguistic (Anti)Patterns”
26 2015 Rodriguez, et al. [54] “Assisting Developers to Build High-Quality Code-First Web Service APIs”
27 2015 Sales and Guizzardi [55] “Ontological Anti-Patterns”
28 2016 Brabra, et al. [56] “Detecting Cloud (Anti) Patterns: OCCI Perspective”
29 2016 Mateos, et al. [22] “Keeping Web Service Interface Complexity Low Using an OO Metric-Based Early Approach”
30 2016 Palma, et al. [57] “Specification and Detection of SOA Antipatterns in Web Services”
31 2016 Wang, et al. [58] “Bi-Level Identification of Web Service Defects”
32 2017 Chen and Jiang [59] “Characterizing and Detecting Anti-Patterns in The Logging Code”
33 2017 Ouni, et al. [10] “Search-Based Web Service Anti Patterns Detection”
34 2017 Pismag [60] “Prediction of Web Service Anti Patterns Using Machine Learning”
35 2017 Sabir, et al. [61] “A Lightweight Approach for Specification and Detection of SOAP Anti-Patterns”
36 2017 Velioğlu and Selçuk [62] “An Automated Code Smell and Anti-Pattern Detection Approach”
37 2017 Wang, et al. [20] “Interactive Refactoring of Web Service Interfaces Using Computational Search”

38 2018 Arunachalam, et al. [63] “A Semi Markov Process-Based Web Service Recommendation for Anti-Patterns Detection
Using P-EA Algorithm”

39 2018 Blouin, et al. [64] “User Interface Design Smell: Automatic Detection and Refactoring of Blob Listeners”
40 2018 Fakhoury, et al. [65] “Keep It Simple: Is Deep Learning Good for Linguistic Smell Detection?”

41 2018 Hirsch, et al. [6] “Spotting and Removing WSDL Anti-Pattern Root Causes in Code-First Web Services Using
NLP Techniques: A Thorough Validation of Impact on Service Discoverability”

42 2018 Kalyani and Vasundra [66] “Search-Based Web Service and Business Process Anti Pattern Detection”

43 2018 Kumar and Sureka [19] “An Empirical Analysis on Web Service Anti-Pattern Detection Using a Machine Learning
Framework”

44 2018 Ouni, et al. [67] “A Hybrid Approach for Improving the Design Quality of Web Service Interfaces”
45 2018 Palma, et al. [68] “UNIDOSA: The Unified Specification and Detection of Service Antipatterns”
46 2019 Brabra, et al. [69] “On Semantic Detection of Cloud API (Anti)Patterns”

47 2019 Sabir, et al. [70] “A Systematic Literature Review on The Detection of Smells and their Evolution in Object-
Oriented and Service-Oriented Systems”

48 2019 Saluja and Batra [71] “Assessing Quality by Anti-Pattern Detection in Web Services”
49 2019 Saluja and Batra [72] “Optimized approach for antipattern detection in service computing architecture”

50 2019 Bogner, et al. [73] “Towards a Collaborative Repository for the Documentation of Service-Based Antipatterns and
Bad Smells”

51 2019 Mateos, et al. [74] “COBOL Systems Migration to SOA: Assessing Antipatterns and Complexity”
52 2019 Belkhir, et al. [75] “An observational study on the state of REST API uses in Android mobile applications”

3. RESULTS

This section explains the findings of the scoping review. The
results are discussed based on the sequent of the RQs.

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1834

3.1 What are the types of anti-pattern found in SOAP
web service?

Web Service Description Language (WSDL) documents are
one of the main components of SOAP web service. Usually,
the developers designed web service interfaces that can
minimize programming efforts, which caused lack in
description of the WSDL documents [36],[76]. Past studies
reported that improper description in WSDL documents
caused issues in the web service discovery [36]. Therefore,
web service developers should improve the way WSDL
documents are designed, in order to help the web service
requesters to discover and understand the web service
functionality with minimal efforts [43],[77]. Developers
follow one of the approaches in developing web service; (1)
contract-first, and (2) code-first [50]. In the contract-first,
development of a web service is started from a WSDL
definition, which developers specify what the documents
would represent. In this approach, WSDL definition is
defined using web service standards; the web service
implementation is done after that according to this contract
[77]. Meanwhile, in the code-first mechanism, development
of web service is started from code; hence, the developers
can write a web service without the need of knowing how the
WSDL document is generated.

The contract-first mechanism is based on designing web
service when developers consider a catalog to avoid anti-
patterns occurrences which cause complexity and ambiguity
in WSDL document [21]. The results if the scoping review
suggested twenty-three SOAP anti-patterns as in the
subsequence paragraphs.

1. Ambiguous names: This anti-pattern occurs when the
web service developers use vague, meaningless or unclear
words for identifying the main components of WSDL
document (i.e., port-type, operations, messages, and part
elements) [30]. It is considered as one the most common
anti-pattern occurrences in SOAP web services [78]. From a
service requesters’ perspective, a representative name should
describe and confirm the semantics of an element; then
meaningless names should be avoided [38]. This major
consequences of this type of anti-pattern is that it decreases
the opportunity of web service being discovered and
understood which in turn prevents usage [51].

2. Empty messages: This anti-pattern occurs when web
service developers declare a method that does not contain
any outputs and does not receive any inputs [52]. Simply
said, empty message anti-pattern is public methods that refer
to a class that implements a service which does not receive
any input parameter [42].

3. Enclosed data model: This anti-pattern occurs when the
input and output data types of eXtensible Markup Language
Schema Definition (XSD) are specified in the WSDL
document rather than being written in a separate file. It
consequently disallows reuse of data type by other web
services very difficult or impossible [50].

4. Low cohesive operations in the same port-type: This
anti-pattern occurs when web service developers defined two
or more operations in a same port-type [57]. For example,
checking the availability of the service the function of the
service a single port-type. A web service becomes less
cohesive, when operations belong to one port-type; however,
they do not represent a set of semantically relevant
operations [56]. On the other hand, WSDL document with
high cohesive operations holds contain a representative
service. WSDL documents which have higher number of low
cohesive operations might lead to more occurrences of
ambiguous name anti-patterns [54].

5. Redundant data models: This anti-pattern occurs when
the developers use defect WSDL generation tools [6]. It may
also happen when the developers used different data types
for representing duplicated objects or defining the same data
type two or more times (i.e., two data type definitions stand
for the same exchangeable information) in a WSDL
document [40],[47]. The redundant data models cause
confusing in understanding WSDL documents [36].

6. Whatever types: This anti-pattern may occur when the
developers define uncommon data types or unsupported data
types (i.e., the data types that do not belong to primitive and
standard data types) [77],[79]. When the developers define
data with any type (i.e., Whatever data type), then the
standard data type will be implemented inside WSDL
document as xsd:any [21],[80]. xsd:any may appear in
WSDL document because of inefficient or defective WSDL
generation tools [50],[52]. Whatever data types negatively
affect the web service usability as it hinders
understandability [81].

7. Inappropriate or lacking comments: This anti-pattern
occurs when the developers do not write appropriate
comments in WSDL documents [50]. Many WSDL
documents suffered from inappropriate or lacking comments
[36]. A well-documented WSDL document has concise
explanatory comment for each operation that describes the
semantic of the offered functions [36]. Consequently,
inappropriate or lacking comments does not help in revealing
the real purpose of the service, which leads to reducing the
understandability and the usability of the concerned web
service [81].

8. Redundant port-types: This anti-pattern occurs when
multiple port types present duplicated set of operations in a
web service [63]. The developers defined two or more port
types that offer a same operation with a same message;
however, each port type is restricted to a different transport
protocol [36],[54]. Consequently, the redundant port-types
causes unnecessarily confusion in understanding WSDL
documents [36].

9. Undercover fault information within standard
messages: This anti-pattern occurs when output messages
notify service errors [51],[54]. A service error message
should use output messages rather than local SOAP failure

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1835

messages [29]. Consequently, the web services return error
message within output messages that may negatively
influence syntactic registries that exploit either the names or
the XML structure of message parts [23].

10. God object web service (GOWS): This anti-pattern
occurs when web services hold too many operations that
belong to variant business abstractions. In this case, the web
service is complicated to use due to low cohesion of its
methods [10].

11. Fine-grained web service (FGWS): This anti-pattern
occurs when web services contain few numbers of operations
implementing only a part of abstraction [10],[82]. It
frequently demands for other web services to complete
abstraction, and often overhead (e.g., maintenance,
communication) outweigh its utility [67]. FGWS anti-pattern
results in higher architectural complexity and reduced web
service usability [10],[57].

12. Chatty web service (CWS): This anti-pattern occurs
when a set of operations are required to execute single
abstraction [20],[58]. Consequently, web services often have
many compact operations that increase response time;
therefore, limiting the web services performance [83].

13. Data web service (DWS): This anti-pattern occurs when
web services consist of getters and setters’ operations (i.e.,
accessor operation) [83]. DWS anti-pattern in distributed
environment refers to web services that only execute data
access operations or simple information retrieval [20],[58].
DWS may negatively impact web service usability because it
commonly handles small messages of primitive data types
with strong data cohesion [10].

14. CRUD interface (CI): This anti-pattern occurs when a
web service supports remote procedure call [20] that allows
Create, Read, Update and Delete (CRUD) operations from
databases [10],[58]. The CRUD operations require several
methods to be accomplished which increases the complexity
of web services [10].

15. Maybe it is not RPC (MNR): This anti-pattern occurs
when a web service mainly presents CRUD operation for
large business entities [82] which consequently requires
large number of parameters [10]. MNR anti-pattern causes
inefficiency because the users will wait for the synchronous
responses from many parameters.

16. Bloated service: This anti-pattern occurs when web
services hold too many parameters [45]; hence, leads to a
complex operations execution with low cohesion between
such operations [68]. Consequently, it leads to low web
service accessibility, maintainability, testability, and
reusability [45].

17. Duplicated web service: This anti-pattern occurs when
two or more web services contain identical operations with
identical names and message operations [61]. It also might

exist when common operations have an identical name or
parameters [57].

18. Nobody home: This anti-pattern occurs when a web
service (or resource) is defined, but the methods of this web
service (or resource) are never invoked by service requesters
[68]. These web services lead to non-usage [78].

19. Bottleneck service: This anti-pattern occurs when a web
service is frequently called by service requesters that causes
bottleneck of incoming and outgoing requests. It may be
used by many service requesters; hence, it increases response
time and caused low availability due to heavy traffic [45].

20. Stovepipe service: This anti-pattern occurs when many
private or protected methods for executing infrastructure and
utility operations (i.e., logging, data validation, notifications,
etc.) exist in few business processes [45]. It may cause
duplicated code in web service, increase the development
time, inconsistent operations, and inextensible services.

21. Service chain: This anti-pattern occurs when web
services requesters requested for consecutive web service
invocations to achieve their goals [78]. The consecutive
requests affect the subsequent call for the web services [45].

22. Tiny service/ nano service: This anti-pattern occurs
when small web services with few numbers of methods and
operations [78] implements a part of abstraction [68]. Tiny
web service often needs many web services to be used
together to perform operations [59]. This anti-pattern leads to
a more complex process, reduces flexibility, and causes
many service-oriented architectures failures [45],[68].

23. Multi-service: This anti-pattern is the opposite of tiny
service anti-pattern. It is also considered as God Object web
service [68]. Multi-service anti-pattern is found in web
services that run more than one method for distinct business
and technical abstraction [45],[68]. It is described by many
low cohesion operations, very high response time, and low
availability to service requesters because it is overloaded
[68],[78].

In summary, the scoping review suggested twenty-three anti-
patterns that commonly found in SOAP web services. These
anti-patterns have impact on various aspects of web services
including maintainability, efficiency, and discovery.

3.2 RQ2: What are the types of anti-pattern found in
RESTful web service?

A RESTful provides data by an application programming
interface (API) over the Internet through HTTP [84].
Therefore, a good design with proper API name will
certainly attract service requesters [53]. Hence,
understandability and reusability are the essential aspects in
designing and developing RESTful web services. Analysis of

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1836

the documents included in the scoping reviews suggested the
following anti-patterns for RESTful web service.

1. Uniform Resource Identifier (URI) design: This anti-
pattern concerned with the practices in designing URI in the
web services. URIs should be easy to read and tidy [53],[69].
There are three types of URI anti-patterns:
i. Amorphous URIs anti-pattern: It occurs if URI consists

of capital letters, symbols, and underscore; to name a
few. It causes lower readability and understandability of
the intended URI [53],[69].

ii. CRUD URI anti-pattern: It occurs when CRUD is used
instead of standard HTTP methods [53],[69]. It
overloads the HTTP methods and prevents service
requesters to use the appropriate and standard HTTP
methods [53],[69].

iii. Pluralized Nodes anti-pattern: It occurs when plural
words are used in PUT/DELETE requests, or singular
nouns used in POST request [53],[69]. It may affect the
server response to the web service requests.

2. HTTP methods: This anti-pattern concerned with using
HTTP methods in the right context [69]. There are two
scenarios of HTTP methods anti-pattern;
i. Tunneling through GET: It occurs when the developers

depend on GET method to execute operations for
creating, deleting or updating resources [48],[69],[78].
GET can be used for other actions except for accessing
resources [48].

ii. Tunneling through POST: It occurs when the developers
depend on POST method to execute operations on
creating, deleting or updating resources [48],[69],[78]. It
is very similar to tunneling through GET; however, in
addition to the URI, the POST requests can be used for
operations and parameters to access resources [48].
These anti-patterns may cause breaks in the semantic
purpose of each HTTP methods [69].

3. Error handling: This anti-pattern concerned with HTTP
request methods for error handling and how they must be
used as a response of HTTP messages [69]. The developers
tend to avoid the application-level status code (e.g., 200, 404,
and 500, use the wrong status code, or may not use any status
code) despite a standard error message code [68],[78].

4. HTTP header: This anti-pattern concerned with the
practices in designing HTTP headers. There are two common
RESTful anti-patterns in the design of HTTP headers:
i. Ignoring caching: It occurs when the developers and

service requesters avoid the use of the caching capability
due to the complexity of its implementation [48].
Consequently, it causes a decreasing of scalability in
request per second, which degrades the overall
performance [69].

ii. Ignoring Multipurpose Internet Mail Extensions
(MIME): It occurs when a server uses personalized
formats or depends on a unique representation [48],[68].
Consequently, it limits usability (accessibility),
reusability, and limits the resources readability [69],[78].

5. Hypermedia: This anti-pattern occurs when the
developers forgot to link the resources together [69]. The
absence of Uniform Resource Locator (URL) links between
resources disallows the requesters to follow the links because
the server does not provide it [78]. Consequently, this anti-
pattern decreases the dynamic interaction between the
service requesters and servers that leads to low usability and
accessibility [48],[68].

6. Linguistic: This anti-pattern occurs when the developers
have poor linguistic practices in designing web services. It
leads to ambiguous detailed description [53]. There are four
scenarios of linguistic anti-pattern:
i. Contextless recourse name: It occurs when URI consists

many nodes referring to different context [78].
Consequently, it causes a decrease in the
understandability and usability of the web service [53].

ii. Non-hierarchical nodes: It occurs when the nodes in a
URI are not hierarchically designed [78]. It appears
when at least one node in URI is not linked to its
neighbor node [53]. Consequently, it may confuse the
service requesters and hinder the real purpose of the web
services, and reduce their understandability and usability
[53],[78].

7. Breaking self-descriptiveness: This anti-pattern occurs
when the developers overlook the standardized header,
protocol, or format, and use customized ones [48],[70]. This
anti-pattern wipes out the role of a message header and also
limits the adaptability and reusability of web service
resources [78].

8. Misusing cookies: This anti-pattern concerned with the
use of disallowed session states at the server [70]. An
example of misusing cookies is the use of keys or tokens in
the Set Cookie or Cookie header field of server-side session
[78].

9. Missing query interface: This anti-pattern occurs when
the developers ignore to provide support to query interface
on all requests [69],[78] which disables the requesters to
discover all capabilities of a web service [56],[69].

10. Ambiguous name: This anti-pattern occurs when the
developers used weak naming for interface elements such as
using the long or short identifiers, use of operations that are
not published syntactically and semantically, and use general
terms as identifiers [48],[78]. Consequently, ambiguous
name negatively affects the discoverability and usability of
the web services [48].

11. Bloated service: This anti-pattern occurs when a web
service contains too many parameters [45]; hence, leads to a
complex operations execution with low cohesion between
such operations [68]. Consequently, it leads to low web
service accessibility, maintainability, testability, and
reusability [45].

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1837

12. Deprecated resource: This anti-pattern occurs when a
service is created but it is not being used by the clients [78].
Consequently, the web service will not be invoked, even
though it may be combined with other services.

In summary, the scoping review suggested twelve anti-
patterns that commonly found in RESTful web services.
These anti-patterns have impact on various aspects of web
services including maintainability, efficiency, and discovery.

3.3 What are the common anti-patterns of SOAP and
RESTful?

The results of the scoping review for RQ1 and RQ2
suggested that SOAP and RESTful web services suffered
from multiple anti-pattern problems. Based on the analysis,
there are a few common anti-patterns found in both
protocols, while many of them found in RESTful or SOAP
separately. Figure 2 listed the web services anti-patterns for
SOAP and REST. Only two types of anti-patterns were
common to the two web service protocols namely ambiguous
names and bloated services.

Figure 2: The types of anti-patterns found in SOAP and RESTful

web services
4. CONCLUSION

This paper reported a scoping review of web service anti-
patterns found in two prominent protocols of SOAP and
RESTful. The results of the study suggested twenty-three
anti-patterns in SOAP and twelve anti-patterns in RESTful.
Only a few anti-patterns were found common in both
protocols. The results of the study may be beneficial for web
service developers in understanding the possible anti-patterns
that may occurs in designing web services. It can assist them
by avoiding such anti-patterns; hence, produce a good web

service that is easy to maintained and possible reuse by other
applications. In future, we aim at studying the techniques to
mitigate such anti-patterns.

ACKNOWLEDGMENT

The authors thank the Ministry of Higher Education
Malaysia in funding this study under the Trans-Disciplinary
Research Grant Scheme (Ref: TRGS/2/2014/ UUM/01/3/4,
UUM S/O Code:13170), and Research and Innovation
Management Centre, Universiti Utara Malaysia for the
administration of this study.

REFERENCES

1. P. El-Kafrawy, E. Elabd, and H. Fathi. A trustworthy

reputation approach for web service discovery,
Procedia Computer Science, vol. 65, pp. 572-581, 2015.
https://doi.org/10.1016/j.procs.2015.09.001

2. W. J. Obidallah and B. Raahemi. A Taxonomy to
Characterize Web Service Discovery Approaches,
Looking at Five Perspectives, in 2016 IEEE Symposium
on Service-Oriented System Engineering (SOSE), 2016,
pp. 458-459.
https://doi.org/10.1109/SOSE.2016.13

3. I. Lizarralde, J. M. Rodriguez, C. Mateos, and A. Zunino.
Word embeddings for improving REST services
discoverability, in 2017 XLIII Latin American Computer
Conference (CLEI), 2017, pp. 1-8.
https://doi.org/10.1109/CLEI.2017.8226444

4. J. Wang, P. Gao, Y. Ma, K. He, and P. C. Hung. A web
service discovery approach based on common topic
groups extraction, IEEE Access, vol. 5, pp. 10193-
10208, 2017.
https://doi.org/10.1109/ACCESS.2017.2712744

5. M. Curiel and A. Pont. Workload generators for web-
based systems: Characteristics, current status, and
challenges, IEEE Communications Surveys & Tutorials,
vol. 20, pp. 1526-1546, 2018.
https://doi.org/10.1109/COMST.2018.2798641

6. M. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos,
and A. Zunino. Spotting and Removing WSDL Anti-
pattern Root Causes in Code-first Web Services Using
NLP Techniques: A Thorough Validation of Impact
on Service Discoverability, Computer Standards &
Interfaces, vol. 56, pp. 116-133, 2018.

7. M. H. I. Hamzah, F. Baharom, and H. Mohd. An
exploratory study for investigating the issues and
current practices of Service-Oriented Architecture
adoption, Journal of Information and Communication
Technology, vol. 18, pp. 273-304, 2019.

8. M. H. I. Hamzah, F. Baharom, and H. Mohd. A Service-
Oriented Architecture Adoption Maturity Matrix
using Kano Model: Cross Evaluation between IT and
Business Benefits, Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), vol. 9, pp.
105-112, 2017.

9. W. Dai, V. Vyatkin, J. H. Christensen, and V. N.
Dubinin. Bridging service-oriented architecture and

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1838

IEC 61499 for flexibility and interoperability, IEEE
Transactions on Industrial Informatics, vol. 11, pp. 771-
781, 2015.

10. A. Ouni, M. Kessentini, K. Inoue, and M. Ó. Cinnéide.
Search-Based Web Service Antipatterns Detection,
IEEE Transactions on Services Computing, vol. 10, pp.
603-617, 2017.

11. B. Saravana Balaji, R. S. Rajkumar, and B. F. Ibrahim.
Service profile based ontological system for selection
and ranking of business process web services,
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 8, pp. 18-22, 2019.
https://doi.org/10.30534/ijatcse/2019/04812019

12. M. G. Galety, B. Saravana Balaji, and M. S. Saleem
Basha. OSSR-P: Ontological service searching and
ranking system for PaaS services, International Journal
of Advanced Trends in Computer Science and
Engineering, vol. 8, pp. 271-276, 2019.

13. R. B. Brinhosa, C. M. Westphall, C. B. Westphall, D. R.
Dos Santos, F. Grezele, and D. R. Westphall. A
validation model of data input for web services, in
Twelfth International Conference on Networks, 2013, pp.
87-94.

14. J. Yu, Q. Z. Sheng, J. K. Swee, J. Han, C. Liu, and T. H.
Noor. Model-driven development of adaptive web
service processes with aspects and rules, Journal of
Computer and System Sciences, vol. 81, pp. 533-552,
2015.
https://doi.org/10.1016/j.jcss.2014.11.008

15. A. L. Lemos, F. Daniel, and B. Benatallah. Web service
composition: a survey of techniques and tools, ACM
Computing Surveys (CSUR), vol. 48, p. 33, 2016.
https://doi.org/10.1145/2831270

16. R. Gunasri and R. Kanagaraj. Natural Language
Processing and Clustering based service discovery,
International Journal of Scientific & Technology
Research, vol. 3, pp. 28-31, 2014.

17. A. De Renzis, M. Garriga, A. Flores, A. Cechich, C.
Mateos, and A. Zunino. A domain independent
readability metric for web service descriptions,
Computer Standards & Interfaces, vol. 50, pp. 124-141,
2017.
https://doi.org/10.1016/j.csi.2016.09.005

18. T. Masood, A. Nadeem, and S. Ali. An automated
approach to regression testing of web services based
on WSDL operation changes, in 2013 IEEE 9th
International Conference on Emerging Technologies
(ICET), 2013, pp. 1-5.

19. L. Kumar and A. Sureka. An Empirical Analysis on
Web Service Anti-pattern Detection Using a Machine
Learning Framework, in 2018 IEEE 42nd Annual
Computer Software and Applications Conference
(COMPSAC), 2018, pp. 2-11.
https://doi.org/10.1109/COMPSAC.2018.00010

20. H. Wang, M. Kessentini, and A. Ouni. Interactive
refactoring of web service interfaces using
computational search, IEEE Transactions on Services
Computing, 2017.

21. J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino.
An approach to improve code-first web services

discoverability at development time, in Proceedings of
the 27th Annual ACM Symposium on Applied Computing,
2012, pp. 638-643.

22. C. Mateos, A. Zunino, S. Misra, D. Anabalon, and A.
Flores. Keeping web service interface complexity low
using an oo metric-based early approach, in 2016 XLII
Latin American Computing Conference (CLEI), 2016, pp.
1-12.
https://doi.org/10.1109/CLEI.2016.7833366

23. A. Siswanto, N. Katuk, and K. R. Ku-Mahamud.
Fingerprint Template Protection Schemes: A
Literature Review, Journal of Theoretical & Applied
Information Technology, vol. 96, 2018.

24. N. Katuk, K. R. Ku-Mahamud, and N. H. Zakaria. A
Review of The Current Trends and Future Directions
of Camera Barcode Reading, Journal of Theoretical
and Applied Information Technology, vol. 97, pp. 2268-
2288, 2019.

25. M. T. Pham, A. Rajić, J. D. Greig, J. M. Sargeant, A.
Papadopoulos, and S. A. McEwen. A scoping review of
scoping reviews: advancing the approach and
enhancing the consistency, Research synthesis methods,
vol. 5, pp. 371-385, 2014.
https://doi.org/10.1002/jrsm.1123

26. H. Arksey and L. O'Malley. Scoping studies: towards a
methodological framework, International journal of
social research methodology, vol. 8, pp. 19-32, 2005.

27. R. Armstrong, B. J. Hall, J. Doyle, and E. Waters.
‘Scoping the scope’of a cochrane review, Journal of
Public Health, vol. 33, pp. 147-150, 2011.
https://doi.org/10.1093/pubmed/fdr015

28. J. O'Flaherty and C. Phillips. The use of flipped
classrooms in higher education: A scoping review, The
internet and higher education, vol. 25, pp. 85-95, 2015.

29. N. Kokash. A comparison of web service interface
similarity measures, in STAIRS, 2006, pp. 220-231.

30. Y. Zheng and P. Krause. Asynchronous semantics and
anti-patterns for interacting web services, in 2006
Sixth International Conference on Quality Software
(QSIC'06), 2006, pp. 74-84.

31. J. He and I. Yen. Adaptive User Interface Generation
for Web Services, in IEEE International Conference on
e-Business Engineering (ICEBE'07), 2007, pp. 536-539.

32. J. Beaton, S. Y. Jeong, Y. Xie, J. Stylos, and B. A.
Myers. Usability challenges for enterprise service-
oriented architecture APIs, in 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing,
2008, pp. 193-196.
https://doi.org/10.1109/VLHCC.2008.4639084

33. H. Hacigümüs. Anti-Patterns: Integrating Distributed
and Heterogeneous Data Sources in SOAs, in 2008
IEEE Congress on Services-Part I, 2008, pp. 95-96.

34. J. Král and M. Žemlicka. Popular SOA antipatterns, in
2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns,
2009, pp. 271-276.

35. M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo.
Revising WSDL documents: Why and how, IEEE
Internet Computing, vol. 14, pp. 48-56, 2010.
https://doi.org/10.1109/MIC.2010.81

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1839

36. J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo.
Improving Web Service descriptions for effective
service discovery, Science of Computer Programming,
vol. 75, pp. 1001-1021, 2010.

37. J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, and
M. Campo. The EasySOC project: A rich catalog of
best practices for developing Web Service
applications, in 2010 XXIX International Conference of
the Chilean Computer Science Society, 2010, pp. 33-42.

38. J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo.
Automatically detecting opportunities for web service
descriptions improvement, in Conference on e-
Business, e-Services and e-Society, 2010, pp. 139-150.
https://doi.org/10.1007/978-3-642-16283-1_18

39. S. Batra and S. Bawa. Semantic discovery of web
services using principal component analysis,
International Journal of Physical Sciences, vol. 6, pp.
4466-4472, 2011.

40. C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia.
Detecting WSDL bad practices in code-first Web
Services, International Journal of Web and Grid
Services, vol. 7, p. 357, 2011.
https://doi.org/10.1504/IJWGS.2011.044710

41. J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, and
M. Campo. Bottom-up and top-down cobol system
migration to web services, IEEE Internet Computing,
vol. 17, pp. 44-51, 2011.

42. C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia.
Avoiding WSDL bad practices in code-first web
services, Electronic Journal of SADIO (EJS), vol. 11, pp.
31-48, 2012.

43. J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino.
Anti-pattern free code-first web services for state-of-
the-art Java WSDL generation tools, 2013.

44. Z. Han, P. Gong, L. Zhang, J. Ling, and W. Huang.
Definition and detection of control-flow anti-patterns
in process models, in 2013 IEEE 37th Annual Computer
Software and Applications Conference Workshops, 2013,
pp. 433-438.
https://doi.org/10.1109/COMPSACW.2013.111

45. F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B.
Baudry, and J.-M. Jézéquel. SOA Antipatterns: An
Approach for Their Specification and Detection,
International Journal of Cooperative Information
Systems, vol. 22, p. 1341004, 2013.

46. J. M. Rodriguez, M. Crasso, and A. Zunino. An
approach for web service discoverability anti-pattern
detection for journal of web engineering, Journal of
Web Engineering, vol. 12, pp. 131-158, 2013.

47. J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino.
Refactoring code-first Web Services for early avoiding
WSDL anti-patterns: Approach and comprehensive
assessment, Science of Computer Programming, vol. 89,
pp. 374-407, 2014/09/01/ 2014.
https://doi.org/10.1016/j.scico.2014.03.015

48. F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc.
Detection of REST patterns and antipatterns: a
heuristics-based approach, in International Conference
on Service-Oriented Computing, 2014, pp. 230-244.
https://doi.org/10.1007/978-3-662-45391-9_16

49. M. Torkamani and H. Bagheri. A Systematic Method
for Identification of Anti-patterns in Service Oriented
System Development, International Journal of
Electrical and Computer Engineering (IJECE), vol. 4,
pp. 2088-8708, 02/01 2014.

50. C. Mateos, M. Crasso, J. M. Rodriguez, A. Zunino, and
M. Campo. Measuring the impact of the approach to
migration in the quality of web service interfaces,
Enterprise Information Systems, vol. 9, pp. 58-85, 2015.

51. C. Mateos, J. M. Rodriguez, and A. Zunino. A tool to
improve code�first Web services discoverability
through text mining techniques, Software: Practice and
Experience, vol. 45, pp. 925-948, 2015.
https://doi.org/10.1002/spe.2268

52. C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia. A
Stitch in Time Saves Nine: Early Improving Code-
First Web Services Discoverability, International
Journal of Cooperative Information Systems, vol. 24, p.
1550004, 2015.
https://doi.org/10.1142/S0218843015500045

53. F. Palma, J. Gonzalez-huerta, and N. Moha. Are
RESTful APIs Well-designed ? Detection of their
Linguistic (Anti) Patterns, in Int. Conf. Serv. Comput,
2015, pp. 171–187.
https://doi.org/10.1007/978-3-662-48616-0_11

54. J. M. Rodriguez, C. Mateos, and A. Zunino. Assisting
developers to build high-quality code-first Web
Service APIs, J. Web Eng., vol. 14, pp. 251-285, 2015.

55. T. P. Sales and G. Guizzardi. Ontological anti-patterns,
Data Knowl. Eng., vol. 99, pp. 72-104, 2015.

56. H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul, F.
Gargouri, and B. Benatallah. Detecting cloud
(anti)patterns: OCCI perspective, in ICSOC 2016 :
14th International Conference on Service-Oriented
Computing, Banff, Canada, 2016, pp. 202 - 218.
https://doi.org/10.1007/978-3-319-46295-0_13

57. F. Palma, N. Moha, and G. Tremblay. Specification and
Detection of SOA Antipatterns in Web Services, in
Eur. Conf. Softw. Archit., 2014, pp. 58–73.

58. H. Wang, M. Kessentini, and A. Ouni. Bi-level
identification of web service defects, in International
Conference on Service-Oriented Computing, 2016,
October, pp. 352-368.

59. B. Chen and Z. M. Jiang. Characterizing and Detecting
Anti-Patterns in the Logging Code, in 2017 IEEE/ACM
39th International Conference on Software Engineering
(ICSE), 2017, pp. 71-81.

60. V. K. J. Pismag. Prediction of Web Service
Antipatterns Using Machine Learning, Master of
Science (Software Engineering), University of Michigan
- Dearborn, 2017.

61. F. Sabir, G. Rasool, and M. Yousaf. A Lightweight
Approach for Specification and Detection of SOAP
Anti-Patterns., International Journal of Advanced
Computer Science and Applications, vol. 8, pp. 455-467,
2017.
https://doi.org/10.14569/IJACSA.2017.080555

62. S. Velioğlu and Y. E. Selçuk. An automated code smell
and anti-pattern detection approach, in 2017 IEEE
15th International Conference on Software Engineering

Fuad Alshraiedeh et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 1831 - 1840

1840

Research, Management and Applications (SERA), 2017,
pp. 271-275.
https://doi.org/10.1109/SERA.2017.7965737

63. N. Arunachalam, D. Cousalya, and P. Subathra. A Semi-
Markov process based web service recommendation
for anti-pattern detection using P-EA algorithm,
International Journal of Pure and Applied Mathematics,
vol. 119, pp. 1693-1701, 2018.

64. A. Blouin, V. Lelli, B. Baudry, and F. Coulon. User
interface design smell: Automatic detection and
refactoring of Blob listeners, Information and Software
Technology, vol. 102, pp. 49-64, 2018.

65. S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and
G. Antoniol. Keep it simple: Is deep learning good for
linguistic smell detection?, in 2018 IEEE 25th
International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018, pp. 602-611.
https://doi.org/10.1109/SANER.2018.8330265

66. G. K. Kalyani and S. Vasundra. Search Based Web
Service and Business Process Anti Pattern Detection,
International Journal for Research in Engineering
Application & Management (IJREAM), vol. 4, pp. 558-
561, 2018.

67. A. Ouni, H. Wang, M. Kessentini, S. Bouktif, and K.
Inoue. A Hybrid Approach for Improving the Design
Quality of Web Service Interfaces, ACM Trans.
Internet Technol., vol. 19, pp. 1-24, 2018.

68. F. Palma, N. Moha, and Y. Gu. UniDoSA: The Unified
Specification and Detection of Service Antipatterns,
IEEE Transactions on Software Engineering, pp. 1-1,
2018.

69. H. Brabra, A. Mtibaa, F. Petrillo, P. Merle, L. Sliman, N.
Moha, et al. On Semantic Detection of Cloud API
(Anti)Patterns, Information and Software Technology,
vol. 107, pp. 65-82, 2019.
https://doi.org/10.1016/j.infsof.2018.10.012

70. F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N.
Moha. A systematic literature review on the detection
of smells and their evolution in object-oriented and
service-oriented systems, Software: Practice and
Experience, vol. 49, pp. 3-39, 2019.
https://doi.org/10.1002/spe.2639

71. S. Saluja and U. Batra. Assessing Quality by Anti-
pattern Detection in Web Services, SSRN Electron. J.,
pp. 47-52, 2019.

72. S. Saluja and U. Batra. Optimized approach for
antipattern detection in service computing
architecture, Journal of Information and Optimization
Sciences, vol. 40, pp. 1069-1080, 2019.
https://doi.org/10.1080/02522667.2019.1638000

73. J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S.
Wagner, and A. Zimmermann. Towards a Collaborative
Repository for the Documentation of Service-Based

Antipatterns and Bad Smells, in 2019 IEEE
International Conference on Software Architecture
Companion (ICSA-C), 2019, pp. 95-101.

74. C. Mateos, A. Zunino, A. Flores, and S. Misra. COBOL
Systems Migration to SOA: Assessing Antipatterns
and Complexity, Information Technology and Control,
vol. 48, pp. 71-89, 2019.

75. A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y.-G.
Guéhéneuc, and É. Beaudry. An observational study on
the state of REST API uses in Android mobile
applications, in Proceedings of the 6th International
Conference on Mobile Software Engineering and
Systems, 2019, pp. 66-75.

76. J. Pasley. Avoid XML schema wildcards for Web
service interfaces, IEEE Internet Computing, vol. 10, pp.
72-79, 2006.

77. F. Alshraiedeh, S. Hanna, and R. Alazaidah. An
approach to extend WSDL-based data types
specification to enhance web services
understandability, International Journal of Advanced
Computer Science and Applications, vol. 6, pp. 88-98,
2015.
https://doi.org/10.14569/IJACSA.2015.060314

78. F. Palma. Unifying Service Oriented Technologies for
the Specification and Detection of their Antipatterns,
Doctoral dissertation, École Polytechnique de Montréal,
2015.

79. F. Alshraideh and N. Katuk. Enrichment of Data Type
Specification for Web Service Compatibility, in The
3rd Innovation and Analytics Conference &
Exhibition(IACE) 2016, 2016.

80. C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia.
Revising WSDL documents: Why and how, Part 2,
IEEE Internet Computing, vol. 17, pp. 46-53, 2013.

81. Y.-H. Wang and I.-C. Wu. Achieving high and
consistent rendering performance of Java
AWT/Swing on multiple platforms, Software: Practice
and Experience, vol. 39, pp. 701-736, 2009.

82. H. Wang. Intelligent Web Services Architecture
Evolution Via An Automated Learning-Based
Refactoring Framework, Doctor of Philosophy,
University of Michigan Dearborn, 2018.

83. A. Ouni, R. G. Kula, M. Kessentini, and K. Inoue. Web
Service Antipatterns Detection Using Genetic
Programming, presented at the Proceedings of the 2015
Annual Conference on Genetic and Evolutionary
Computation, Madrid, Spain, 2015.

84. A. Arcuri. RESTful API Automated Test Case
Generation with EvoMaster, ACM Trans. Softw. Eng.
Methodol., vol. 28, pp. 1-37, 2019.
https://doi.org/10.1145/3293455

