
Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

126

ABSTRACT

This paper describes an evolutionary hybrid model linking
two algorithms: Particle Swarm Optimization (PSO) and
Simulated Annealing (SA). The basic idea behind using a
hybrid model is improving the reliability of the obtained
results from our first model, namely MPSO (Modified PSO)
based on PSO algorithm, by adding SA algorithm which is
quite popular for its powerful feature of effective escaping
from the trap of local minima. MPSO model uses the concept
of evolutionary neighborhoods associated to parallel
computation, to overcome to the two essential disadvantages
of PSO: high running time and premature convergence.
The presented algorithm has two essential operations: first
running PSO algorithm in parallel using the new concept of
evolutionary neighborhood to obtain a global best solution,
then improving the results with SA algorithm to get the
global optimal solution.
By testing this hybrid algorithm (H-MPSO-SA) on a set of
standard benchmark functions and according to the obtained
results, the program have given satisfactory results of the
hybrid model compared to the basic PSO and MPSO
algorithms.

Key words: Hybrid algorithm, metaheuristic, PSO, SA,
Parallel computing.

1.INTRODUCTION

In recent decades, several optimization methods have
emerged, often used to solve complex engineering problems
in different fields [1]. PSO and SA are among the powerful
metaheuristics used to solve real-world optimization
problems, and have some forces and constraints, as well as
for all other metaheuristics. Particle Swarm Optimization is a
nature-inspired method based on the imitation of social
interaction and creatures’ communication such as bird flocks
and fish schools [2]. It has shown distinguished performance
for solving complex engineering problems such as structural
and biomechanical optimizations, and it is now one of the
most regularly used optimization algorithms. However, High
running time and premature convergence are still great
limitations for PSO, especially for complex optimization
problems with a large search space and high dimension. In
the basic PSO algorithm, particles are traveling in the search
domain trying to find the most effective result, and updating

their positions by their offspring no matter whether they are
improved. In the search space, if a particle goes to an
improved place, it can be changed by the updated. Yet if it
goes to a bad place, it is still substituted by its offspring.
Indeed, the most particles move to bad positions in most of
the time, consequently the full swarm will diverge.

In this work, we propose an efficient hybrid algorithm,
called H-MPSO -SA, to avoid premature convergence of
PSO and to improve the MPSO model. H-MPSO-SA model
is based on the idea that the PSO algorithm allows quick
convergence, as long as SA technique brings the search away
from local optima as a result of its forceful ability of local-
search. Our executed model presents a good adaptation of
PSO and SA parameters, parallel computation, the new
concept of dynamic neighborhood and hybrid strategy. In our
experimentations, the tests conducted on the program have
given satisfactory results of the hybrid model compared to
the basic PSO and MPSO models.

The remainder of this paper is organized as follows: In
Section 2, we present the PSO and SA algorithms. In Section
3, we describe our hybrid approach based on PSO and SA
algorithms. The testing and interpretation of results will be
subject to Section 4, followed by a conclusion.

2.OVERVIEW OF PSO AND SA ALGORITHMS

2.1 Particle Swarm Optimization algorithm

PSO is a stochastic population-based method, impressed
from the nature social behavior and dynamic activities with
communication of animals to solve discrete and
continuous optimization problems [2]. As delineated by its
inventors: J. Kennedy (psychologist) and R. Eberhart
(electrical engineer) in 1995 [2], “particle swarm algorithm
imitates human (or insects) social behavior. Individuals
interact with one another while learning from their own
experience, and gradually the population members move into
better regions of the problem space”.

A. Formalization
PSO algorithm uses a set of agents (named particles) that
represent a swarm traveling across the multidimensional
search space in the search of the optimum. A particle is a
point, and it is represented by its current position Xa = (xa1,
xa2,…,xab), and its current velocity Va = (va1 ,va2 ,…,vab
) a =1,2,…,s; b=1,2,…,m where s is the swarm size.

An evolutionary hybrid algorithm for complex optimization problems

Maria Zemzami1, Norelislam Elhami2, Mhamed Itmi3, Nabil Hmina4
1LITIS-INSA-Rouen, France, maria.zemzami@gmail.com
2LGS-ENSA-Kenitra, Morocco, norelislam@outlook.com

3 LITIS-INSA-Rouen, France, itmi@insa-rouen.fr
4LGS-ENSA-Kenitra, Morocco, hmina5864@gmail.com

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse05822019.pdf

https://doi.org/10.30534/ijatcse/2019/05822019

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

127

For each iteration, PSO makes a search of the optimum by
firstly moving the particles, then evaluating the new position
fitness.
All the particles search for better positions by moving around
the search space, changing their velocities and positions with
every iteration.
The movement of the particle by basic PSO depends on three
important terms: the particle's previous velocity, the
particle's individual best position and the global best
position.
 Updating positions and velocities respectively by formulas
(1) and (2):
V(k+1) = V(k) + C1r1(Pbest(k) - X(k)) + C2r2(Gbest(k) -
X(k)) (1)
X(k+1) = X(k) + V(k+1) (2)

With:
D represents the dimension of the optimization problem,
XaD(k) represents the particle’s position at time step k,
VaD(k) represents the particle’s velocity at time step k,
PbestD(k) represents the best memorized personal particle
position, at time step k,
GbestD(k) represents the best memorized swarm position, at
time step k,
C1, C2 and C3 are acceleration factors,
r1 and r2 are random numbers drawn from the interval [0,1],

PSO algorithm has been at the center of interest of many
researchers in the field of optimization. Several
improvements have been proposed others are still possible.
While in its current state, PSO algorithm remains a very
powerful method. In an environment based on the PSO
method, particles modify their velocities and positions
dynamically by moving in a N-dimensional domain space
until the stopping criterion is reached (figure 1). (For each
particle, taking into consideration its movement information
and those of its neighborhoods) [3].

Figure 1: The particle’s movement by classical PSO

B. Algorithm

Figure 2: The PSO algorithm flowchart

The classical PSO algorithm is a randomized process
invented by [2] (figure 2). The summary of the main steps of
the algorithm is as follows:

(1) Creating the Swarm: Initializing particle’s velocities
and positions. The particles’ positions must be stochastically
distributed in the search domain.

(2) Calculating the particle’s velocity using Formula 1.
(3) Updating the particle’s position using Formula 2.
(4) Repeat steps 2 and 3 until convergence.

C. The concept of neighborhood
The neighborhood of a particle is the subset of particles of
the swarm with which it has direct communication. This
network of relationships between all particles is known as
sociometry, or the topology of the swarm.
We can distinguish two main types of neighborhoods:
The social and static neighborhood: as its name suggests, it
represents the social adjacency. Neighborhoods are no longer
the distance expression but the expression of the exchange of
information, the neighbors are defined in the beginning of
the algorithm and are not updated by the following.
It should be noted that this is an easy type of neighbourhood
to implement.
The geographical and dynamic neighborhood: as its name
suggests, it represents the geographical adjacency. At each
iteration, neighbors must be updated from a preset distance
in the search domain. This is the kind of neighborhood that
was developed in our model.

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

128

In this case, the change of velocity in the equation (1) is
changed by introducing a new term in the formula. Proposed
by [4], its illustration appears in Figure. 3 (see [5]).
V(k+1) = V(k) + C1r1(Pbest(t) - X(k)) + C2r2(Gbest(k) -
X(k))+ C3r3(Pnbest(k) - X(k)) (3)
With: Pnbest: the neighborhood best position; C3: the
acceleration coefficient, r3: random number between 0 and 1.

Figure 3: The particle’s movement by PSO Modified

2.2 Simulated Annealing algorithm
SA is a probabilistic variant to approximate global
optimization of a given function in a large search space. It is
developed in 1983 by [6] to solve large-scale combinatorial
optimization problems. It is motivated by an analogy to
annealing in solids, a technique in which a material (usually
a metal) is subjected to a controlled heating and a slow
cooling process to improve the material inner structure and
consequently to increase its toughness.
The principle of SA method is as follows: first we start by
heating the metal to a certain temperature where it becomes
liquid (the atoms can therefore circulate freely). After
reaching this stage, the temperature is lowered very slowly to
obtain a solid. If this drop in temperature is abrupt, then glass
is obtained "amorphous solid state"; if it is the opposite case,
this drop in temperature is very slow (leaving the atoms time
to reach statistical equilibrium), we will obtain "crystalline
solid state": structures more and more regular, until reaching
a state of minimum energy corresponding to the perfect
structure of a crystal, it is said that the system is "frozen". In
fact, the thermo dynamicists have noticed that a sudden drop
in the temperature of a liquid causes a reproduction of a local
optimum, i.e. an amorphous structure. While a gradual
decrease in the temperature of the liquid leads to a global
optimum, i.e. a well constructed structure.
This is the idea taken into consideration by the metallurgists
who know that if the metal cools too quickly, it will contain
many microscopic defects and if it cools slowly they will get
a well-ordered structure. This method is implemented in
optimization to find the local extrema of a function.

A. Algorithm
SA algorithm is based on Metropolis algorithm, it starts with
an initial value of temperature and a random initial solution,
and then we start looping until our stopping criterion is
reached. In general either the system has adequately cooled,
or a good-enough solution has been found. Hence, we select
a neighbor bringing a small modification to our current

solution. After that, we decide whether to move to that
neighbor solution using the formula (4) “acceptance
probability”. Finally, we decrease the temperature and
continue looping.

Figure 4: Simulated Annealing algorithm flowchart

The acceptance probability of an unimproved movement is:

 (4)
Where:
E is the change in the optimization function,
T represents the value of current temperature, and
R represents a uniform random number drawn from the
interval [0,1].
The SA algorithm can be described by Figure 4 [7].

3.THE PROPOSED HYBRID APPROACH

This section presents a new hybrid H-MPSO-SA algorithm
based on using the Particle Swarm Optimization techniques
in conjunction with the Simulated Annealing approach. In
fact, by using PSO with SA, the advantages of both SA
algorithm (for its strong local-search ability) and PSO
algorithm (for its strong global-search ability) are combined.
This is the basic idea of the H-MPSO-SA (Figure 6).
In our algorithm, there are two main parts:
The first one called MPSO relates to the processing based on
PSO algorithm using the concept of evolutionary
neighborhoods associated to parallel computation.
The second part is about the processing of SA algorithm used
in order to avoid being trapped into local minimum and to
increase the diversity of particles.

P(DE,T)= e-DE/T > R

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

129

Figure 5: Modified PSO model flowchart

The performance of the basic PSO algorithm is affected, (all
calculations are done sequentially) especially for complex
optimization problems. From here comes the idea of
parallelization for PSO to improve its performance.
Several researchers in the field of metaheuristics have been
interested in the concept of parallelization, different parallel
PSO models have been proposed [8]-[12], for our parallel
implementation allowing the parallelization of calculations.
Indeed, threads, kind of processes perform calculations in
parallel on sets of particles situated in several
neighborhoods. Each thread executes the processing of an
iteration for its particles’ group, and then waits for the other
threads to finish their processing for the purpose of updating
the neighborhoods and starting a new iteration. This scenario
is repeated until a sufficient solution is obtained, "the
stopping criterion is reached".
For our parallel approach, the neighborhoods have the shape
of spheres, which are updated at each iteration of the
algorithm: their centers evolve and the value of radius
changes depending on conditions related to the radius value,
the search space and the number of neighborhoods.
Figure 5 is a flowchart of the MPSO model. The reader is
referred to [13] for more details about this approach.
To test the proposed MPSO model, we studied the problem
of the electricity transport, in particular, the electric pylon
example, then we have applied our approach based on PSO
algorithm for this example. According to the experiments
related to this optimization problem, MPSO algorithm is

powerful and surpasses classical PSO in terms of
convergence speed, constraint handling, precision, and
solution quality [14] [15].
To escape the stagnation of the MPSO algorithm in local
optima, we propose an efficient hybrid model, called H-
MPSO-SA, based on the idea that PSO algorithm assured
fast convergence, while SA algorithm brings the search out
of local optima because of its strong local-search ability. Our
H-MPSO-SA algorithm does not use the SA algorithm in
along all PSO algorithm iterations, but the SA algorithm
performs its processing after a specific number of iterations
(predefined before starting the program), and then PSO
algorithm continue its calculations. We found that it is more
judicious than using it at each PSO iteration.

Figure 6: Hybrid MPSOSA flowchart

If in each iteration we’d used both PSO and SA, then SA will
try to diversify the points and PSO will try to converge the
points at the same time, which will in turn delay the
convergence of PSO as well as the capabilities of SA will
also not be effective. So, we have applied PSO at the first,
and applied SA after every ‘X’ PSO iterations, in order to
give SA the possibility to escape from the local optima and
diversify the prematurely converged particles in the search
space.

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

130

Therefore, the hybrid model is designed to solve complex
optimization problems, with several local optima and a large
search domain.
On the one hand thanks to parallel PSO, our model is able to
ensure fast convergence (most of the time), on the other
hand, the use of SA algorithm allow escaping from a local
optimum.
For our model, SA algorithm is applied to the last best
solution found so far, each ‘X’ iterations that is predefined at
the beginning of the program depending on the optimization
problem; in order to overcome the PSO premature
convergence.
The particularity of the hybridization presented in this model
is based on the combination of the advantages of PSO and
SA algorithms. Choosing good PSO parameters, particularly
the notion of geographical evolutionary neighborhood, which
allows good exploration and exploitation of the search space
(by well sharing information between different
neighborhoods) especially with the presence of the SA
algorithm known by its large local search capacity. Parallel
computation is used to improve the quality of the solution
found in terms of computing time.

The flowchart of the suggested model H-MPSO-SA is
presented in Figure 6. The reader is referred to [16]-[20] for
other versions of hybrid PSO and SA algorithms.
(1): « T » the initial temperature of the system (it decreases
after each iteration to stabilize the system).
(2): « X » the application frequency of the SA algorithm, so
we can optimize the calculation time.
(3): V(k+1) = V(k) + C1r1(Pbest(k) - X(k)) + C2r2(Gbest(k)-
X(k))+ C3r3(Pn(k) - X(k))
(4): X(k+1) = X(k) + V(k+1)
(5): The probability of acceptance = Exp(((difference-
energy) / (temperature))) = e-DE/T

With:
Exp: the exponential function.
Difference-energy = energy of Global best – energy of
random Local best.
Temperature: Current temperature of SA algorithm.

4.EXPERIMENTAL RESULTS

For our model based on PSO and SA algorithms, the
modification includes four categories: a new version of
evolutionary neighborhood, the concept of parallelization,
adjustment of the PSO and SA parameters, and the hybrid
model. These modifications of H-MPSO-SA algorithm
improve its performance.

4.1. Benchmark problems
In literature, there are collections of problems specifically
used to test the performance of the optimization methods,
such as: accuracy, time consuming, the solution quality,
precision, etc.
Ten test functions (f1-f10) are used in this paper to prove the
performance of our hybrid model.

These set of functions were applied on different optimization
problems and provides a reliable source of credible data that
can be used for the purpose of optimization techniques.
For each of these test functions, there could be many local
optima as well as one or more global optima in their solution
space. As we keep increasing the number of dimensions, the
problem becomes more complex, more local optima are
likely to occur and it leads to delay in converging to the
correct global solution ‘the optimum’ for that function. For
this study 2, 5, 10, 15, 20 and 30 dimensional functions are
taken.

Table 1: Description of the used functions in our experiments

Function Range ƒmin Dim

ƒ1 Sphere ±5,12 0 30
ƒ2 Griewank ±600 0 30

ƒ3 Rosenbrock ±30 0 30
ƒ4 Rastring ±5.12 0 30
ƒ5 Schwefel ±500 0 30
ƒ6 Ackley ±32 0 30

ƒ7 Michalewicz ±π -9.66015 10
ƒ8 Shubert ±10 -186.739 10

ƒ9 Step ±100 0 30
ƒ10 Himmelblau ±30 -3.78396 2

4.2. Experimental Settings
Like all Evolutionary Algorithms, PSO and SA methods
have a set of parameters, which is to be defined by the user.
Our H-MPSO-SA program has an Interface Human Machine
where the user can choose all the PSO and SA parameters
according to the user need, such as: the definition of the
global search space, the dimension of the optimization
problem, the number of used particles, the optimization
problem (i.e. the objective function), the communication
topology, initial SA temperature, acceleration coefficients,
the cooling rate, the stopping criterion etc. (see Figure 7).
These parameters vary according to the complexity of the
optimization problem.

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

131

Figure 7: Screenshot of user interface (PSO and SA parameters)

For this study, a fixed population size of forty particles is
taken for all the optimization problems, which gave
reasonably good results. Similarly various examples are
available on the variations done in inertia weight factor and
acceleration constants coefficients.
For the present study, the list of the used PSO and SA
parameters, which gave during the experiments, sufficiently
good results are mentioned below:
- Number of particles: 40.
- Number of iterations: 1500.
- Communication topology: Ring.
- Acceleration factors: c1 = 1.25, c2 = 2.25, c3: 2.25.
- Initial SA temperature: 100
- Cooling rate: 0.001.
- X=5 (With X: the number of PSO iterations before starting
the SA processing).
-Number of threads: Depends on the number of created
neighborhoods. (Each thread is assigned a neighborhood
processing).
-Radius value: Depends on the objective function search
space.
The choice of radius value is very important, because
neighborhoods are created using this value; (a very large
radius value is equal to a small number of neighborhoods,
while a small value is equal to many. So the choice of this
criterion remains critical and depends on the problem to be
optimized).

4.3. Results
The presented results are related to a set of 10 test functions,
each function contains a number of local and global minima.
For this experiment we used an average of 100000 function
evaluations.
Programming language used is JAVA. Threads are the
technology used in Java to make multitasking applications.
We were interested in this technology to take advantage of

parallelism in terms of reducing computation time and a
better use of material resources of the machine.
To demonstrate the quality of our Java code, we used JUnit
framework for the implementation and execution of
automated unit tests. Throughout the unit test development
process were made on the different classes / components of
the program to ensure that the code still meets the needs even
after any changes.
In the following graphs we give the detail of the average of
results namely the values of the execution time in seconds
(Fig. 8), the SR (Success Rate): the success rate represents
the percentage of function convergence to the right solution
(Fig. 9), and (Fig. 10) SD (Standard Deviation) represents
the standard deviation computed using the formula:
SD = 1 / n((Xi- X*)2)

i=1

n

å
Where X* is the optimal solution and Xi

the solution found for each test for the basic PSO, MPSO and
hybrid PSO-SA model on a set of ten functions.
According to the results, we can say that the proposed H-
MPSO-SA algorithm provides the optimal solution with a
higher probability and the computation time in H-MPSO-SA
is lower than in the basic PSO and MPSO. The graphical
results are illustrated in the three following figures.

Figure 8: Computation time performance for PSO, MPSO and H-

MPSO-SA

Figure 9: Success performance curves for PSO, MPSO and H-

MPSO-SA

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

132

Figure 10: Standard deviation study for PSO, MPSO and H-MPSO-

SA

5. CONCLUSIONS

For this work, an efficient hybrid version of Particle Swarm
Optimization and Simulated Annealing algorithms is
presented. In this model, for the PSO part, two new concepts
are linked: dynamic neighborhoods and parallel computation,
in order to improve the PSO performance and to avoid its
weaknesses (high running time and premature convergence).
PSO is a robust metaheuristic based on population solutions.
It is used in several fields and proved high performance.
On the other hand, SA algorithm is very known for its
powerful local-search capacity, and it is used to ensures that
the search jump out of local optima.
This hybrid approach makes full use of the local and global
search optimization ability of both SA and PSO respectively
and overcomes the limitations of each algorithm separately
possesses. Through application of SA to PSO, H-MPSO-SA
model is capable of escaping from local optima and succeeds
in converging into the global optima in the search space in a
very good time consuming.
The proposed model was tested on a set of optimization
functions. From the obtained results, it can conclude that H-
MPSO-SA model performed much better than a classical
PSO and MPSO on this series of optimization problems.
Finally, in the future we intend to compare H-MPSO-SA
algorithm with other hybrid algorithms and to test the
program on real optimization problems.

ACKNOWLEDGEMENT

This research is supported by « XTERM »: Complex
Systems, Territories Intelligence and Mobility, co-financed
by the European Union with the European regional
development fund (ERDF) and Normandy Region.

REFERENCES

1. Fatiha Djaafar, Baghdad Hadri, Ghalem Bachir.
Optimization and Comparison between the
Efficiency of InGaP and GaAs Single Solar Cells
with and without a Window Layer. International

Journal of Advanced Trends in Computer Science and
Engineering, vol. 7, no. 4, pp.61- 66. 2018.

 https://doi.org/10.30534/ijatcse/2018/01742018
2. J. Kennedy and R. Eberhart. Particle Swarm

Optimization. In: Proceedings of the IEEE
International Joint Conference on Neural Networks,
IEEE Press, vol. 8, no. 3, pp. 1943–1948, 1995.

3. Y. Cooren. Perfectionnement d'un algorithme
adaptatif d'Optimisation par Essaim Particulaire.
Applications en génie médical et en électronique.
Doctorat thesis, University of Paris 12 Val de Marne,
France, 2008.

4. B. Bochnek et P. Fory’s. Structural optimization for
post buckling behavior using particle swarms. Struct
Multidisc Optim. Pages 521-531, 2006.
https://doi.org/10.1007/s00158-006-0044-8

5. N. Elhami, R. Ellaia, M. Itmi. Hybrid Evolutionary
Optimization Algorithm MPSO-SA. In: International
Journal of Simulation and Multidisciplinary
Optimimisation, Vol. 4, pp. 27- 32, 2010.
https://doi.org/10.1051/ijsmdo/2010004

6. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi.
Optimization by simulated annealing. Science, vol.
220, no. 4598, pp. 671–680, 1983.
https://doi.org/10.1126/science.220.4598.671

7. S. Zhan, J. Lin, Z. Zhang, and Y. Zhong. List-Based
Simulated Annealing Algorithm for Traveling
Salesman Problem. In Hindawi Publishing Corporation
Computational Intelligence and Neuroscience Volume
2016, Article ID 1712630. 2016.
https://doi.org/10.1155/2016/1712630

8. P. Rabanal, I. Rodríguez and F. Rubio. Parallelizing
Particle Swarm Optimization in a Functional
Programming Environment. In Algorithms2014 : vol.
7, pp. 554–581, 2014.
https://doi.org/10.3390/a7040554

9. K. Byung-I and G. Alan. Parallel asynchronous
particle swarm optimization. International Journal For
Numerical Methods In Engineering, vol. 67, pp. 578-
595, 2006.
https://doi.org/10.1002/nme.1646

10. J. Chang, S. Chu, J. Roddick and J. Pan. A Parallel
Particle Swarm Optimization Algorithm With
Communication Strategies. In: Journal of Information
Science and Engineering, 2005.

11. M.Zemzami, N.Elhami, M.Itmi and N.Hmina.
Parallèlisation de la Méthode PSO: Découpage de
l’espace et traitement par lot des particules. In:
International Workshop on New Services and Networks
(WNSN’16). Khouribga. Morocco. 2016.

12. M.Zemzami, N.Elhami, M.Itmi and N.Hmina. A New
Parallel Approach For The Exploitation Of The
Search Space Based On PSO Algorithm. In: IEEE 4th
International Colloquium in Information Science and
Technology (CIST’16). Tangier. Morocco. Scopus
Indexed 2016.
https://doi.org/10.1109/CIST.2016.7805024

13. M.Zemzami, N.Elhami, M.Itmi and N.Hmina.
Parallelization of the PSO algorithm on evolutionary
neighborhoods. In: International Conference on

Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 126 - 133

133

Modeling, Optimization and Simulation (MOSIM’16).
Montréal. Canada. 2016.

14. M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M.
Itmi, and N. Hmina. Applying a new parallelized
version of PSO algorithm for electrical power
transmission. In International Conference on Materials
Engineering and Nanotechnology (ICMEN’17). Kuala
Lumpur, Malizia. Indexed by Ei Compendex and Scopus
(2017).
https://doi.org/10.1088/1757-899X/205/1/012032

15. M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M.
Itmi, and N. Hmina. Electrical Power Transmission
Optimization based on a New Version of PSO
Algorithm. (Published 22/02/17 DOI:
10.21494/ISTE.OP.2017.0127). (2017)
https://doi.org/10.21494/ISTE.OP.2017.0127

16. G. Yang, D. Chen, and G. Zhou. A new hybrid
algorithm of particle swarm optimization. In Lecture
Notes in Computer Science, vol. 4115, pp. 50–60, 2006.
https://doi.org/10.1007/11816102_6

17. M. Bahrepour, E. Mahdipour, R. Cheloi, and M.
Yaghoobi. Super-sapso: a new sa-based pso
algorithm. in Applications of Soft Computing, vol. 58,
pp. 423–430, 2009.
https://doi.org/10.1007/978-3-540-89619-7_41

18. W. J. Xia and Z. M. Wu. A hybrid particle swarm
optimization approach for the job-shop scheduling
problem. International Journal of Advanced
Manufacturing Technology, vol. 29, no. 3- 4, pp. 360–
366, 2006.
https://doi.org/10.1007/s00170-005-2513-4

19. X. Wang and J. Li. Hybrid particle swarm
optimization with simulated annealing. In
Proceedings of the 3rd International Conference on
Machine Learning and Cybernetics (ICMLC ’04), vol. 4,
pp. 2402–2405, 2004.

20. L. Idoumghar, M. Melkemi, R. Schott, M.I Aouad.
Hybrid PSO-SA Type Algorithms for Multimodal
Function Optimization and Reducing Energy
Consumption in Embedded Systems. Applied
Computational Intelligence and Soft Computing, 2011,
2011, pp.Article ID 138078.
https://doi.org/10.1155/2011/138078

