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ABSTRACT 
 
This paper describes an evolutionary hybrid model linking 
two algorithms: Particle Swarm Optimization (PSO) and 
Simulated Annealing (SA). The basic idea behind using a 
hybrid model is improving the reliability of the obtained 
results from our first model, namely MPSO (Modified PSO) 
based on PSO algorithm, by adding SA algorithm which is 
quite popular for its powerful feature of effective escaping 
from the trap of local minima. MPSO model uses the concept 
of evolutionary neighborhoods associated to parallel 
computation, to overcome to the two essential disadvantages 
of PSO: high running time and premature convergence.  
The presented algorithm has two essential operations: first 
running PSO algorithm in parallel using the new concept of 
evolutionary neighborhood to obtain a global best solution, 
then improving the results with SA algorithm to get the 
global optimal solution.  
By testing this hybrid algorithm (H-MPSO-SA) on a set of 
standard benchmark functions and according to the obtained 
results, the program have given satisfactory results of the 
hybrid model compared to the basic PSO and MPSO 
algorithms.   
 
Key words: Hybrid algorithm, metaheuristic, PSO, SA, 
Parallel computing.  
 
1.INTRODUCTION 

In recent decades, several optimization methods have 
emerged, often used to solve complex engineering problems 
in different fields [1]. PSO and SA are among the powerful 
metaheuristics used to solve real-world optimization 
problems, and have some forces and constraints, as well as 
for all other metaheuristics. Particle Swarm Optimization is a 
nature-inspired method based on the imitation of social 
interaction and creatures’ communication such as bird flocks 
and fish schools [2]. It has shown distinguished performance 
for solving complex engineering problems such as structural 
and biomechanical optimizations, and it is now one of the 
most regularly used optimization algorithms. However, High 
running time and premature convergence are still great 
limitations for PSO, especially for complex optimization 
problems with a large search space and high dimension. In 
the basic PSO algorithm, particles are traveling in the search 
domain trying to find the most effective result, and updating 

their positions by their offspring no matter whether they are 
improved. In the search space, if a particle goes to an 
improved place, it can be changed by the updated. Yet if it 
goes to a bad place, it is still substituted by its offspring. 
Indeed, the most particles move to bad positions in most of 
the time, consequently the full swarm will diverge.  

In this work, we propose an efficient hybrid algorithm, 
called H-MPSO -SA, to avoid premature convergence of 
PSO and to improve the MPSO model. H-MPSO-SA model 
is based on the idea that the PSO algorithm allows quick 
convergence, as long as SA technique brings the search away 
from local optima as a result of its forceful ability of local-
search. Our executed model presents a good adaptation of 
PSO and SA parameters, parallel computation, the new 
concept of dynamic neighborhood and hybrid strategy. In our 
experimentations, the tests conducted on the program have 
given satisfactory results of the hybrid model compared to 
the basic PSO and MPSO models. 

The remainder of this paper is organized as follows: In 
Section 2, we present the PSO and SA algorithms. In Section 
3, we describe our hybrid approach based on PSO and SA 
algorithms. The testing and interpretation of results will be 
subject to Section 4, followed by a conclusion. 

2.OVERVIEW OF PSO AND SA ALGORITHMS 
 

2.1 Particle Swarm Optimization algorithm 

PSO is a stochastic population-based method, impressed 
from the nature social behavior and dynamic activities with 
communication of animals to solve discrete and 
continuous optimization problems [2]. As delineated by its 
inventors: J. Kennedy (psychologist) and R. Eberhart 
(electrical engineer) in 1995 [2], “particle swarm algorithm 
imitates human (or insects) social behavior. Individuals 
interact with one another while learning from their own 
experience, and gradually the population members move into 
better regions of the problem space”. 

A. Formalization 
PSO algorithm uses a set of agents (named particles) that 
represent a swarm traveling across the multidimensional 
search space in the search of the optimum. A particle is a 
point, and it is represented by its current position Xa = (xa1, 
xa2,…,xab ), and its current velocity Va = (va1 ,va2 ,…,vab 
) a =1,2,…,s; b=1,2,…,m where s is the swarm size. 
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For each iteration, PSO makes a search of the optimum by 
firstly moving the particles, then evaluating the new position 
fitness.  
All the particles search for better positions by moving around 
the search space, changing their velocities and positions with 
every iteration. 
The movement of the particle by basic PSO depends on three 
important terms: the particle's previous velocity, the 
particle's individual best position and the global best 
position. 
 Updating positions and velocities respectively by formulas 
(1) and (2):  
V(k+1) = V(k) + C1r1(Pbest(k) - X(k)) + C2r2(Gbest(k) - 
X(k))                                                                           (1) 
X(k+1) = X(k) + V(k+1)      (2) 
 
With:  
D represents the dimension of the optimization problem,  
XaD(k) represents the particle’s position at time step k,  
VaD(k) represents the particle’s velocity at time step k, 
PbestD(k) represents the best memorized personal particle 
position, at time step k, 
GbestD(k) represents the best memorized swarm position, at 
time step k, 
C1, C2 and C3 are acceleration factors,  
r1 and r2 are random numbers drawn from the interval [0,1], 
 
PSO algorithm has been at the center of interest of many 
researchers in the field of optimization. Several 
improvements have been proposed others are still possible. 
While in its current state, PSO algorithm remains a very 
powerful method. In an environment based on the PSO 
method, particles modify their velocities and positions 
dynamically by moving in a N-dimensional domain space 
until the stopping criterion is reached (figure 1). (For each 
particle, taking into consideration its movement information 
and those of its neighborhoods) [3].  

 
Figure 1: The particle’s movement by classical PSO 

B. Algorithm 

 
Figure 2: The PSO algorithm flowchart 

 
The classical PSO algorithm is a randomized process 
invented by [2] (figure 2). The summary of the main steps of 
the algorithm is as follows: 

(1) Creating the Swarm: Initializing particle’s velocities 
and positions. The particles’ positions must be stochastically 
distributed in the search domain. 

(2) Calculating the particle’s velocity using Formula 1. 
(3) Updating the particle’s position using Formula 2. 
(4) Repeat steps 2 and 3 until convergence.  

C. The concept of neighborhood 
The neighborhood of a particle is the subset of particles of 
the swarm with which it has direct communication. This 
network of relationships between all particles is known as 
sociometry, or the topology of the swarm. 
We can distinguish two main types of neighborhoods:  
The social and static neighborhood:  as its name suggests, it 
represents the social adjacency. Neighborhoods are no longer 
the distance expression but the expression of the exchange of 
information, the neighbors are defined in the beginning of 
the algorithm and are not updated by the following.  
It should be noted that this is an easy type of neighbourhood 
to implement. 
The geographical and dynamic neighborhood: as its name 
suggests, it represents the geographical adjacency. At each 
iteration, neighbors must be updated from a preset distance 
in the search domain. This is the kind of neighborhood that 
was developed in our model.  
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In this case, the change of velocity in the equation (1) is 
changed by introducing a new term in the formula. Proposed 
by [4], its illustration appears in Figure. 3 (see [5]). 
V(k+1) = V(k) + C1r1(Pbest(t) - X(k)) + C2r2(Gbest(k) - 
X(k))+ C3r3(Pnbest(k) - X(k))    (3) 
With: Pnbest: the neighborhood best position; C3: the 
acceleration coefficient, r3: random number between 0 and 1. 
 

 
Figure 3: The particle’s movement by PSO Modified 

2.2 Simulated Annealing algorithm 
SA is a probabilistic variant to approximate global 
optimization of a given function in a large search space. It is 
developed in 1983 by [6] to solve large-scale combinatorial 
optimization problems. It is motivated by an analogy to 
annealing in solids, a technique in which a material (usually 
a metal) is subjected to a controlled heating and a slow 
cooling process to improve the material inner structure and 
consequently to increase its toughness. 
The principle of SA method is as follows: first we start by 
heating the metal to a certain temperature where it becomes 
liquid (the atoms can therefore circulate freely). After 
reaching this stage, the temperature is lowered very slowly to 
obtain a solid. If this drop in temperature is abrupt, then glass 
is obtained "amorphous solid state"; if it is the opposite case, 
this drop in temperature is very slow (leaving the atoms time 
to reach statistical equilibrium), we will obtain "crystalline 
solid state": structures more and more regular, until reaching 
a state of minimum energy corresponding to the perfect 
structure of a crystal, it is said that the system is "frozen". In 
fact, the thermo dynamicists have noticed that a sudden drop 
in the temperature of a liquid causes a reproduction of a local 
optimum, i.e. an amorphous structure. While a gradual 
decrease in the temperature of the liquid leads to a global 
optimum, i.e. a well constructed structure. 
This is the idea taken into consideration by the metallurgists 
who know that if the metal cools too quickly, it will contain 
many microscopic defects and if it cools slowly they will get 
a well-ordered structure. This method is implemented in 
optimization to find the local extrema of a function. 

A. Algorithm 
SA algorithm is based on Metropolis algorithm, it starts with 
an initial value of temperature and a random initial solution, 
and then we start looping until our stopping criterion is 
reached. In general either the system has adequately cooled, 
or a good-enough solution has been found. Hence, we select 
a neighbor bringing a small modification to our current 

solution. After that, we decide whether to move to that 
neighbor solution using the formula (4) “acceptance 
probability”. Finally, we decrease the temperature and 
continue looping.  

 
Figure 4: Simulated Annealing algorithm flowchart 

 
The acceptance probability of an unimproved movement is: 

                       (4) 
Where: 
E is the change in the optimization function, 
T represents the value of current temperature, and 
R represents a uniform random number drawn from the 
interval [0,1]. 
The SA algorithm can be described by Figure 4 [7]. 

 
3.THE PROPOSED HYBRID APPROACH 
 
This section presents a new hybrid H-MPSO-SA algorithm 
based on using the Particle Swarm Optimization techniques 
in conjunction with the Simulated Annealing approach. In 
fact, by using PSO with SA, the advantages of both SA 
algorithm (for its strong local-search ability) and PSO 
algorithm (for its strong global-search ability) are combined. 
This is the basic idea of the H-MPSO-SA (Figure 6). 
In our algorithm, there are two main parts: 
The first one called MPSO relates to the processing based on 
PSO algorithm using the concept of evolutionary 
neighborhoods associated to parallel computation. 
The second part is about the processing of SA algorithm used 
in order to avoid being trapped into local minimum and to 
increase the diversity of particles. 

P(DE,T )= e-DE/T > R
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Figure 5: Modified PSO model flowchart 

 
The performance of the basic PSO algorithm is affected, (all 
calculations are done sequentially) especially for complex 
optimization problems. From here comes the idea of 
parallelization for PSO to improve its performance. 
Several researchers in the field of metaheuristics have been 
interested in the concept of parallelization, different parallel 
PSO models have been proposed [8]-[12], for our parallel 
implementation allowing the parallelization of calculations. 
Indeed, threads, kind of processes perform calculations in 
parallel on sets of particles situated in several 
neighborhoods. Each thread executes the processing of an 
iteration for its particles’ group, and then waits for the other 
threads to finish their processing for the purpose of updating 
the neighborhoods and starting a new iteration. This scenario 
is repeated until a sufficient solution is obtained, "the 
stopping criterion is reached". 
For our parallel approach, the neighborhoods have the shape 
of spheres, which are updated at each iteration of the 
algorithm: their centers evolve and the value of radius 
changes depending on conditions related to the radius value, 
the search space and the number of neighborhoods. 
Figure 5 is a flowchart of the MPSO model. The reader is 
referred to [13] for more details about this approach. 
To test the proposed MPSO model, we studied the problem 
of the electricity transport, in particular, the electric pylon 
example, then we have applied our approach based on PSO 
algorithm for this example. According to the experiments 
related to this optimization problem, MPSO algorithm is 

powerful and surpasses classical PSO in terms of 
convergence speed, constraint handling, precision, and 
solution quality [14]  [15]. 
To escape the stagnation of the MPSO algorithm in local 
optima, we propose an efficient hybrid model, called H-
MPSO-SA, based on the idea that PSO algorithm assured 
fast convergence, while SA algorithm brings the search out 
of local optima because of its strong local-search ability. Our 
H-MPSO-SA algorithm does not use the SA algorithm in 
along all PSO algorithm iterations, but the SA algorithm 
performs its processing after a specific number of iterations 
(predefined before starting the program), and then PSO 
algorithm continue its calculations. We found that it is more 
judicious than using it at each PSO iteration.  
 

 
Figure 6: Hybrid MPSOSA flowchart 

 
If in each iteration we’d used both PSO and SA, then SA will 
try to diversify the points and PSO will try to converge the 
points at the same time, which will in turn delay the 
convergence of PSO as well as the capabilities of SA will 
also not be effective. So, we have applied PSO at the first, 
and applied SA after every ‘X’ PSO iterations, in order to 
give SA the possibility to escape from the local optima and 
diversify the prematurely converged particles in the search 
space. 
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Therefore, the hybrid model is designed to solve complex 
optimization problems, with several local optima and a large 
search domain.  
On the one hand thanks to parallel PSO, our model is able to 
ensure fast convergence (most of the time), on the other 
hand, the use of SA algorithm allow escaping from a local 
optimum. 
For our model, SA algorithm is applied to the last best 
solution found so far, each ‘X’ iterations that is predefined at 
the beginning of the program depending on the optimization 
problem; in order to overcome the PSO premature 
convergence.  
The particularity of the hybridization presented in this model 
is based on the combination of the advantages of PSO and 
SA algorithms. Choosing good PSO parameters, particularly 
the notion of geographical evolutionary neighborhood, which 
allows good exploration and exploitation of the search space 
(by well sharing information between different 
neighborhoods) especially with the presence of the SA 
algorithm known by its large local search capacity. Parallel 
computation is used to improve the quality of the solution 
found in terms of computing time. 
 
The flowchart of the suggested model H-MPSO-SA is 
presented in Figure 6. The reader is referred to [16]-[20] for 
other versions of hybrid PSO and SA algorithms. 
(1): « T » the initial temperature of the system (it decreases 
after each iteration to stabilize the system). 
(2): « X » the application frequency of the SA algorithm, so 
we can optimize the calculation time. 
(3): V(k+1) = V(k) + C1r1(Pbest(k) - X(k)) + C2r2(Gbest(k)-  
X(k))+ C3r3(Pn(k) - X(k)) 
(4): X(k+1) = X(k) + V(k+1)  
(5): The probability of acceptance = Exp(((difference-
energy) / (temperature)))   = e-DE/T

 
With:  
Exp: the exponential function. 
Difference-energy = energy of Global best – energy of 
random Local best. 
Temperature: Current temperature of SA algorithm. 
 
4.EXPERIMENTAL RESULTS 
 
For our model based on PSO and SA algorithms, the 
modification includes four categories: a new version of 
evolutionary neighborhood, the concept of parallelization, 
adjustment of the PSO and SA parameters, and the hybrid 
model. These modifications of H-MPSO-SA algorithm 
improve its performance. 

4.1. Benchmark problems 
In literature, there are collections of problems specifically 
used to test the performance of the optimization methods, 
such as: accuracy, time consuming, the solution quality, 
precision, etc.   
Ten test functions (f1-f10) are used in this paper to prove the 
performance of our hybrid model. 

These set of functions were applied on different optimization 
problems and provides a reliable source of credible data that 
can be used for the purpose of optimization techniques.  
For each of these test functions, there could be many local 
optima as well as one or more global optima in their solution 
space.  As we keep increasing the number of dimensions, the 
problem becomes more complex, more local optima are 
likely to occur and it leads to delay in converging to the 
correct global solution ‘the optimum’ for that function. For 
this study 2, 5, 10, 15, 20 and 30 dimensional functions are 
taken. 
 

Table 1: Description of the used functions in our experiments 
 

Function Range ƒmin Dim 

ƒ1 Sphere ±5,12 0 30 
ƒ2 Griewank ±600 0 30 

ƒ3 Rosenbrock ±30 0 30 
ƒ4 Rastring ±5.12 0 30 
ƒ5 Schwefel ±500 0 30 
ƒ6 Ackley ±32 0 30 

ƒ7 Michalewicz ±π -9.66015 10 
ƒ8 Shubert ±10 -186.739 10 

ƒ9 Step ±100 0 30 
ƒ10 Himmelblau ±30 -3.78396 2 

 

4.2. Experimental Settings 
Like all Evolutionary Algorithms, PSO and SA methods 
have a set of parameters, which is to be defined by the user. 
Our H-MPSO-SA program has an Interface Human Machine 
where the user can choose all the PSO and SA parameters 
according to the user need, such as: the definition of the 
global search space, the dimension of the optimization 
problem, the number of used particles, the optimization 
problem (i.e. the objective function), the communication 
topology, initial SA temperature, acceleration coefficients, 
the cooling rate, the stopping criterion etc. (see Figure 7). 
These parameters vary according to the complexity of the 
optimization problem. 
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Figure 7: Screenshot of user interface (PSO and SA parameters) 

 
For this study, a fixed population size of forty particles is 
taken for all the optimization problems, which gave 
reasonably good results. Similarly various examples are 
available on the variations done in inertia weight factor and 
acceleration constants coefficients.  
For the present study, the list of the used PSO and SA 
parameters, which gave during the experiments, sufficiently 
good results are mentioned below: 
- Number of particles: 40. 
- Number of iterations: 1500. 
- Communication topology: Ring. 
- Acceleration factors: c1 = 1.25, c2 = 2.25, c3: 2.25. 
- Initial SA temperature: 100 
- Cooling rate: 0.001. 
- X=5 (With X: the number of PSO iterations before starting 
the SA processing). 
-Number of threads: Depends on the number of created 
neighborhoods. (Each thread is assigned a neighborhood 
processing). 
-Radius value: Depends on the objective function search 
space.  
The choice of radius value is very important, because 
neighborhoods are created using this value; (a very large 
radius value is equal to a small number of neighborhoods, 
while a small value is equal to many. So the choice of this 
criterion remains critical and depends on the problem to be 
optimized). 

4.3. Results 
The presented results are related to a set of 10 test functions, 
each function contains a number of local and global minima. 
For this experiment we used an average of 100000 function 
evaluations. 
Programming language used is JAVA. Threads are the 
technology used in Java to make multitasking applications. 
We were interested in this technology to take advantage of 

parallelism in terms of reducing computation time and a 
better use of material resources of the machine.  
To demonstrate the quality of our Java code, we used JUnit 
framework for the implementation and execution of 
automated unit tests. Throughout the unit test development 
process were made on the different classes / components of 
the program to ensure that the code still meets the needs even 
after any changes. 
In the following graphs we give the detail of the average of 
results namely the values of the execution time in seconds 
(Fig. 8), the SR (Success Rate): the success rate represents 
the percentage of function convergence to the right solution 
(Fig. 9), and (Fig. 10) SD (Standard Deviation) represents 
the standard deviation computed using the formula:  
SD = 1 / n( (Xi- X*)2 )

i=1

n

å
Where X* is the optimal solution and Xi 

the solution found for each test for the basic PSO, MPSO and 
hybrid PSO-SA model on a set of ten functions. 
According to the results, we can say that the proposed H-
MPSO-SA algorithm provides the optimal solution with a 
higher probability and the computation time in H-MPSO-SA 
is lower than in the basic PSO and MPSO. The graphical 
results are illustrated in the three following figures. 

 
Figure 8: Computation time performance for PSO, MPSO and H-

MPSO-SA 

 
Figure 9: Success performance curves for PSO, MPSO and H-

MPSO-SA 
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Figure 10: Standard deviation study for PSO, MPSO and H-MPSO-

SA 
 

5. CONCLUSIONS  
 
For this work, an efficient hybrid version of Particle Swarm 
Optimization and Simulated Annealing algorithms is 
presented. In this model, for the PSO part, two new concepts 
are linked: dynamic neighborhoods and parallel computation, 
in order to improve the PSO performance and to avoid its 
weaknesses (high running time and premature convergence).  
PSO is a robust metaheuristic based on population solutions. 
It is used in several fields and proved high performance.  
On the other hand, SA algorithm is very known for its 
powerful local-search capacity, and it is used to ensures that 
the search jump out of local optima.   
This hybrid approach makes full use of the local and global 
search optimization ability of both SA and PSO respectively 
and overcomes the limitations of each algorithm separately 
possesses. Through application of SA to PSO, H-MPSO-SA 
model is capable of escaping from local optima and succeeds 
in converging into the global optima in the search space in a 
very good time consuming. 
The proposed model was tested on a set of optimization 
functions. From the obtained results, it can conclude that H-
MPSO-SA model performed much better than a classical 
PSO and MPSO on this series of optimization problems.  
Finally, in the future we intend to compare H-MPSO-SA 
algorithm with other hybrid algorithms and to test the 
program on real optimization problems. 
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