
Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

31

ABSTRACT

This paper presents strategies to map play time in Steam
dataset into 5-Star rating. Our objective is to check whether
we could use the created explicit feedback in recommender
system. In this study we calculated z-score for each users’
duration of playtime and using the score we applied 3
strategies to map duration of playtime into explicit feedback.
These strategies are Same Size Bin (SSB), Breakpoint Based
Bin Sized (BBS) and Hybrid Based Bin Size (HBS).
According to RSME value and Hit Rate, we found that the
best strategies to map duration of playtime into explicit
feedback is using HBS strategies. We checked the feasibility
of using the created explicit feedback by feeding it to KNN
algorithm. We compare RSME from others researches that
used the same algorithm and found the RSME value that we
get are in the same range as the researches. Based on this
observation, it can be concluded that it is feasible to use
created explicit feedback in Recommender System.

Key words: Recommender System, Implicit Feedback,
Explicit Feedback, Steam Platform.

1. INTRODUCTION

Recommender system are developed to filter information for
users. Using recommender system, users can make faster and
accurate choices as only data relevant to them are presented.
Recommender system make suggestion to users in many
domains such as movies [1], music[2], travelling route [3] and
e-books[4]. Lately there are also research in suggesting online
video games to users[5].

Online video games are domains that generate a lot of
contents for different users’ background. Although majority
of online video game are played as an entertainment (players
most likely will like different genres compared to others),
there are video games that created for different groups of users
including preschoolers[6], patients [7] and even sedentary
people that trying to be active [8]. Given this disparity of
users, recommender systems are needed to provide
suggestions of the right games for the right users.

Steam is one of the largest platforms for games distribution.
The Steam digital distribution service was started in 2003 and
is owned and operated by the Valve Corporation, a video
game developer [9]. To date steam are hosting over 8
thousand games and have around 553 million active users. If
a user has played about 100 games, there are more than 7000
games are available for user to choose from which quite a lot
for humans to go through the entire collection. Too many
choices will make user overwhelmed and sometime will lead
to user refuse to choose at all[10]. This situation is called for
recommender system. Recommender system are used to help
user with information overloaded problems that arise as a
result from large amount of data are available on the web.
Recommender system would act as filtering mechanism that
will suggest content that relevant to users. An active user
then, will be presented by several contents based on their past
behavior or past behavior of the similar user to them.
Fundamentally, recommender system will predict rating for
items that have not been consume by users and recommend
top-N highest ratings’ items to users

Recommender system are usually based on rating provided by
user for certain items. This is call explicit feedback as user
explicitly telling the system their preferences. When ratings
are not available, there are a lot of indicator that can be used to
describe how user feel about certain items. In video games,
duration of playtime can be used to estimate how much user
like certain games.

It can be assumed that the longer the playtime the fonder user
are of the games. We based our assumption on observation
made in [11], which stated that that the more time a content is
displayed by a user, the more he likes it and therefore the
higher he rates it. However, duration of playtime varies too
much for a computer system to be able to predict how long
users will play certain games contrary to star rating that have
limited number of class (5 stars, 10 stars etc.).

This research aims to normalize the high variation in
playtime by converting it into 5-star rating where 1 star is the
rating for shortest playtime and 5-star is rating for the longest
playtime. We reduced biased of the rating, since players
standard of play time duration are different. For instance, user
1 would consider 5 hours play time merit to 5-star rating but
user 2 must play for more than 24 hours to give 5-star rating to

Strategies to Map Play Time in Steam Platform Dataset into 5-Star Ratings

Shuria Saaidin1, Zolidah Kasiran2

1Fakulti Kejuruteraan Elektrik,Universiti Teknologi MARA, Malaysia, shuria6809@uitm.edu.my
2Fakulti Sains Komputer dan Matematik Universiti Teknologi MARA, Malaysia, zolidah@tmsk.uitm.edu.my

 ISSN 2278-3091
Volume 8, No.1.6, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0581.62019.pdf

https://doi.org/10.30534/ijatcse/2019/0581.62019

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

32

the video games. To reduce biased in play time duration,
z-score was calculated.

To test the feasibility of the rating produced using z – score,
we applied user-based collaborative filtering algorithm and
item-based collaborative filtering algorithm on the modified
dataset to see if we could correctly predict ratings in the
dataset. The approach of using z-score in recommender
system are already applied in [5] however they didn’t directly
convert z-score into rating but used value of the z-score
instead. The Instead of truncated the value of z-score to -3 to 3
like in [5], we used all the value we get from the calculation
and deal with the value outside of the normal distribution in
three different ways.

2. RESEARCH METHOD

2.1 Background
Recommender System usually begin with rating prediction. A
lot of algorithms are introduced, refined and used to predicted
rating. Recommender System are often classify into three
different categories [12] namely:
 Content-based recommendations: Rating will be

predicted based on similar item rated by the user in the
past.

 Collaborative recommendations: Rating will be
predicted by rated items by people with similar tastes
and preferences liked in the past

 Hybrid approaches: These methods combine
collaborative filtering and content-based methods.

.
Recommender System also evolve to include methods such as
matrix factorization [13]–[15], deep learning [13], [16],
[17]and genetic algorithm [18]. Recommender System
researcher focused on several issues in predicting rating for
users including but not limited to data sparsity, cold start
problem, scalability problem, diversity, context-aware
recommender system and multi-criteria recommender. There
are also interest in utilizing all the information available on
how users behave to certain items. This behavior could be
captured explicitly or implicitly.

2.2 Explicit/Implicit feedback

Recommender system always based on rating provided by
user for certain items that has already been consumed. For
example in Movie Lens dataset [19], user will rate movies (1
to 5) based on their preferences with 1 is least preferred and 5
is most preferred. This kind of rating are considered explicit
feedback since user explicitly rated movies according to their
preferences. Similarly, social networks site such as Facebook
and YouTube use Like/Dislike rating to show user preference
on the content publish on their site. When explicit ratings are
not available, there are a lot of indicators that can be used to
describe how user feel about certain items.

Implicit rating means that user preferences of certain items
are captured without user being aware [11]. Indicators such as
user click on certain items and time user spend in reading
articles online could be used to describe user behavior towards
certain items. In [11], they concluded that the more user
display certain content, the higher the rating of that content
will be. So, there is a direct relation between displaying time
and explicit feedback. Following this observation, we could
assume that the longer the games is played by a player, the
more likely he will give higher rate to the games.

There are two ways of using implicit feedback in
recommender system. One way is to use algorithm
specifically design to deal with implicit feedback and the
other way is to map implicit feedback to explicit feedback
then using explicit feedback-based algorithm to recommend
items[20]. In this research we use the second approach. We
calculated z-score for each user playtime and mapped into
5-star rating which resemble explicit feedback.

2.3 Long Tail Distribution.

In statistic, long tail in a dataset means is a probability
distribution that has many occurrences that are far from the
central part of the data distribution. As opposed to normal
distribution that resemble a bell with most data are distributed
at the center, in long tail distribution most data are distributed
at the end of the distribution. Figure 1 shows how data in long
tail distribution are distributed.

Figure 1: Long tail distribution

Long-tails complicate analysis because rare cases from the
tail still collectively make up a significant portion of the data
and so they cannot be ignored[21]. In recommender system,
research on how to leverage long tail distribution in items
consumption have become one of the topic discussed[22].

From recommendation system perspective, popular items will
be in the head section consumed by most consumer and the
less popular items will be at the tail section consumed by a
smaller number of consumers. However, the popular items
contribute only about 10% of the overall items making it is
essential for recommender system to deal with the rest of the
items that is at the tail section. In our case, head of the section
are populated from smaller playtime, which means a lot of
players did not spend too much time playing games, but there
are also a few players that have a very long play time[9]. We

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

33

need to be able to treat those players differently as players in
head section have different standard in play time compared
with players in the tail section.

2.4 Measurement Metrics
Recommender system performance could be measure using
different type of metrics. Common methods used are:

MAE
Mean Absolute Error measure how much errors occurs when
predicting value for certain items. MAE in dataset could be
calculated by subtracting true value with predicted value
divided by number of records in a dataset.

(1)

Where:
N = number of records in datasets
PR = Predicted rating
AR = Actual rating
i = index of record

RSME
Root Mean Square Error (RMSE) measures how much error
there is between two data sets. In other words, it compares a
predicted value and an observed or known value. In our case
we will compare error in predicting rating between train and
test datasets. RSME can be calculated using (2)

(2)

 Where:
N = number of records in datasets
PR = Predicted rating
AR = Actual rating
i = index of record

RSME determine how close are the predicted value to the
actual value. The different between MAE and RSME is that in
RSME, value predicted too far from the actual value will be
penalized. In MAE errors are treated equally regardless how
far off the prediction from the actual value.

Hit Rate
Recommender system will provide users with a ranked list of
N items they will likely be interested in, in order to encourage
views and purchases. To measure how good a Top-N
recommender system, hit rate are often used. For example, to
evaluate top-10, we use hit rate, that is, if a user rated one of
the top-10 we recommended, we consider it is a “hit”. Figure
1 shows how hit rate could be calculated.

Using algorithms available to predict rating we could then
present user with list of items with the highest predicted
rating.
In this paper we will use these 3 matrices to measure
recommender system that uses rating produced by using our
strategies. MAE and RSME will measure the accuracy of
rating prediction and hit rate will tell us whether we could
suggest a relevant video to users

2.5 K-Nearest Neighbors Recommender System

Algorithm

Recommender System has evolved to include various
methods in order to predict precisely what rating users likely
to give to certain items. Those methods include machine
learning, deep learning, clustering and matrix-factorization.
In this research we will describe and use collaborative
filtering using KNN model. The reason is, this method has
been tested and used in many papers hence it provides
comparable result with the other research.

In content-based collaborative filtering, KNN model will
calculate similarities of the target video games with all the
other video games in the data set and rank them accordingly.
Similarity between items could be calculated using different
methods. The most common is using cosine similarity matrix.
Similarity matrix between item, i and item, j is given by the
equation:

(4)

Where:
 is the set of users that have rated item i and j
 rui rating by user, u for item, i
 ruj rating by user, u for item, j

KNN will return top-K video games in the rank as a
recommendation. Item’s, i predicted rating, for active user,
u is given by the equation:

(5)

Where:

 K-nearest neighbor items, i rated by user, u
 j is set of
 is similarity between item, i and item, j
 ruj rating from user, u for item j

Similarly, in user-based collaborative filtering, similarity
between user, u and user, v can be calculated using cosine
similarity matrix using this formula:

Figure 2: Steps to calculate hit rate

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

34

(6)

Where:
 is the set of all items that rated by both user, u

and user v
rui rating by user, u for item, i
rvi rating by user, v for item, i

Predicted rating, of item, i for user, u could be obtained
using the formula:

(7)

Where:
K-nearest neighbors’ user, u that have rated item,

i
 j is set of
 is similarity between user, u and user, v
 Rvi rating from user, v for item i

Equation (4) to (7) are derived from surprise library for
python developed by [23]. RSME and MAE will be used to
measure performance in predicting the rating for each user
using the explicit data created from duration of play time and
hit rate will be used to measure whether we could predict
relevant top N list based on the rating obtained in the above
method.

2.6 Dataset and Experiment

Data used in this research are taken from dataset collected and
analyzed in [9]. In the raw dataset there are around 109
million gamers, 7 million games and 1.1 million years of
playtime. As this research are only aims to see the feasibility
of converting playtime into explicit rating, the whole data
dataset is not needed. Dataset was reduced to include only
10000 users that have the most playtime and only games that
been played by the 10000 users are included which amounted
to 1985 games.

We based our binning strategy in the assumption that the
longer the play time the higher rating user will give to the
game they played. Since play time varied and in a very long
range: minimum play time is 61 minutes and maximum
playtime is 578398 minutes with 9659 unique play time
value, it is difficult to predict play time for each user.

Hence, we need mechanism to shorten the play time range
and to classify each play time into fewer class. We use 5-star
rating as indicator of user preferences towards games they
played in order to overcome the variation of playtime value.

Figure 3 summarize how we conducted our experiment.

Figure 3: Experiment Steps

We calculate z-score to represent each playtime in the dataset
to shorten the range in playtime range. It is also meant to
remove bias exist between users. In statistics, z-score is the
signed number of deviations from mean indicating that a
datum is above the mean if positive and below the mean if
negative. In theory, using z-score will eliminate user bias as
z-score value will be derived from each user mean play time
and standard deviation of each user play time. In our
approach, we calculate the z – score for playtime, t of each
game, i played by user, u. Z-score of a data, z can be
calculated using this formula:

(3)

 Where:
m and n index for user and games respectively

 is mean playtime of um
 is standard deviation of playtime for um.

Z-score is calculated and then plotted to see the distribution of
the z-score across the whole dataset. We could see that z-score
value for the datasets have long tail distribution. Long tail
distribution in our dataset means that there are a few players
that have very long playtime compared to majority of the
players. This could affect the overall mapping of z-score to
rating. For a z-score to be map as 5-star rating, its value must
be over 5.744 which only applied to 72 /223 047(0.032 %) of
the records. Most of the rating will be in the head part of the
distribution which means most of the rating will indicate that
user dislike video games that they have played. Due to the
imbalance distribution of the rating among players, we
implement 3 different strategies of binning z-score into 5-star
class of rating.

To convert z-score value into ratings, we consider three
strategies. The first strategy is to bin each z-score into 5 bins
of the same size based on maximum and minimum value of
z-score, without any special method to treat the long tail
section which resembles approach in [5]. We will call this
method as Same Size Bin (SSB) for the entire paper. Figure 4
visualize the mapping process.

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

35

Figure 4: Z-score to rating using SSB

In the second strategies, we deal with long tail distribution by
binning z-score into 5-star rating based on the classification
method in [24]. In this strategy, head needs to be divided into
breakpoints. A breakpoint is the last or first value in a class.
To find the first breakpoint of the long tail data distribution
the mean value of that data needs to be found. The selected
mean value is then will to be the first breakpoint value. Then
all values larger than that mean are selected. Out of these
values the mean value of those is selected. That will be the
second breakpoint. In [24] the selection of breakpoints
continues in the same manner until there is only one
maximum value left. Both the selection of breakpoints and the
selection of number of classes are naturally developed, but in
our case since we need to classify z-score into 5-star class
rating, we stop calculating the mean when we found the
fourth breakpoint which enable us to divide z-scores into 5
class. This method will be referred as Breakpoint Based Bin
Size (BBS). Figure 5 visualize the mapping process.

Figure 5: Z-score value to rating using BBS

The last method is to deal with the classification separately in
the head and tail section. We use the fourth breakpoints in
method 2 to separate datasets into 2 section: head and tail. In
head section we divide the z-score value into 5 equal bins like
in SSB where whole tail part of the dataset is mapped as 5-star
rating. We called this method as Hybrid Bin Size (HBS).
Figure 6 shows the mapping process.

Figure 6: Z-score value to rating using HBS

To observe if rating obtained from z-score calculation and
binned strategies are feasible to be used in recommender
system, we feed the rating into item-based and user-based
collaborative filtering using K-Nearest Neighbor (KNN)
modelling. We used surprise library for python described in
[23].

3. RESULT AND ANALYSIS

We calculated z- score to eliminate bias that occurs between
players’ playtime duration. If we compare between users, we
could see different patent in their playtime. Overall, we could
see that although playtime value is converted into z-score,
rating still reflect that the longer the playtime, the better
rating the games get. If we compare playtimes for each user,
we could see that play time that is consider long enough to get
5- star rating may be differ from each user. For example, in
Table 1, if we look at user 0, 7830 minutes is considered 5-star
rating, but for user 3, 97255 minutes of playtime are only
considered 3 rating. This is because we calculated z-score
based on each user mean and standard deviation which
confirm the statement of each user have different standard
when rating certain items[25]. If we compare playtime and
rating of each user like this, it can be concluded that we have
successfully mapping playtime to their respective playtime
duration pattern.

Table 1: Relation between playtime, z-score and rating of
different users.

PT – Playtime in minutes
Z – Z-score

3.1 Rating Distribution
To see the overall distribution of rating, we plotted the z-score
frequency distribution of the rating across the whole dataset.
Figure 7 shows the plotted distribution. Visually we could see
that the distribution resemble long tail distribution with tail
are at the right side of the distribution.

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

36

In our dataset context, this signifies that there are users with
very extreme playtime pattern. Z-score that fall in between -3
to 3 (which indicate normal distribution) are not adequate to
be mapped into 5-star ratings. We could say that using direct
z-score mapping is biased towards users that played many
games. User that played only several games seems not to be
able to give 5-star rating to games. To removes this biased or
at least to minimize the impact of long tail distribution on
mapping process, we apply 3 strategies of mapping z-score
into rating: SSB, BBS and HBS. Figure 8 shows the frequency
of rating for each class when we are using different strategies.
As a sanity check, we summarize minimum, maximum and
average playtime for each strategy in Table 2.

For SSB, the distribution of rating leaning too much towards
rating class 1 and 2 which reflect that majority of the players
did not like the game they played. If we look at class 4 and 5
which indicated the players enjoyed the game, less than 5000
(about 2.2%) records belong to this class. As recommender
system will based on the higher rating to suggest games to
users, this will somehow reduce the number of games that are
good enough to be suggested by the recommender system.

Using BBS strategies, although we managed to increase
number of 5 ratings records, majority (74.4%) of the rating
falls at rating 1 which means most of players did not like the
game they played. Maximum play time of this class is 58964
minutes (Refer Table 2) which is equivalent to 40 days of
playing. When a person spends that much time to play, it is
quite wrong to conclude that he did not like the games
regardless that he might played the other games longer. This
situation arise because of the first class are derived from the
means of z-score for the entire dataset.

Using HBS strategies, the distribution of data seems
reasonable when only small fraction of records falls in rating
1 class. Maximum playtime for rating 1 class using HBS
strategies is 763 minutes (Refer Table 2) which amount to 12
hours of playtime which is quite acceptable.

Figure 8: Summary of rating frequency for 3 methods

Table 2: Summary of Play Time for Each Class Rating Using

Different Strategies

We feed the rating obtain from each strategy using User
K-Nearest Neighbors (KNN) and Item KNN to confirm that
the rating could be used to predict user preferences. Table 3
shows the performance metric of both algorithm when using
rating for each strategy. We measured accuracy of the
prediction using RMSE and MAE. Lower value for RSME
and MAE means that recommender algorithms can predict
rating for unrated video games accurately. To check whether
the algorithm can derive relevant top-10 games from rating
constructed in the strategies proposed, we measure hit rate for
overall dataset. Higher hit rate means a lot of left-out-items
appeared in the top-N recommendation. These metrics are
shows in Table 3.

Table 3: Performance Metric for Recommender System Model
Using Created Explicit Rate

We could see that SSB bin strategies provide the most
accurate prediction among the three strategies. If we desire an
accurate rating prediction, it is best to binned z-scores in
equal size bin. However, in the end of the day, the objective of
a recommender system is to suggest items that hopefully will
interest user enough for them buy or consumed the
recommended items. Accurately predict rating is not enough,
[26], [27], recommender system should be able to suggest
items that interesting enough for user to consume. In that
sense, hit rate are more relevant to measure the effectiveness
of recommender system. Although hit rate are quite low for
all
for all three strategies, we could see that HBS strategies
performed a bit better compared to the others. To improve hit

Figure 7: Z-Score Distribution

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

37

rate, we could use other information available on users and
games to calculate more accurate similarities between them.

To show that we got an acceptable value for RSME we
compare RSME from [22] and [28] in Table 4. We choose this
research because they are using the same metric and method.
However, the result could be biased because they are using
different dataset and different K value. We are not comparing
RSME to measure performance of the recommender system
but rather to show that the value that we get from using
modified rating in our binning strategies are within the
acceptable range.

Table 4: RSME comparison
Our RSME 0.7950

EI RSME[22] +-1.25
MovieLens RSME [28] 1.103

In summary, as MAE and RSME provide acceptable value for
error rate, we could say that it is feasible to map playtime to
explicit rating using z-score values. However, direct mapping
could lead to biased for players that only played several games
compared to users that play more games which lead us to
consider different binning strategies. Binning strategies that
deal with head and tail section of the dataset separately (HBS)
provide the best result in Hit rate metric. However, if we take
RMSE and MAE into account, direct mapping provides the
best result.

As RMSE and MAE only measures error rate of rating
prediction, it is wise to base our standard of the best strategies
using hit rate value. While RSME for HBS is the highest, 0.79
error rate is quite good if we compared with the other research
(refer table 3). Regardless of the algorithm and dataset used,
0.79 error rate could be considered acceptable and if we
compared it with hit rate metric, HBS proof to be slightly
better than the other strategies

REFERENCES

1. S. Frémal and F. Lecron, Weighting strategies for a

recommender system using item clustering based on
genres, Expert Syst. Appl., vol. 77, pp. 105–113, 2017.
https://doi.org/10.1016/j.eswa.2017.01.031

2. D. Parra, A. Karatzoglou, X. Amatriain, and I. Yavuz,
Implicit feedback recommendation via
implicit-to-explicit ordinal logistic regression
mapping, in CEUR Workshop Proceedings.

3. J. J. T, V. S. Chooralil, and J. John, Efficient Route
Recommendation System Based On Keyword Using
Candidate Route Generation And Travel Route
Exploration, Int. J. Adv. Trends Comput. Sci. Eng., vol.
8, no. 3, pp. 419–425, 2019.
https://doi.org/10.30534/ijatcse/2019/15832019

4. N. Matsatsinis, K. Lakiotaki, and P. Delia, A system
based on multiple criteria analysis for scientific
paper recommendation, in Proceedings of the 11th

Panhellenic Conference in Informatics.
5. B. Plunkett, B. Lin, S. Shi, and C. Painter, The Steam

Engine : A Recommendation System for Steam Users
Algorithms, pp. 1–6.

6. I. Mahazir, S. Khadijah, M. E. Ismail, and M. Nordin,
Impact of Games on Motivation , Attention and
Skills in Pre-school Children, Int. J. Adv. Trends
Comput. Sci. Eng., vol. 8, no. 1, pp. 157–159, 2019.
https://doi.org/10.30534/ijatcse/2019/3181.32019

7. M. Romero and M. Usart, Dementia Games: A
Literature Review of Dementia-Related Serious
Games, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol.
8101, no. January 2013, 2013, pp. 212–225.

8. J. Yim and T. C. N. Graham, Using games to increase
exercise motivation, Proc. 2007 Conf. Futur. Play -
Futur. Play ’07, no. January 2007, p. 166, 2007.
https://doi.org/10.1145/1328202.1328232

9. M. O’Neill, E. Vaziripour, J. Wu, and D. Zappala,
Condensing Steam: Distilling the Diversity of Gamer
Behavior, Proc. 2016 ACM Internet Meas. Conf. - IMC
’16, pp. 81–95, 2016.

10. S. S. Iyengar and M. R. Lepper, When choice is
demotivating: can one desire too much of a good
thing?, J. Pers. Soc. Psychol., vol. 79, no. 6, pp.
995–1006, 2000.
https://doi.org/10.1037//0022-3514.79.6.995

11. E. R. Núñez-Valdéz, J. M. Cueva Lovelle, O. Sanjuán
Martínez, V. García-Díaz, P. Ordoñez De Pablos, and C.
E. Montenegro Marín, Implicit feedback techniques
on recommender systems applied to electronic
books, Comput. Human Behav., vol. 28, no. 4, pp.
1186–1193, 2012.

12. G. Adomavicius and A. Tuzhilin, Toward the Next
Generation of Recommender Systems: A Survey of
the State-of-the-Art and Possible Extensions, IEEE
Trans. Knowl. Data Eng., vol. 12, no. 5, p. 548, 2005.

13. H. Wu, Z. Zhang, K. Yue, B. Zhang, J. He, and L. Sun,
Dual-regularized matrix factorization with deep
neural networks for recommender systems,
Knowledge-Based Syst., vol. 145, pp. 46–58, 2018.

14. S. Chen and Y. Peng, Matrix factorization for
recommendation with explicit and implicit feedback,
Knowledge-Based Syst., vol. 158, no. May, pp.
109–117, 2018.
https://doi.org/10.1016/j.knosys.2018.05.040

15. T. V. R. Himabindu, V. Padmanabhan, and A. K. Pujari,
Conformal matrix factorization based recommender
system, Inf. Sci. (Ny)., vol. 467, pp. 685–707, 2018.

16. H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, DeepFM: A
Factorization-Machine based Neural Network for
CTR Prediction, pp pp. 1725–1731.

17. H.-T. Cheng et al., Wide & Deep Learning for
Recommender Systems, in DLRS.

18. Y. Kilani, A. F. Otoom, A. Alsarhan, and M. Almaayah,
A genetic algorithms-based hybrid recommender

Shuria Saaidin et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 31 - 38

38

system of matrix factorization and
neighborhood-based techniques, J. Comput. Sci., vol.
28, pp. 78–93, 2018.
https://doi.org/10.1016/j.jocs.2018.08.007

19. MovieLens Datasets. [Online]. Available:
https://grouplens.org/datasets/movielens/. [Accessed:
04-Dec-2018].

20. X. Zhao, X. Mao, L. Liu, J. Zheng, and Y. Liu, An
Improved Rating Mapping Algorithm for Music
Recommender System, DEStech Trans. Eng. Technol.
Res., no. apetc, pp. 1665–1670, 2018.

21. X. Zhu, D. Anguelov, and D. Ramanan, Capturing
long-tail distributions of object subcategories, Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., no. 3, pp. 915–922, 2014.

22. Y.-J. Park and A. Tuzhilin, The long tail of
recommender systems and how to leverage it, p. 11,
2008.

23. N. Hug, Surprise Library for Python. [Online].
Available: http://surpriselib.com/. [Accessed:
05-Aug-2019].

24. B. Jiang, Head/Tail Breaks: A New Classification
Scheme for Data with a Heavy-Tailed Distribution,
Prof. Geogr., vol. 65, no. 3, pp. 482–494, 2013.
https://doi.org/10.1080/00330124.2012.700499

25. B. Alper and Y. Alper, Improving accuracy of
multi-criteria collaborative filtering by normalizing
user ratings, Anadolu Univ. J. Sci. Technol. A- Appl.
Sci. Eng., vol. 18, no. 1, pp. 225–237, 2017.

26. Y. Bai and D. Wang, Fundamentals of Fuzzy Logic
Control – Fuzzy Sets , Fuzzy Rules and
Defuzzifications, Adv. Fuzzy Log. Technol. Ind. Appl.,
pp. 334–351, 2006.

27. P. Cremonesi, Y. Koren, and R. Turrin, Performance of
recommender algorithms on top-n recommendation
tasks, no. January 2010, p. 39, 2010.
https://doi.org/10.1145/1864708.1864721

28. A. D. Moreno Barbosa, Privacy-enabled scalable
recommender systems, University Of Nice - Sophia
Antipolis, 2015.

