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ABSTRACT 
 
This paper presents strategies to map play time in Steam 
dataset into 5-Star rating. Our objective is to check whether 
we could use the created explicit feedback in recommender 
system. In this study we calculated z-score for each users’ 
duration of playtime and using the score we applied 3 
strategies to map duration of playtime into explicit feedback. 
These strategies are Same Size Bin (SSB), Breakpoint Based 
Bin Sized (BBS) and Hybrid Based Bin Size (HBS). 
According to RSME value and Hit Rate, we found that the 
best strategies to map duration of playtime into explicit 
feedback is using HBS strategies.  We checked the feasibility 
of using the created explicit feedback by feeding it to KNN 
algorithm. We compare RSME from others researches that 
used the same algorithm and found the RSME value that we 
get are in the same range as the researches. Based on this 
observation, it can be concluded that it is feasible to use 
created explicit feedback in Recommender System.  
 
Key words: Recommender System, Implicit Feedback, 
Explicit Feedback, Steam Platform.  
 
1. INTRODUCTION 
 
Recommender system are developed to filter information for 
users. Using recommender system, users can make faster and 
accurate choices as only data relevant to them are presented. 
Recommender system make suggestion to users in many 
domains such as movies [1], music[2], travelling route [3] and  
e-books[4]. Lately there are also research in suggesting online 
video games to users[5]. 
 
Online video games are domains that generate a lot of 
contents for different users’ background. Although majority 
of online video game are played as an entertainment (players 
most likely will like different genres compared to others ),  
there are video games that created for different groups of users 
including preschoolers[6], patients [7] and even sedentary 
people that trying to be active [8].  Given this disparity of 
users, recommender systems are needed to provide 
suggestions of the right games for the right users. 
  

Steam is one of the largest platforms for games distribution. 
The Steam digital distribution service was started in 2003 and 
is owned and operated by the Valve Corporation, a video 
game developer [9]. To date steam are hosting over 8 
thousand games and have around 553 million active users. If 
a user has played about 100 games, there are more than 7000 
games are available for user to choose from which quite a lot 
for humans to go through the entire collection.  Too many 
choices will make user overwhelmed and sometime will lead 
to user refuse to choose at all[10]. This situation is called for 
recommender system. Recommender system are used to help 
user with information overloaded problems that arise as a 
result from large amount of data are available on the web. 
Recommender system would act as filtering mechanism that 
will suggest content that relevant to users. An active user 
then, will be presented by several contents based on their past 
behavior or past behavior of the similar user to them. 
Fundamentally, recommender system will predict rating for 
items that have not been consume by users and recommend 
top-N highest ratings’ items to users 
 
Recommender system are usually based on rating provided by 
user for certain items. This is call explicit feedback as user 
explicitly telling the system their preferences. When ratings 
are not available, there are a lot of indicator that can be used to 
describe how user feel about certain items. In video games, 
duration of playtime can be used to estimate how much user 
like certain games.  
 
It can be assumed that the longer the playtime the fonder user 
are of the games. We based our assumption on observation 
made in [11], which stated that that the more time a content is 
displayed by a user, the more he likes it and therefore the 
higher he rates it. However, duration of playtime varies too 
much for a computer system to be able to predict how long 
users will play certain games contrary to star rating that have 
limited number of class (5 stars, 10 stars etc.). 
 
This research aims to normalize the high variation in 
playtime by converting it into 5-star rating where 1 star is the 
rating for shortest playtime and 5-star is rating for the longest 
playtime.  We reduced biased of the rating, since players 
standard of play time duration are different. For instance, user 
1 would consider 5 hours play time merit to 5-star rating but 
user 2 must play for more than 24 hours to give 5-star rating to 
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the video games. To reduce biased in play time duration, 
z-score was calculated. 
 
To test the feasibility of the rating produced using z – score, 
we applied user-based collaborative filtering algorithm and 
item-based collaborative filtering algorithm on the modified 
dataset to see if we could correctly predict ratings in the 
dataset. The approach of using z-score in recommender 
system are already applied in [5] however they didn’t directly 
convert z-score into rating but used value of the z-score 
instead. The Instead of truncated the value of z-score to -3 to 3 
like in [5], we used all the value we get from the calculation 
and deal with the value outside of the normal distribution in 
three  different ways.  
 
2. RESEARCH METHOD  

2.1 Background 
Recommender System usually begin with rating prediction. A 
lot of algorithms are introduced, refined and used to predicted 
rating. Recommender System are often classify into three 
different categories [12] namely:  
 Content-based recommendations: Rating will be 

predicted based on similar item rated by the user in the 
past. 

 Collaborative recommendations: Rating will be 
predicted by rated items by people with similar tastes 
and preferences liked in the past 

 Hybrid approaches: These methods combine 
collaborative filtering and content-based methods. 

. 
Recommender System also evolve to include methods such as 
matrix factorization [13]–[15], deep learning [13], [16], 
[17]and genetic algorithm [18].  Recommender System 
researcher focused on several issues in predicting rating for 
users including but not limited to data sparsity, cold start 
problem, scalability problem, diversity, context-aware 
recommender system and multi-criteria recommender. There 
are also interest in utilizing all the information available on 
how users behave to certain items. This behavior could be 
captured explicitly or implicitly. 
 
2.2 Explicit/Implicit feedback 
 
Recommender system always based on rating provided by 
user for certain items that has already been consumed. For 
example in Movie Lens dataset [19], user will rate movies (1 
to 5) based on their preferences with 1 is least preferred and 5 
is most preferred. This kind of rating are considered explicit 
feedback since user explicitly rated movies according to their 
preferences. Similarly, social networks site such as Facebook 
and YouTube use Like/Dislike rating to show user preference 
on the content publish on their site. When explicit ratings are 
not available, there are a lot of indicators that can be used to 
describe how user feel about certain items.  
 

Implicit rating means that user preferences of certain items 
are captured without user being aware [11]. Indicators such as 
user click on certain items and time user spend in reading 
articles online could be used to describe user behavior towards 
certain items. In [11], they concluded that the more user 
display certain content, the higher the rating of that content 
will be. So, there is a direct relation between displaying time 
and explicit feedback. Following this observation, we could 
assume that the longer the games is played by a player, the 
more likely he will give higher rate to the games. 
 
There are two ways of using implicit feedback in 
recommender system. One way is to use algorithm 
specifically design to deal with implicit feedback and the 
other way is to map implicit feedback to explicit feedback 
then using explicit feedback-based algorithm to recommend 
items[20]. In this research we use the second approach. We 
calculated z-score for each user playtime and mapped into 
5-star rating which resemble explicit feedback. 
  
2.3 Long Tail Distribution. 
 
In statistic, long tail in a dataset means is a probability 
distribution that has many occurrences that are far from the 
central part of the data distribution. As opposed to normal 
distribution that resemble a bell with most data are distributed 
at the center, in long tail distribution most data are distributed 
at the end of the distribution. Figure 1 shows how data in long 
tail distribution are distributed. 
 

 
Figure 1: Long tail distribution 

 
Long-tails complicate analysis because rare cases from the 
tail still collectively make up a significant portion of the data 
and so they cannot be ignored[21]. In recommender system, 
research on how to leverage long tail distribution in items 
consumption have become one of the topic discussed[22].  
 
From recommendation system perspective, popular items will 
be in the head section consumed by most consumer and the 
less popular items will be at the tail section consumed by a 
smaller number of consumers. However, the popular items 
contribute only about 10% of the overall items making it is 
essential for recommender system to deal with the rest of the 
items that is at the tail section. In our case, head of the section 
are populated from smaller playtime, which means a lot of 
players did not spend too much time playing games, but there 
are also a few players that have a very long play time[9]. We 
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need to be able to treat those players differently as players in 
head section have different standard in play time compared 
with players in the tail section. 

 
2.4 Measurement Metrics 
Recommender system performance could be measure using 
different type of metrics. Common methods used are: 
 
MAE 
Mean Absolute Error measure how much errors occurs when 
predicting value for certain items. MAE in dataset could be 
calculated by subtracting true value with predicted value 
divided by number of records in a dataset. 

 

 
(1) 

Where: 
N = number of records in datasets 
PR = Predicted rating 
AR = Actual rating 
i = index of record 
 

RSME 
Root Mean Square Error (RMSE) measures how much error 
there is between two data sets. In other words, it compares a 
predicted value and an observed or known value. In our case 
we will compare error in predicting rating between train and 
test datasets. RSME can be calculated using (2) 

 

 
(2) 

 Where: 
N = number of records in datasets 
PR = Predicted rating 
AR = Actual rating 
i = index of record 

 
RSME determine how close are the predicted value to the 
actual value. The different between MAE and RSME is that in 
RSME, value predicted too far from the actual value will be 
penalized. In MAE errors are treated equally regardless how 
far off the prediction from the actual value. 

 
Hit Rate 
Recommender system will provide users with a ranked list of 
N items they will likely be interested in, in order to encourage 
views and purchases. To measure how good a Top-N 
recommender system, hit rate are often used. For example, to 
evaluate top-10, we use hit rate, that is, if a user rated one of 
the top-10 we recommended, we consider it is a “hit”. Figure 
1 shows how hit rate could be calculated. 
 

Using algorithms available to predict rating we could then 
present user with list of items with the highest predicted 
rating. 
In this paper we will use these 3 matrices to measure 
recommender system that uses rating produced by using our 
strategies. MAE and RSME will measure the accuracy of 
rating prediction and hit rate will tell us whether we could 
suggest a relevant video to users 
 
2.5 K-Nearest Neighbors Recommender System 

Algorithm 
 
Recommender System has evolved to include various 
methods in order to predict precisely what rating users likely 
to give to certain items. Those methods include machine 
learning, deep learning, clustering and matrix-factorization. 
In this research we will describe and use collaborative 
filtering using KNN model. The reason is, this method has 
been tested and used in many papers hence it provides 
comparable result with the other research.  
  
In content-based collaborative filtering, KNN model will 
calculate similarities of the target video games with all the 
other video games in the data set and rank them accordingly. 
Similarity between items could be calculated using different 
methods. The most common is using cosine similarity matrix. 
Similarity matrix between item, i and item, j is given by the 
equation: 

 

 
(4) 

Where: 
  is the set of users that have rated item i and j 
 rui   rating by user, u for item, i 
 ruj   rating by user, u for item, j 
 

KNN will return top-K video games in the rank as a 
recommendation. Item’s, i predicted rating,  for active user, 
u is given by the equation: 

 

 
 

(5) 
 
Where:  

  K-nearest neighbor items, i rated by user, u 
 j is set of  
  is similarity between item, i and item, j 
 ruj rating from user, u for item j 

Similarly, in user-based collaborative filtering, similarity 
between user, u and user, v can be calculated using cosine 
similarity matrix using this formula: 

Figure 2: Steps to calculate hit rate 
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(6) 

Where: 
 is the set of all items that rated by both user, u 

and user v  
rui   rating by user, u for item, i 
rvi   rating by user, v for item, i 

 
Predicted rating,  of item, i for user, u could be obtained 
using the formula: 

 

 
(7) 

Where:  
K-nearest neighbors’ user, u that have rated item, 

i 
 j is set of  
  is similarity between user, u and user, v 
 Rvi rating from user, v for item i 
 

Equation (4) to (7) are derived from surprise library for 
python developed by [23]. RSME and MAE will be used to 
measure   performance in predicting the rating for each user 
using the explicit data created from duration of play time and 
hit rate will be used to measure whether we could predict 
relevant top N list based on the rating obtained in the above 
method. 
 
2.6 Dataset and Experiment 
 
Data used in this research are taken from dataset collected and 
analyzed in [9]. In the raw dataset there are around 109 
million gamers, 7 million games and 1.1 million years of 
playtime. As this research are only aims to see the feasibility 
of converting playtime into explicit rating, the whole data 
dataset is not needed. Dataset was reduced to include only 
10000 users that have the most playtime and only games that 
been played by the 10000 users are included which amounted 
to 1985 games.  
 
We based our binning strategy in the assumption that the 
longer the play time the higher rating user will give to the 
game they played. Since play time varied and in a very long 
range: minimum play time is 61 minutes and maximum 
playtime is 578398 minutes with 9659 unique play time 
value, it is difficult to predict play time for each user. 
 
Hence, we need mechanism to shorten the play time range 
and to classify each play time into fewer class. We use 5-star 
rating as indicator of user preferences towards games they 
played in order to overcome the variation of playtime value.  
 

Figure 3 summarize how we conducted our experiment. 
 

 
Figure 3: Experiment Steps 

 
We calculate z-score to represent each playtime in the dataset 
to shorten the range in playtime range. It is also meant to 
remove bias exist between users. In statistics, z-score is the 
signed number of deviations from mean indicating that a 
datum is above the mean if positive and below the mean if 
negative. In theory, using z-score will eliminate user bias as 
z-score value will be derived from each user mean play time 
and standard deviation of each user play time. In our 
approach, we calculate the z – score for playtime, t of each 
game, i played by user, u.  Z-score of a data, z can be 
calculated using this formula: 

 

 
(3) 

   Where: 
m and n index for user and games respectively 

 is mean playtime of um  
 is standard deviation of playtime for um. 

 
Z-score is calculated and then plotted to see the distribution of 
the z-score across the whole dataset. We could see that z-score 
value for the datasets have long tail distribution. Long tail 
distribution in our dataset means that there are a few players 
that have very long playtime compared to majority of the 
players.  This could affect the overall mapping of z-score to 
rating. For a z-score to be map as 5-star rating, its value must 
be over 5.744 which only applied to 72 /223 047(0.032 %) of 
the records. Most of the rating will be in the head part of the 
distribution which means most of the rating will indicate that 
user dislike video games that they have played. Due to the 
imbalance distribution of the rating among players, we 
implement 3 different strategies of binning z-score into 5-star 
class of rating.  
 
To convert z-score value into ratings, we consider three 
strategies. The first strategy is to bin each z-score into 5 bins 
of the same size based on maximum and minimum value of 
z-score, without any special method to treat the long tail 
section which resembles approach in [5]. We will call this 
method as Same Size Bin (SSB) for the entire paper. Figure 4 
visualize the mapping process.  
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Figure 4: Z-score to rating using SSB 

 
In the second strategies,  we deal with long tail distribution by 
binning z-score into 5-star rating based on the classification 
method in [24]. In this strategy, head needs to be divided into 
breakpoints. A breakpoint is the last or first value in a class. 
To find the first breakpoint of the long tail data distribution 
the mean value of that data needs to be found. The selected 
mean value is then will to be the first breakpoint value. Then 
all values larger than that mean are selected. Out of these 
values the mean value of those is selected. That will be the 
second breakpoint. In [24] the selection of breakpoints 
continues in the same manner until there is only one 
maximum value left. Both the selection of breakpoints and the 
selection of number of classes are naturally developed, but in 
our case since we need to classify z-score into 5-star class 
rating, we stop calculating the mean when we found the 
fourth breakpoint which enable us to divide z-scores into 5 
class. This method will be referred as Breakpoint Based Bin 
Size (BBS). Figure 5 visualize the mapping process. 
 

 
Figure 5: Z-score value to rating using BBS 

 
The last method is to deal with the classification separately in 
the head and tail section. We use the fourth breakpoints in 
method 2 to separate datasets into 2 section: head and tail. In 
head section we divide the z-score value into 5 equal bins like 
in SSB where whole tail part of the dataset is mapped as 5-star 
rating. We called this method as Hybrid Bin Size (HBS). 
Figure 6 shows the mapping process. 
 

 
Figure 6: Z-score value to rating using HBS 

 
To observe if rating obtained from z-score calculation and 
binned strategies are feasible to be used in recommender 
system, we feed the rating into item-based and user-based 
collaborative filtering using K-Nearest Neighbor (KNN) 
modelling. We used surprise library for python described in 
[23]. 
 
3.  RESULT AND ANALYSIS 
 
We calculated z- score to eliminate bias that occurs between 
players’ playtime duration. If we compare between users, we 
could see different patent in their playtime. Overall, we could 
see that although playtime value is converted into z-score, 
rating still reflect that the longer the playtime, the better 
rating the games get. If we compare playtimes for each user, 
we could see that play time that is consider long enough to get 
5- star rating may be differ from each user. For example, in 
Table 1, if we look at user 0, 7830 minutes is considered 5-star 
rating, but for user 3, 97255 minutes of playtime are only 
considered 3 rating. This is because we calculated z-score 
based on each user mean and standard deviation which 
confirm the statement of each user have different standard 
when rating certain items[25]. If we compare playtime and 
rating of each user like this, it can be concluded that we have 
successfully mapping playtime to their respective playtime 
duration pattern. 
 

Table 1: Relation between playtime, z-score and rating of 
different users. 

 
PT – Playtime in minutes 
Z – Z-score  
 
3.1 Rating Distribution 
To see the overall distribution of rating, we plotted the z-score 
frequency distribution of the rating across the whole dataset. 
Figure 7 shows the plotted distribution. Visually we could see 
that the distribution resemble long tail distribution with tail 
are at the right side of the distribution. 
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In our dataset context, this signifies that there are users with 
very extreme playtime pattern.  Z-score that fall in between -3 
to 3 (which indicate normal distribution) are not adequate to 
be mapped into 5-star ratings. We could say that using direct 
z-score mapping is biased towards users that played many 
games. User that played only several games seems not to be 
able to give 5-star rating to games. To removes this biased or 
at least to minimize the impact of long tail distribution on 
mapping process, we apply 3 strategies of mapping z-score 
into rating: SSB, BBS and HBS. Figure 8 shows the frequency 
of rating for each class when we are using different strategies. 
As a sanity check, we summarize minimum, maximum and 
average playtime for each strategy in Table 2. 
 
For SSB, the distribution of rating leaning too much towards 
rating class 1 and 2 which reflect that majority of the players 
did not like the game they played. If we look at class 4 and 5 
which indicated the players enjoyed the game, less than 5000 
(about 2.2%) records belong to this class.  As recommender 
system will based on the higher rating to suggest games to 
users, this will somehow reduce the number of games that are 
good enough to be suggested by the recommender system.  
 
Using BBS strategies, although we managed to increase 
number of 5 ratings records, majority (74.4%) of the rating 
falls at rating 1 which means most of players did not like the 
game they played. Maximum play time of this class is 58964 
minutes (Refer Table 2) which is equivalent to 40 days of 
playing. When a person spends that much time to play, it is 
quite wrong to conclude that he did not like the games 
regardless that he might played the other games longer. This 
situation arise because of the first class are derived from the 
means of z-score for the entire dataset.  
 
Using HBS strategies, the distribution of data seems 
reasonable when only small fraction of records falls in rating 
1 class. Maximum playtime for rating 1 class using HBS 
strategies is 763 minutes (Refer Table 2) which amount to 12 
hours of playtime which is quite acceptable.  
 

 
Figure 8: Summary of rating frequency for 3 methods 

 
Table 2: Summary of Play Time for Each Class Rating Using 

Different Strategies 

 
 
We feed the rating obtain from each strategy using User 
K-Nearest Neighbors (KNN) and Item KNN to confirm that 
the rating could be used to predict user preferences. Table 3 
shows the performance metric of both algorithm when using 
rating for each strategy. We measured accuracy of the 
prediction using RMSE and MAE. Lower value for RSME 
and MAE means that recommender algorithms can predict 
rating for unrated video games accurately. To check whether 
the algorithm can derive relevant top-10 games from rating 
constructed in the strategies proposed, we measure hit rate for 
overall dataset.  Higher hit rate means a lot of left-out-items 
appeared in the top-N recommendation. These metrics are 
shows in Table 3. 
 

Table 3: Performance Metric for Recommender System Model 
Using Created Explicit Rate 

 
 
We could see that SSB bin strategies provide the most 
accurate prediction among the three strategies. If we desire an 
accurate rating prediction, it is best to binned z-scores in 
equal size bin. However, in the end of the day, the objective of 
a recommender system is to suggest items that hopefully will 
interest user enough for them buy or consumed the 
recommended items. Accurately predict rating is not enough, 
[26], [27], recommender system should be able to suggest 
items that interesting enough for user to consume. In that 
sense, hit rate are more relevant to measure the effectiveness 
of recommender system. Although hit rate are quite low for 
all  
for all three strategies, we could see that HBS strategies 
performed a bit better compared to the others. To improve hit 

Figure 7: Z-Score Distribution 
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rate, we could use other information available on users and 
games to calculate more accurate similarities between them.  
 
To show that we got an acceptable value for RSME we 
compare RSME from [22] and [28] in Table 4. We choose this 
research because they are using the same metric and method. 
However, the result could be biased because they are using 
different dataset and different K value. We are not comparing 
RSME to measure performance of the recommender system 
but rather to show that the value that we get from using 
modified rating in our binning strategies are within the 
acceptable range. 
 

Table 4: RSME comparison 
Our RSME 0.7950 

EI RSME[22] +-1.25 
MovieLens RSME [28] 1.103 

 
In summary, as MAE and RSME provide acceptable value for 
error rate, we could say that it is feasible to map playtime to 
explicit rating using z-score values.  However, direct mapping 
could lead to biased for players that only played several games 
compared to users that play more games which lead us to 
consider different binning strategies. Binning strategies that 
deal with head and tail section of the dataset separately (HBS) 
provide the best result in Hit rate metric. However, if we take 
RMSE and MAE into account, direct mapping provides the 
best result.  
 
As RMSE and MAE only measures error rate of rating 
prediction, it is wise to base our standard of the best strategies 
using hit rate value. While RSME for HBS is the highest, 0.79 
error rate is quite good if we compared with the other research 
(refer table 3). Regardless of the algorithm and dataset used, 
0.79 error rate could be considered acceptable and if we 
compared it with hit rate metric, HBS proof to be slightly 
better than the other strategies 
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