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ABSTRACT 

A lot of Convolutional Neural Networks (CNNs) have been 

implemented using FPGAs for the past years. Subsequently, 

memory saving features were added to the CNN through 

weight quantization using K-means clustering.  A future goal 

on an ASIC design, involving CNN and weight quantization 

working together in one chip, can give way to an automated 

procedure of memory-saving CNN design.  In this paper an 

evaluation was done on the effect of quantizing the weights of 

a Keras library-based CNN using K means clustering.  Various 

values of K in K-means clustering were tested to see its effects 

on the CNN accuracy performance.  This paper presents first 

the design approach of a Keras library based Convolutional 

Neural Network (CNN) for hand-written digit images.  It then 

presents a hardware model design of K-Means clustering 

algorithm using VHDL. The performance of CNN for image 

recognition was then tested for various levels of weight 

quantization using K-means clustering algorithm.  Simulation 

results showed a compression of weights as high as 60% 

resulted to less than 1% reduction in CNN’s accuracy. The 

findings in this paper will serve as guide in determining the 

relevant values of K i.e. the compression ratio, for future ASIC 

design on this topic. 
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1. INTRODUCTION 

 

Convolutional Neural Network (CNN) is a popular machine 

learning tool used for recognizing images.  It is popular in 

many research focused on various character recognition.  

Through CNN, computers can have the chance to recognize an 

 
 

image.  In [1], Deep Neural Network, Deep belief Network 

and Convolutional Neural Network performances on 

handwritten digit recognition, are compared in terms of 

accuracy and performance.  A handwritten digital recognition 

using CNN, was done in [2] and [3].  The paper made use of 

the MNIST database.  In [4], Ensemble Learning was the focus 

for hand-written digit recognition.  The paper mentioned CNN 

as one powerful algorithm for image detection and 

classification with high accuracy when compared to other 

machine learning tools.   In [5], Java based Deep Learning, 

known as Deep Learning4j was used for recognition of 

handwritten digits from MNIST database.  In [6], CNN was 

used for Bangla handwritten digit recognition. Fingertip 

written digit recognition using CNN, trained on MNIST data, 

was mentioned in [7].  The framework has hardware 

implementation using Verilog.  KNN and CNN were 

compared for its performance on handwritten digit recognition 

in [8].  In [9], CNN was used for Malayalam digit recognition. 

While many research for CNN are done using the software 

approach that is on a computer, some would implement it on 

hardware like a Field Programmable gate Array (FPGA). For 

instance, [10] implemented a Deep CNN’s hardware 

accelerator on a XILINX Kintex-7 FPGA.  The paper 

proposed an optimized streaming method proposed for 

hardware accelerators on embedded platforms for a deep 

CNN.  Data concatenation and data reused were adopted as 

means of increasing speed.    CNN is used by [11] to 

implement a real time super-resolution system on an FPGA. 

The system highlighted processing moving images in real 

time.    

 

Like the CNN, clustering is another tool in artificial 

intelligence that has found many applications. Some of these 

were focused on genes classification[12], fast determination of 

cluster center[13], cluster evolution analysis[14]  and 

collaborative clustering[15]. CNN and Clustering crossed path 

in [16].  It was mentioned here that K-means clustering can be 

used for compressing the weights of the deep neural network.  
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By quantizing the weights to enforce weight sharing, usage of 

memory can be reduced.  

 

2. SIGNIFICANCE OF THE STUDY 

The findings in this research provide significant information 

needed for future researches on design and implementation of 

CNN using the hardware approach instead of software 

approach.  The CNN adopted for this research makes use of 

MNIST data for handwritten digit recognition. Considering 

the usage of handwritten digit recognition in many real-life 

applications, the effect of various levels of weight 

compression can give idea to future designers on how much 

memory can be saved in many future hardware 

implementations.  The Hardware approach design is good for 

embedded systems application. The findings in this research 

can guide the hardware designers on weight compression as 

well as determining the circuit size needed for its 

implementation. This is because the size of the weight 

compression circuit depends on the compression ratio. Using 

various values of compression ratio, one can search for the 

highest compression that will still maintain good accuracy on 

image recognition of the CNN.  A lot of compression ratio 

values, however, can also lead to a large circuit size when 

considering hardware modeling. The findings in this research 

can serve as guide for designers on the limits of K values when 

implementing the hardware circuit for the clustering 

algorithm.  

  

 

3. DESIGN CONSIDERATION 

3.1 The CNN  

Keras is an open source library used for building CNN. It is an 

Application Program Interface.  It provides convenience in its 

accessibility for fast CNN implementation on a computer. In 

Keras, a user can implement a CNN using ready-made library 

modules also known as configurable building blocks. 

Commonly needed layers in implementing neural networks are 

made available to users. Keras supports not only neural 

networks but also convolutional neural networks and recurrent 

neural networks. Needless to say, writing a code for deep 

neural networks becomes easier through the use of available 

building blocks. The code in Keras is written using Python. 

Using the Keras library, a software algorithm for the CNN was 

implemented. Figure 1 shows the block diagram of the adopted 

CNN in this study. Two Convolutional Layers, two Pooling 

Layers, and two Fully Connected Layers were used to achieve 

the best accuracy while trying to reduce the number of weights 

to cluster. A study by [17] essentially provided the means for 

the basis of choosing the number of convolutional layers. The 

modelling of the design of the CNN model was also based on 

the same study and [18].  [17] provides the guide on the design 

of the pooling layer and remaining layers.  

 

 
 

Figure 1: CNN Block Diagram 

 

3.2 Input Image 

The images used in training the CNN model were taken from 

the MNIST database which consists of a training set of 60,000 

samples of handwritten digits, as inspired by a study by [19]. 

Using the “model.fit” command from the Keras library used in 

the constructing the CNN, the model will be able to train all 

60,000 images.  The speed of training is dependent on the 

processing power of the computer being used. Such processes 

were based on KERAS and NUMPY libraries. All the images 

in the MNIST database are of the size 28x28 pixels. The pixels 

in each image have a value ranging between 0-255 where 0 is 

the darkest and 255 is the lightest.  For CNN to be able to 

process this data, the values are normalized into the range of 

0-1 by dividing the values by 255, as per stated by a study 

conducted by [20]. The size of the input images was used in 

constructing the optimal CNN model consisting of minimal 

weights while still achieving the target accuracy. 

 

3.3 Filter 

 

 
Figure 2 : Layer 1 Filter After Training 
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Figure 3 : Layer 2 Filter After Training 

To maintain the lowest number of weights to be clustered, 

while being able to achieve the target, the Convolutional 

Neural Network was reduced as much as possible. 5x5 filters 

were used for the 1st and 2nd convolutional layers.  Padding 

was utilized to maintain the output shape of the weights while 

still maintaining accurate results. Two 5 x 5 filters were used 

for the first convolution layer while four 5x5 filters were used 

for the second convolution layer.   Figures 2 and 3 show the 

filter layer after the training. 

 

3.4 Pooling 

Two pooling layers were used to reduce the size of the image 

for it to be processed in the fully connected layers. By using 

pooling filters which have a size of 2x2 and applying it over 

strides of 2, the 28x28 image would be shrunk into 14x14 after 

the first pooling layer and 7x7 after the second pooling layer. 

This is done to minimize the number of nodes that will be 

connected to the Fully Connected Layer which would have 

drastically increase the number of weights present in the CNN. 

 

3.5 Fully Connected Layer 

Two Fully Connected layers are used in this design. The first 

Fully Connected Layer acts as a hidden layer in between the 

convolution layers and the output layer which takes in a certain 

set of input weights and outputs a value accordingly through an 

activation function.  In this case 'ReLU' or Rectified Linear 

Units was used here as the activation function. To keep the 

weights to a minimum, only 16 nodes are included in this 

hidden layer. The layer before the hidden layer is the second 

pooling layer which has an output shape of 2x7x7 nodes. All of 

these nodes would be fully connected to the 16 nodes in the 

hidden layer and would produce one weight each which, when 

multiplied, would amount to 1568 weights. 

 

The second Fully Connected layer is called the Logits layer 

and it is the layer responsible for predicting the digit displayed. 

Because it is a Fully Connected layer, all 16 nodes from the 

hidden layer are connected to the 10 nodes used for classifying 

the digit from 0-9, which would produce a total of 160 weights. 

The activation used in this layer is 'softmax' where it would 

only output a value from 0-1 and the total of all its outputs 

would be equal to 1. There are 10 outputs in this layer, each 

predicting the probability of the number 0-9 to be the one 

being displayed or tested. Table 1 summarizes the 

specifications for the CNN design. 

 
Table 1: CNN Specification 

Input Image Size 28 x 28 

Filter Matrix Size 5 x 5 

Number of Filter 

Weights 

150 

Size of Fully 

Connected Layer 

16 Nodes 

Number of Fully 

Connected Layer 

Weights 

1568 Weights 

Size of Logit Layer 10 nodes 

Number of Logit 

Layer Weights 

160 Weights 

Overall Accuracy 93.32% 

3.6 Fully Connected Layer 

The weights used in the CNN were represented as the 

multiplicative factor of the filters. They were extracted using 

the \model.get\_weights() command in the Keras library. 

Weights were used as the inputs for both C++ and VHDL 

implementations of K-Means Clustering. The clustered 

weights present at the output of the K-Means clustering 

implementation were then fed back to the CNN using the 

\textit{model.set\_weights()} command and the accuracy was 

evaluated using the \textit{model.evaluate} command. A total 

of 1878 weights were extracted and clustered using K-Means 

Clustering. Before clustering, the CNN already achieved an 

overall accuracy of 93.32%. 

 

3.7 K-means Clustering 

With a future goal of moving into ASIC, a VHDL code is used. 

Writing a software code like C language for the clustering 

algorithm, makes the processing sequential. It also takes 

considerable waiting time before the clustering finishes most 

especially if there are many input weights to compress.   This 

paper proposes the use VHDL can deliver the results faster. 

This is because in VHDL, several variables can be updated all 

the same time. Although the code is not meant for synthesis, 

the VHDL model written still adopted a sequential circuit 

setup.  Clock and reset input are still used in the code.  The 

whole system is still made synchronous with the clock input. 

The completed model comes one step closer to realizing the 

synthesizable hardware model for future ASIC 

implementation.  Shown in Figure 4 is the block diagram of the 

K-means Clustering hardware model.  The inputs to this 

module are the weight values coming from the CNN.   The 

number of groups or K is decided by the user.  The value of K 

will dictate the number of centroid values.   
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Figure 4 shows the block diagram. The inputs undergo 

Euclidean distance calculation with each centroid value 

through the EUDIST module. The initial centroid values are 

chosen randomly from the list of inputs.   For every input, the 

number of Euclidean distance values computed is equal to K.  

A search for the minimum from among the values in every set 

will determine to which group does an input belong to. The 

search is done by the Findmin module. The output of the 

Findmin modules determines the groupings of the inputs.  The 

average of every group determines the new set of centroid 

values.  The averaging procedure is done by the sumave 

module.  In sumave module, a sum accumulator works by 

searching for every input belonging to one cluster and 

accumulates the sum. For every input searched for a group, not 

only is the sum accumulated, but a counter is also incremented. 

Equations 1 and 2 shows the behavior of the sum accumulator 

and the counter respectively. Sum SN denotes the variable that 

accumulates the sum of all inputs belonging to a particular 

cluster, n.  In is the input belonging to the aforementioned 

cluster.  CN counts the number of inputs belonging to the same 

cluster.  Dividing SN by CN yields the centroid value of the 

given cluster after every iteration. With the new set of centroid 

values, the entire operation starting from the Euclidean 

distance calculation is repeated to regroup the inputs. The 

operation only stops when the current set of centroid values is 

exactly the same as the set of previous values.  In the 

FINALANS module, every input is represented by the average 

value of the group to which it belongs. The MUX module is an 

option for releasing every encoded input. 

 

 
Figure 4 : K-Means Clustering Block Diagram 

 

 

SN = SN + IN                              (1) 

                             CN = CN + 1                   (2) 

 

4. DATA AND RESULTS 

 The goal of the compression is to reduce the CNN weights 

memory usage through weight quantization using K-means 

clustering algorithm.  This effect is weight sharing.  The higher 

the compression ratio, the better is the memory savings.  

However, weight quantization means changing the original 

value of the CNN weights after training is completed.  

Changing the weight values after the training can obviously 

affect the very purpose of the CNN training i.e. image 

recognition.  In this section, the weights were compressed 

using various ratios and then the CNN is subsequently 

evaluated to see if its image recognition ability is still working.  

The data in gathered in this section is an analysis of up to how 

much compression, which also denotes up to how much 

memory savings, can be carried out without sacrificing the 

CNN’s performance when it comes to image recognition.  

Table 2 shows how much memory is occupied by the CNN on 

the Random Access Memory of the computer.   This 

representation is widely used for computing how much a CNN 

implementation would take up in the RAM of the computer 

and was seen in part in [19]. Before clustering is applied, 

166.2MB of the RAM is occupied by the CNN since the model 

has been fitted with 60000 images. Applying K-means 

clustering to the CNN model will linearly decrease the 

memory used by the CNN since clustering applies quantization 

to the weights. This can be seen also in another study in [21] 

where they applied binary quantization by changing all the 

weights into binary form which gave them a very big 

advantage in terms of memory without suffering a major loss 

in accuracy. 

Table 2: Memory Occupied By CNN 

Layer Output Size Memory 

Input 28x28x1 784B 

Conv2d.1 28x28x2 1568B 

Conv2d.2 14x14x2 392B 

Dense.1 1x1x16 16B 

Dense,2 1x10 10B 

Total Memory per Image 2.77KB 

Total Memory(6000 images) 166.2MB 

 

Figure 5 represents the memory usage of the CNN for every 

weight compression applied.  As seen from the figure, the 

memory of the CNN has been reduced from 166.2MB up to 

16.62MB when 90% clustering is applied.   

 

The memory savings can increase up to around 150 MB but 

the accuracy will noticeably drop. A study by [22] states that 

applying K-means clustering to weights can lead to very good 

balance between memory of the CNN and accuracy of 

recognition which is evident in the compression of the CNN.  
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A 100% compression means all weights of the CNN will be 

represented by just 1 value.  This level of compression 

however shows the CNN failing in its recognition ability. 

 

 

 
 

Figure 5 : Compression vs Memory Usage 

 

 

Figure 6 portrays the amount of resource units in the Random Access 

Memory of the computer saved with respect to the compression ratio 

of the CNN's weight values. There is an evident trend in resource unit 

savings as far as the increase in compression ratio is concerned, 

although it is not as large and not as linear. 

 

 

 

 
 

Figure 6 : Resource Unit vs Compression 

 

 

                    Table 3: Compression vs Accuracy 

% Clustering  Accuracy 

0 93.32 % 

10 93.28% 

20 93.20% 

30 93.35% 

40 93.45% 

50 93.35% 

60 93.29% 

70 92.90% 

80 91.30% 

90 89.81% 

100 11.35% 

 

 The Keras based CNN was trained using training images 

obtained from MNIST until the target outputs are reached. 

After the training, test images from MNIST were subsequently 

fed to the CNN to test its performance. Due to the limitation 

imposed on the size of filters, the accuracy obtained after 

testing, resulted to 93.32%.  The weights of the CNN were 

then compressed through weight quantization using K-means 

clustering. Table 3 shows the data gathered from testing the 

accuracy of the CNN for various compression rate obtained 

from the VHDL simulation results.  It can be seen from the 

table that the system accuracy hardly deviated from the no 

compression performance even when the compression has 

reached 60%.  As seen from Table 3, depending on the 

requirement of the designer, the CNN’s accuracy can be 

considered high even when compression has reached as high 

as 90%. 

 

5. CONCLUSION AND RECOMMENDATION 

In this paper, a Keras based CNN was developed and 

subsequently used for training using MNIST images of 

hand-written digits. After the training, the CNN was tested 

using test images, also provided by MNIST.  Due to the 

reduction in filter size to 5x5, the accuracy obtained was 

placed at around 93.32%. Applying weight compression 

through weight quantization using K-means clustering 

algorithm, the CNN’s accuracy stays at above 93%, even when 

compression has reached 60%.  This is considered very close 

or almost the same as the accuracy level without compression 

applied.  At 70% compression ratio, accuracy can still be 

considered good at 92.9 %.   Also shown in this paper is the 

CNN’s reduction in memory usage as the compression ratio 

increases. From 166.2MB, the memory usage can go down to 

as low as 16.62MB at 90% compression ratio.    

It is recommended for further study, to design and implement a 

CNN architecture with weight compression feature using the 

hardware approach. The hardware design approach can be 

realized through FPGA or ASIC implementation.  To avoid 

consuming too much hardware for implementing the K-means 

clustering algorithm, the designer may opt to limit the 

minimum compression ratio to 60%.  At this value, there 

should be significant savings in memory usage while 

maintaining a good accuracy performance of the CNN when 

compared to the no compression scenario. 
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