
Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

66



ABSTRACT

A lot of Convolutional Neural Networks (CNNs) have been

implemented using FPGAs for the past years. Subsequently,

memory saving features were added to the CNN through

weight quantization using K-means clustering. A future goal

on an ASIC design, involving CNN and weight quantization

working together in one chip, can give way to an automated

procedure of memory-saving CNN design. In this paper an

evaluation was done on the effect of quantizing the weights of

a Keras library-based CNN using K means clustering. Various

values of K in K-means clustering were tested to see its effects

on the CNN accuracy performance. This paper presents first

the design approach of a Keras library based Convolutional

Neural Network (CNN) for hand-written digit images. It then

presents a hardware model design of K-Means clustering

algorithm using VHDL. The performance of CNN for image

recognition was then tested for various levels of weight

quantization using K-means clustering algorithm. Simulation

results showed a compression of weights as high as 60%

resulted to less than 1% reduction in CNN’s accuracy. The

findings in this paper will serve as guide in determining the

relevant values of K i.e. the compression ratio, for future ASIC

design on this topic.

Key words: Convolutional Neural Network; K-Means

Clustering; Hardware Model; VHDL; Weight Compression;

Field Programmable Gate Array

1. INTRODUCTION

Convolutional Neural Network (CNN) is a popular machine

learning tool used for recognizing images. It is popular in

many research focused on various character recognition.

Through CNN, computers can have the chance to recognize an

image. In [1], Deep Neural Network, Deep belief Network

and Convolutional Neural Network performances on

handwritten digit recognition, are compared in terms of

accuracy and performance. A handwritten digital recognition

using CNN, was done in [2] and [3]. The paper made use of

the MNIST database. In [4], Ensemble Learning was the focus

for hand-written digit recognition. The paper mentioned CNN

as one powerful algorithm for image detection and

classification with high accuracy when compared to other

machine learning tools. In [5], Java based Deep Learning,

known as Deep Learning4j was used for recognition of

handwritten digits from MNIST database. In [6], CNN was

used for Bangla handwritten digit recognition. Fingertip

written digit recognition using CNN, trained on MNIST data,

was mentioned in [7]. The framework has hardware

implementation using Verilog. KNN and CNN were

compared for its performance on handwritten digit recognition

in [8]. In [9], CNN was used for Malayalam digit recognition.

While many research for CNN are done using the software

approach that is on a computer, some would implement it on

hardware like a Field Programmable gate Array (FPGA). For

instance, [10] implemented a Deep CNN’s hardware

accelerator on a XILINX Kintex-7 FPGA. The paper

proposed an optimized streaming method proposed for

hardware accelerators on embedded platforms for a deep

CNN. Data concatenation and data reused were adopted as

means of increasing speed. CNN is used by [11] to

implement a real time super-resolution system on an FPGA.

The system highlighted processing moving images in real

time.

Like the CNN, clustering is another tool in artificial

intelligence that has found many applications. Some of these

were focused on genes classification[12], fast determination of

cluster center[13], cluster evolution analysis[14] and

collaborative clustering[15]. CNN and Clustering crossed path

in [16]. It was mentioned here that K-means clustering can be

used for compressing the weights of the deep neural network.

 Evaluation of the effects of K-Means Clustered-Based

Weight Quantization on a Keras Library Based

Convolutional Neural Network for Hand Written Digit

Image Recognition

Roderick Yap
1
, Goldwin Giron

2
, Leonard Miguel Lanto

3
, Lorenzo Garcia

4

1
De La Salle University, Manila, Philippines, roderick.yap@dlsu.edu.ph

2
 De La Salle University, Manila, Philippines, goldwin_giron@dlsu.edu.ph
3
 De La Salle University, Manila, Philippines, miguel_lanto@dlsu.edu.ph

4
De La Salle University, Manila, Philippines, lorenzo_garcia@dlsu.edu.ph

Received Date : February 26, 2024 Accepted Date: March 22, 2024 Published Date: April 06, 2024

ISSN 2278-3091

Volume 13, No.2, March - April 2024

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse051322024.pdf

https://doi.org/10.30534/ijatcse/2024/051322024

mailto:lorenzo_garcia@dlsu.edu.ph
http://www.warse.org/IJATCSE/static/pdf/file/ijatcse051322024.pdf
https://doi.org/10.30534/ijatcse/2024/051322024

Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

67

By quantizing the weights to enforce weight sharing, usage of

memory can be reduced.

2. SIGNIFICANCE OF THE STUDY

The findings in this research provide significant information

needed for future researches on design and implementation of

CNN using the hardware approach instead of software

approach. The CNN adopted for this research makes use of

MNIST data for handwritten digit recognition. Considering

the usage of handwritten digit recognition in many real-life

applications, the effect of various levels of weight

compression can give idea to future designers on how much

memory can be saved in many future hardware

implementations. The Hardware approach design is good for

embedded systems application. The findings in this research

can guide the hardware designers on weight compression as

well as determining the circuit size needed for its

implementation. This is because the size of the weight

compression circuit depends on the compression ratio. Using

various values of compression ratio, one can search for the

highest compression that will still maintain good accuracy on

image recognition of the CNN. A lot of compression ratio

values, however, can also lead to a large circuit size when

considering hardware modeling. The findings in this research

can serve as guide for designers on the limits of K values when

implementing the hardware circuit for the clustering

algorithm.

3. DESIGN CONSIDERATION

3.1 The CNN

Keras is an open source library used for building CNN. It is an

Application Program Interface. It provides convenience in its

accessibility for fast CNN implementation on a computer. In

Keras, a user can implement a CNN using ready-made library

modules also known as configurable building blocks.

Commonly needed layers in implementing neural networks are

made available to users. Keras supports not only neural

networks but also convolutional neural networks and recurrent

neural networks. Needless to say, writing a code for deep

neural networks becomes easier through the use of available

building blocks. The code in Keras is written using Python.

Using the Keras library, a software algorithm for the CNN was

implemented. Figure 1 shows the block diagram of the adopted

CNN in this study. Two Convolutional Layers, two Pooling

Layers, and two Fully Connected Layers were used to achieve

the best accuracy while trying to reduce the number of weights

to cluster. A study by [17] essentially provided the means for

the basis of choosing the number of convolutional layers. The

modelling of the design of the CNN model was also based on

the same study and [18]. [17] provides the guide on the design

of the pooling layer and remaining layers.

Figure 1: CNN Block Diagram

3.2 Input Image

The images used in training the CNN model were taken from

the MNIST database which consists of a training set of 60,000

samples of handwritten digits, as inspired by a study by [19].

Using the “model.fit” command from the Keras library used in

the constructing the CNN, the model will be able to train all

60,000 images. The speed of training is dependent on the

processing power of the computer being used. Such processes

were based on KERAS and NUMPY libraries. All the images

in the MNIST database are of the size 28x28 pixels. The pixels

in each image have a value ranging between 0-255 where 0 is

the darkest and 255 is the lightest. For CNN to be able to

process this data, the values are normalized into the range of

0-1 by dividing the values by 255, as per stated by a study

conducted by [20]. The size of the input images was used in

constructing the optimal CNN model consisting of minimal

weights while still achieving the target accuracy.

3.3 Filter

Figure 2 : Layer 1 Filter After Training

Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

68

Figure 3 : Layer 2 Filter After Training

To maintain the lowest number of weights to be clustered,

while being able to achieve the target, the Convolutional

Neural Network was reduced as much as possible. 5x5 filters

were used for the 1st and 2nd convolutional layers. Padding

was utilized to maintain the output shape of the weights while

still maintaining accurate results. Two 5 x 5 filters were used

for the first convolution layer while four 5x5 filters were used

for the second convolution layer. Figures 2 and 3 show the

filter layer after the training.

3.4 Pooling

Two pooling layers were used to reduce the size of the image

for it to be processed in the fully connected layers. By using

pooling filters which have a size of 2x2 and applying it over

strides of 2, the 28x28 image would be shrunk into 14x14 after

the first pooling layer and 7x7 after the second pooling layer.

This is done to minimize the number of nodes that will be

connected to the Fully Connected Layer which would have

drastically increase the number of weights present in the CNN.

3.5 Fully Connected Layer

Two Fully Connected layers are used in this design. The first

Fully Connected Layer acts as a hidden layer in between the

convolution layers and the output layer which takes in a certain

set of input weights and outputs a value accordingly through an

activation function. In this case 'ReLU' or Rectified Linear

Units was used here as the activation function. To keep the

weights to a minimum, only 16 nodes are included in this

hidden layer. The layer before the hidden layer is the second

pooling layer which has an output shape of 2x7x7 nodes. All of

these nodes would be fully connected to the 16 nodes in the

hidden layer and would produce one weight each which, when

multiplied, would amount to 1568 weights.

The second Fully Connected layer is called the Logits layer

and it is the layer responsible for predicting the digit displayed.

Because it is a Fully Connected layer, all 16 nodes from the

hidden layer are connected to the 10 nodes used for classifying

the digit from 0-9, which would produce a total of 160 weights.

The activation used in this layer is 'softmax' where it would

only output a value from 0-1 and the total of all its outputs

would be equal to 1. There are 10 outputs in this layer, each

predicting the probability of the number 0-9 to be the one

being displayed or tested. Table 1 summarizes the

specifications for the CNN design.

Table 1: CNN Specification

Input Image Size 28 x 28

Filter Matrix Size 5 x 5

Number of Filter

Weights

150

Size of Fully

Connected Layer

16 Nodes

Number of Fully

Connected Layer

Weights

1568 Weights

Size of Logit Layer 10 nodes

Number of Logit

Layer Weights

160 Weights

Overall Accuracy 93.32%

3.6 Fully Connected Layer

The weights used in the CNN were represented as the

multiplicative factor of the filters. They were extracted using

the \model.get_weights() command in the Keras library.

Weights were used as the inputs for both C++ and VHDL

implementations of K-Means Clustering. The clustered

weights present at the output of the K-Means clustering

implementation were then fed back to the CNN using the

\textit{model.set_weights()} command and the accuracy was

evaluated using the \textit{model.evaluate} command. A total

of 1878 weights were extracted and clustered using K-Means

Clustering. Before clustering, the CNN already achieved an

overall accuracy of 93.32%.

3.7 K-means Clustering

With a future goal of moving into ASIC, a VHDL code is used.

Writing a software code like C language for the clustering

algorithm, makes the processing sequential. It also takes

considerable waiting time before the clustering finishes most

especially if there are many input weights to compress. This

paper proposes the use VHDL can deliver the results faster.

This is because in VHDL, several variables can be updated all

the same time. Although the code is not meant for synthesis,

the VHDL model written still adopted a sequential circuit

setup. Clock and reset input are still used in the code. The

whole system is still made synchronous with the clock input.

The completed model comes one step closer to realizing the

synthesizable hardware model for future ASIC

implementation. Shown in Figure 4 is the block diagram of the

K-means Clustering hardware model. The inputs to this

module are the weight values coming from the CNN. The

number of groups or K is decided by the user. The value of K

will dictate the number of centroid values.

Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

69

Figure 4 shows the block diagram. The inputs undergo

Euclidean distance calculation with each centroid value

through the EUDIST module. The initial centroid values are

chosen randomly from the list of inputs. For every input, the

number of Euclidean distance values computed is equal to K.

A search for the minimum from among the values in every set

will determine to which group does an input belong to. The

search is done by the Findmin module. The output of the

Findmin modules determines the groupings of the inputs. The

average of every group determines the new set of centroid

values. The averaging procedure is done by the sumave

module. In sumave module, a sum accumulator works by

searching for every input belonging to one cluster and

accumulates the sum. For every input searched for a group, not

only is the sum accumulated, but a counter is also incremented.

Equations 1 and 2 shows the behavior of the sum accumulator

and the counter respectively. Sum SN denotes the variable that

accumulates the sum of all inputs belonging to a particular

cluster, n. In is the input belonging to the aforementioned

cluster. CN counts the number of inputs belonging to the same

cluster. Dividing SN by CN yields the centroid value of the

given cluster after every iteration. With the new set of centroid

values, the entire operation starting from the Euclidean

distance calculation is repeated to regroup the inputs. The

operation only stops when the current set of centroid values is

exactly the same as the set of previous values. In the

FINALANS module, every input is represented by the average

value of the group to which it belongs. The MUX module is an

option for releasing every encoded input.

Figure 4 : K-Means Clustering Block Diagram

SN = SN + IN (1)

 CN = CN + 1 (2)

4. DATA AND RESULTS

 The goal of the compression is to reduce the CNN weights

memory usage through weight quantization using K-means

clustering algorithm. This effect is weight sharing. The higher

the compression ratio, the better is the memory savings.

However, weight quantization means changing the original

value of the CNN weights after training is completed.

Changing the weight values after the training can obviously

affect the very purpose of the CNN training i.e. image

recognition. In this section, the weights were compressed

using various ratios and then the CNN is subsequently

evaluated to see if its image recognition ability is still working.

The data in gathered in this section is an analysis of up to how

much compression, which also denotes up to how much

memory savings, can be carried out without sacrificing the

CNN’s performance when it comes to image recognition.

Table 2 shows how much memory is occupied by the CNN on

the Random Access Memory of the computer. This

representation is widely used for computing how much a CNN

implementation would take up in the RAM of the computer

and was seen in part in [19]. Before clustering is applied,

166.2MB of the RAM is occupied by the CNN since the model

has been fitted with 60000 images. Applying K-means

clustering to the CNN model will linearly decrease the

memory used by the CNN since clustering applies quantization

to the weights. This can be seen also in another study in [21]

where they applied binary quantization by changing all the

weights into binary form which gave them a very big

advantage in terms of memory without suffering a major loss

in accuracy.

Table 2: Memory Occupied By CNN

Layer Output Size Memory

Input 28x28x1 784B

Conv2d.1 28x28x2 1568B

Conv2d.2 14x14x2 392B

Dense.1 1x1x16 16B

Dense,2 1x10 10B

Total Memory per Image 2.77KB

Total Memory(6000 images) 166.2MB

Figure 5 represents the memory usage of the CNN for every

weight compression applied. As seen from the figure, the

memory of the CNN has been reduced from 166.2MB up to

16.62MB when 90% clustering is applied.

The memory savings can increase up to around 150 MB but

the accuracy will noticeably drop. A study by [22] states that

applying K-means clustering to weights can lead to very good

balance between memory of the CNN and accuracy of

recognition which is evident in the compression of the CNN.

Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

70

A 100% compression means all weights of the CNN will be

represented by just 1 value. This level of compression

however shows the CNN failing in its recognition ability.

Figure 5 : Compression vs Memory Usage

Figure 6 portrays the amount of resource units in the Random Access

Memory of the computer saved with respect to the compression ratio

of the CNN's weight values. There is an evident trend in resource unit

savings as far as the increase in compression ratio is concerned,

although it is not as large and not as linear.

Figure 6 : Resource Unit vs Compression

 Table 3: Compression vs Accuracy

% Clustering Accuracy

0 93.32 %

10 93.28%

20 93.20%

30 93.35%

40 93.45%

50 93.35%

60 93.29%

70 92.90%

80 91.30%

90 89.81%

100 11.35%

 The Keras based CNN was trained using training images

obtained from MNIST until the target outputs are reached.

After the training, test images from MNIST were subsequently

fed to the CNN to test its performance. Due to the limitation

imposed on the size of filters, the accuracy obtained after

testing, resulted to 93.32%. The weights of the CNN were

then compressed through weight quantization using K-means

clustering. Table 3 shows the data gathered from testing the

accuracy of the CNN for various compression rate obtained

from the VHDL simulation results. It can be seen from the

table that the system accuracy hardly deviated from the no

compression performance even when the compression has

reached 60%. As seen from Table 3, depending on the

requirement of the designer, the CNN’s accuracy can be

considered high even when compression has reached as high

as 90%.

5. CONCLUSION AND RECOMMENDATION

In this paper, a Keras based CNN was developed and

subsequently used for training using MNIST images of

hand-written digits. After the training, the CNN was tested

using test images, also provided by MNIST. Due to the

reduction in filter size to 5x5, the accuracy obtained was

placed at around 93.32%. Applying weight compression

through weight quantization using K-means clustering

algorithm, the CNN’s accuracy stays at above 93%, even when

compression has reached 60%. This is considered very close

or almost the same as the accuracy level without compression

applied. At 70% compression ratio, accuracy can still be

considered good at 92.9 %. Also shown in this paper is the

CNN’s reduction in memory usage as the compression ratio

increases. From 166.2MB, the memory usage can go down to

as low as 16.62MB at 90% compression ratio.

It is recommended for further study, to design and implement a

CNN architecture with weight compression feature using the

hardware approach. The hardware design approach can be

realized through FPGA or ASIC implementation. To avoid

consuming too much hardware for implementing the K-means

clustering algorithm, the designer may opt to limit the

minimum compression ratio to 60%. At this value, there

should be significant savings in memory usage while

maintaining a good accuracy performance of the CNN when

compared to the no compression scenario.

REFERENCES

1. Mahmoud M. Abu Ghosh, Ashraf Y. Maghari. A

Comparative Study on Handwriting Digit

Recognition Using Neural Networks, 2017

International Conference on Promising Electronic

Technologies (ICPET), Deir El-Balah, October, 2017, pp.

77-81.

2. Mayank Jain , Gagandeep Kaur, Muhammad Parvez

Quamar et. al, Handwritten Digit Recognition Using

CNN, 2021 International Conference on Innovative

https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/8108704/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/8108704/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/8108704/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9388215/proceeding

Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 66 - 71

71

Practices in Technology and Management (ICIPTM),

Noida, February, 2021, pp. 211-215.

3. Elizabeth Rani. G, Sakthimohan. M, Abhigna Reddy. G,

et. al, MNIST Handwritten Digit Recognition using

Machine Learning, 2022 2nd International Conference

on Advance Computing and Innovative Technologies in

Engineering (ICACITE), Greater Noida, July, 2022,

pp.768-772.

4. Kuppa Venkata Padmanabha Nandan, Manoj Panda and

S Veni, Handwritten Digit Recognition Using

Ensemble Learning, 2020 5th International Conference

on Communication and Electronics Systems (ICCES),

Coimbatore, July 2020, pp. 1008-1013.

5. Saqib Ali, Zareen Sakhawat et. al, A robust CNN model

for handwritten digits recognition and classification,

2020 IEEE International Conference on Advances in

Electrical Engineering and Computer Applications(

AEECA),Dailan, August 25-27, 2020, pp. 261-265.

6. Ashadullah Shawon , Md. Jamil-Ur Rahman et. al.,

Bangla Handwritten Digit Recognition Using Deep

CNN for Large and Unbiased Dataset, International

Conference on Bangla Speech and Language Processing

(ICBSLP), Sylhet, September, 2018.

7. MD Shahbaz Khan, Niharika, Priya Yadav et. al., FPGA

Simuation of Fingertip Digit Recognition Using CNN,

7th International Conference on Signal Processing and

Integrated Networks (SPIN), Noida, February 27-28,

2020. Pp. 1072-1077

8. Taher Mostafa El-Sahhar, Mohamed A.Wahby Shalaby

A. Rahman, KNN and the CNN for Handwritten Digit

Recognition: A comparative study, 2023 5th Novel

Intelligent and Leading Emerging Sciences Conference

(NILES), Giza, October 21-23, 2023, pp. 339-342

9. Divya Konikkara , Mrs Usha K , MALAYALAM Digit

Recognition using CNN, 2022 Third International

Conference on Intelligent Computing Instrumentation

and Control Technologies (ICICICT), Kannur, August

11-12, 2022.

10. A. Dundar, J. Jin, B. Martini, and E. Culurciello,

Embedded streaming deep neural networks

accelerator with applications, IEEE Transactions on

Neural Networks and Learning Systems, Vol 28, Issue 7,

pp. 1572–1583, July 2017.

11. T. Manabe, Y. Shibata, and K. Oguri, FPGA

implementation of a real-time super-resolution system

using a convolutional neural network, in 2016

International Conference on Field-Programmable

Technology (FPT), Xi’an, December 7-9, 2016, pp.

249–252.

12. I. A. Pagnuco, J. I. Pastore, G. Abras, M. Brun, and V. L.

Ballarin, Analysis of genetic association using

hierarchical clustering and cluster validation indices,

Genomics, Vol 109, pp. 438-445, 2017.

13. C. Jinyin, L. Xiang, Z. Haibing, and B. Xintong, A novel

cluster center fast determination clustering algorithm,

Applied Soft Computing, vol. 57, pp. 539 – 555, 2017.

14. R. Ramon-Gonen and R. Gelbard, Cluster evolution

analysis: Identification and detection of similar

clusters and migration patterns, Expert Systems with

Applications, vol. 83, pp. 363 –378, 2017.

15. A. Cornujols, C. Wemmert, P. Ganarski, and Y. Bennani,

Collaborative clustering: Why,when, what and how,

Information Fusion, Vol. 39, pp. 81 – 95, 2018.

16. H. M. .W. D. Song Han, Deep compression:

Compressing deep neural networks with pruning,

trained quantization and huffman coding, Available:

https://arxiv.org/pdf/1510.00149.pdf, 2016.

17. Keras: The Python Deep Learning Library, Available:

https://keras.io/?fbclid=IwAR1y9rZ5VcDoME55wIhTn6

mlwfaUXIYI0w4ZncOqK-HZcOjZJbXGggVguDg

18. CS231n Convolutional Neural Networks for

Visual Recognition, Available: :

http://cs231n.github.io/convolutional-networks/?fbclid=

IwAR3oxTeP-IDOUMb7l4e1BO_Fd5TWUIkvI84pKVGJ

UnMcLFpdhz-KO-imLzQ

19. Brownlee, Jason, Handwritten Digit Recognition using

Convolutional Neural Networks in Python with

Keras, Available :

https://machinelearningmastery.com/handwritten-digit-r

ecognition-using-convolutional-neural-networks-python

-keras/?fbclid=IwAR15cEz6U0YXgQouVjGNdd0bkY-D

XRQTUlxfqGzNorPG8jvtVAAk2lmcBDw

20. Tom Hope, Yehezkel S. Resheff, Itay Lieder, Learning

TensorFlow: A guide to building deep learning

systems, Available:

https://lucien-labadie.firebaseapp.com/aa431/learning-t

ensorflow-a-guide-to-building-deep-learning-systems-by

-tom-hope-yehezkel-s-resheff-itay-lieder-1491978511pdf

21. Mohammad Rastegari, Vicente Ordonez, Joseph

Redmon, Ali Farhadi, XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural

Networks, Available:

https://arxiv.org/pdf/1603.05279.pdf

22. Yunchao Gong, Liu Liu and Lubomir D. Bourdev,

Compressing Deep Convolutional Networks using

Vector Quantization, Available:

https://arxiv.org/pdf/1412.6115.pdf

https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9388215/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9823381/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9823381/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9823381/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9130794/proceeding
https://ieeexplore-ieee-org.dlsu.idm.oclc.org:9443/xpl/conhome/9130794/proceeding
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://arxiv.org/pdf/1603.05279.pdf
about:blank
about:blank
about:blank

