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 

ABSTRACT 

 

With the rapid development of Web 2.0 technology, network 

applications have gradually become an indispensable part of our 

lives. At the same time, Web applications are confronted with 

more challenges. As announced by the OWASP (open web 

application security project) organization, injection attack has 

been the first of the top 10 security vulnerabilities in 2013 and 

2017, and SQL injection attack is one of the most important types 

among the injection attacks. Due to the rapid growth of SQL 

injection attacks on web application, this research developed a 

deep learning model in detecting SQL injection attack. The model 

was trained on a dataset that contains about 30,635 queries, which 

includes both injected and non-injected queries. The dataset was 

gotten from Kaggle database. The dataset was then processed by 

removing null and duplicate values. Further pre-processing was 

carried out in terms of tokenization and conversion of text to 

arrays. CountVectorizer () function was used for data 

normalization in converting the dataset to arrays in form of 0s and 

1s. After the pre-processing stage, Feature selection was done on 

the dataset using the tfidvectoriser. The selected features were 

passed to the deep feed forward neural network for training. The 

model was trained on a step of 20 epochs, the model achieved an 

accuracy of 97.65%. Confusion matrix depicts the total number of 

correct prediction and the total number of false classifications. 

The confusion matrix shows that out of 590 classifications on 

attacks that are of normal, the model predicted correctly for 572 

and predicted falsely for 16 times. Then for attacks that are of 

SQL injection, the model predicted correctly 251 times and 

predicted falsely for just 1. This shows the performance of the 

model is in good shape.  The model was saved and deployed to 

web using python flask for easy testing and usage. The model was 

compared with other existing models and it outperformed the 

existing model in terms of accuracy. This research can further be 

extended by using combinations of deep learning algorithms. It 

can further be extended by deploying the model to android 

applications. 

 

Key words: Deep Learning, Feed Forward Neural Network, SQL 

Injection Attack, Web Applications.  

 
 

 

1. INTRODUCTION 

 

The fast development of Internet technology has resulted in an 

explosion of network information. Web applications provide us 

with convenience,” but they also pose a significant network 

security risk. Qihoo 360 conducted security tests on 1.979 million 

websites in China at the end of 2016 and found that 46.3 percent 

of web applications had security vulnerabilities, with SQL 

injection attack (SQLIA) and cross-site scripting attack (XSS) 

vulnerabilities accounting for the most [1]. SQL injection attacks 

are one of the most common network security flaws that must not 

be overlooked. SQL injection was used to target Sony's Play 

Station Network in April 2011. There were about 77 million 

accounts impacted, with 12 million credit cards taken. User 

accounts, passwords, addresses, and credit card spending details 

were all hacked, causing Sony to lose up to $170 million (about 

twice the cost of a high-end private jet) in the process. In February 

2017, the Russian hacker "Rasputin successfully infiltrated a 

database server by exploiting SQL injection vulnerabilities. More 

than 20 colleges and government agencies in the United Kingdom 

and the United States had a huge amount of sensitive material 

stolen [2]. 

SQL injection attacks might theoretically affect any 

database-driven Web application system. Because the SQL 

injection attack is like a user's normal access to the system, it can 

be carried out by submitting Web forms, query strings, or page 

requests, and it is more covert, whereas the current Web 

application firewall (WAF) based on feature matching algorithms 

(rule base) struggles to cover all SQL injection attack variants [3]. 

Users' given data is frequently related with database application 

security risks. The Structured Query Language (SQL) is a 

querying, operating and administration language for database 

applications. 

 

A robust SQL injection detection architecture that can detect all 

SQL injection attack types and is flexible enough to update when 

a new type of attack arises is critical. All detection methods were 

serialized, wasting a lot of time and computational resources. Due 

to the complexity of attack representations, creating a broad 

model to detect all attacks is similarly difficult. On the other hand, 
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many characteristics have varying influence on determining the 

types of attacks. 

 

2. RELATED WORKS 

 

Peng et al. [4] used the deep neural network Long Short Term 

Memory (LSTM) and the Multilayer Perceptron (MLP) in 

training data sets to extract the features of HTTP traffic in the 

training sets, and the final predictive capacity of the testing sets 

was over 99 percent. The deep neural network employs ReLU as 

the hidden layer's activation function, updates the weight 

parameters continuously using the gradient descent algorithm, 

and completes the training in 50 epoch rounds. The proposed 

strategy yielded a 95.5 percent accuracy result. 

Zainab et al. [5] published a survey report on traditional and 

current varieties of Structured Query Language Injection Attack 

(SQLIA), their functioning mechanisms, and detection and 

mitigation approaches for traditional and modern types of SQLIA. 

They assess the detection and prevention strategies in terms of 

their capacity to detect, prevent, or partially stop the attack for 

evaluation. In terms of the findings, the efficacy of some of their 

strategies has to be improved in order to defeat the SQLIA. 

Deep learning is proposed by Huafeng et al. [6] to detect SQL 

injection attacks in network traffic. They chose the target features 

based on the SQL injection attack's characteristics and used 

requests from urls or post packets as training data. They also used 

a deep belief network (DBN) model to train the selected features 

and sample data, resulting in a model that could be used to 

identify an SQL Injection attack.  

Kelvin [7] demonstrated the use of input validation and 

sanitization features collected from source code files to train and 

evaluate classifier models using classical and deep learning-based 

machine learning methods. The algorithms they used are 

Convolutional Neural Network, Multi-Layer Perception and 

Random Forest Classifier. Their experimental result shows that 

Convolutional Neural Network has the highest accuracy result of 

about 95.3%, followed by Random Forest Classifier 93.3% and 

Multi-Layer Perception of about 92.3%. 

Musaab [8] offers a machine learning-based heuristic 

approach. They trained and tested 23 different machine learning 

classifiers using a dataset of 616 SQL statements. They chose the 

best five classifiers based on detection accuracy and constructed a 

Graphical User Interface (GUI) program around them. The 

proposed algorithm (Ensemble Based Tree) was put to the test, 

and the results revealed that it could detect SQL injection attacks 

with a high degree of 93.8 percent accuracy. 

To detect SQL injection attacks, Kranthikumar and Leela [9] 

presented a pattern-based classification named REGEX. They 

compared the pattern-based classifier's results to those of SVM 

(Support Vector Machine), Gradient Boosting Algorithm, and 

Naive Bayes classifiers, which are all machine learning 

classifiers. The comparison was done on a synthesized dataset of 

20474 SQL queries, and it indicated that the REGEX classifier 

had 97 percent accuracy and took 3.98 seconds to compute, which 

was faster than the other machine learning algorithms. 

For identifying SQLi in online applications, Maruf et al. [10] 

presents a deep learning-based approach. To rank the 

characteristics from the dataset, the solution uses both correlation 

and chi-squared approaches. Not only in feature selection, but 

also in the detection process, they used a feed-forward network 

strategy. Above 1850 recorded datasets, their proposed method 

had an accuracy of 98.04 percent, demonstrating its higher 

efficiency over other existing machine learning solutions. 

Ding et al. [11] proposed employing a natural language 

processing model and a deep learning framework to identify SQL 

injection. The strategy can enhance accuracy and reduce false 

alarms by allowing the machine to learn the language model 

features of SQL injection attacks automatically, eliminating 

human interaction and offering some protection against zero-day 

attacks that never happen. Their proposed strategy yielded a 

precision of around 98 percent. 

Kevin [12] proposed a Deep Learning algorithm in detecting 

SQL injection attack. The Deep learning algorithm he used here 

was that of Convolutional Neural Network (CNN). They used a 

training dataset that consists of vulnerable PHP files gathered 

from two dissimilar sources. They selected files written in PHP, 

one of the most popular language to develop web applications. 

For feature extraction, they made use of word2vec in selecting 

features. The word2vec was used in creating word embedding’s, 

which finds the relationship between words. They made use of 

word2vec based models because word2vec have shown much 

success in text classification in previous works, and it may be 

effective in analyzing which functions or commands in codes 

most contributed to SQL injection vulnerabilities. Finally, the 

extracted text was used in training the model using Convolutional 

Neural Network (CNN) model.  The CNN model was trained to 

detect SQL injection attack. The CNN achieved a training 

accuracy of about 95.5%. 

 

3. DESIGN METHODOLOGY 

 

 

SQL Statements
Feature Selection 

(SQL)

Tokenization of 
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          Figure 1: Architectural Design of the Proposed System 
 

Dataset: The dataset comprises of about 30650 structured queries. 

The queries comprise of both safe and unsafe (SQL injection 

attack) queries. The dataset is made of four columns. These 

columns comprise of the following  
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1. Query: The query comprises of various structured query 

statements for both normal and anomalous statements.  

2. Length: The length comprises of the total length of each 

structured query statements. 

3. Attack: The attack column comprises of the kind of attack 

that is being carried out, if it is sqli or just a none sqli 

4. Label: The label column describes the structured query 

statement to be anomalous or normal statement. 

 

 
Figure 2: Dataset sample 

 

Pre-Processing: The data pre-processing has to do with 

transforming the dataset into a well suitable standard that is 

appropriate for training the Feed Forward Classifier model. The 

processing consists of the cleaning of the data and tokenization. 

The cleaning of the data has to do with the removal of noise. By 

noise we mean removing parenthesis, capital letters, non-alpha 

numeric characters. The data cleaning also comprises of the 

removal or filling of Nan values. The pre-processing also has to 

do with tokenization, breaking the words into tokens. The 

processing also has to do with the conversion of the dataset to 

arrays in form of zeros and ones (0s and 1s). 

Feature Selection: Feature selection is an important process in 

training a model. In other to get the best out of the model, certain 

features need to be selected or extracted from the dataset. 

Tfidvectorizer was used in selecting or extracting the most 

notable features that was used in training the Feed Forward 

Classifier model. 

Model Training: “The model was trained using Feed Forward 

Classifier in a robust model that was used in detecting SQL 

Injection attacks on web applications. The Feed Forward 

Classifier model was trained on the SQL injection dataset. The 

Feed Forward Classifier is a Recurrent Neural Network 

algorithm. The Feed Forward Classifier model was built using 

Tensorflow Framework with Keras application. Keras Sequential 

API which means we build the network up one layer at a time. The 

layers are as follows: 

 

1. An Embedding which maps each input word to a 

100-dimensional vector. The embedding can use 

pre-trained weights (more in a second) which we supply 

in the weight’s parameter. Trainable can be set False if 

we do not want to update the embeddings. 

2. A Masking layer to mask any words that do not have a 

pre-trained embedding which is represented as all zeros. 

This layer should not be used when training the 

embeddings. 

3. The heart of the network: a layer of Feed Forward 

Classifier cells with dropout to prevent overfitting. Since 

we are only using one Feed Forward Classifier, it does 

not return the sequences, for using two or more layers, 

make sure to return sequences. 

4. A fully-connected Dense layer with relu activation. This 

adds additional representational capacity to the network. 

5. A Dropout layer to prevent overfitting to the training data. 

6. A Dense fully-connected output layer. This produces a 

probability for every word in the vocab using softmax 

activation. 

The architecture of the Feed Forward algorithm can be seen in 

figure 3. 

 
 

Figure 3: Architecture of Feed Forward Neural Algorithm 

 

(X1, X2 and X3, X4, X5) denotes the input features. The hidden 

layer neurons transform their input from the first layer with a 

linear function W1X1 + W2X2 + W3X3 + W4X4 + W5X5 to the next 

layer. 

Calculation of output for the first (hidden layer) layer consists 

of multiplying the input vector by the first weight matrix,wij. 

Output of hidden layer is given by: 
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The output of output layer is given by: 

 
Where, 

 

 

 
w and k are synaptic weight matrices of hidden layer and output 

layer. 

Activation function F is applied to it there by producing the 

final output signal ‘OUT;’ 

 
Where,  

F is sigmoid function”. 

 

4. EVALUATION AND TESTING 

Plotting a classification report on the trained Feed Forward 

Classifier model was used to assess its performance. The 

Classification report is used to assess the quality of Feed Forward 

neural model predictions by determining how many are True and 

how many are False. True Positives, False Positives, True 

Negatives, and False Negatives are all terms used to describe the 

results of a forecast. The Feed Forward neural model SQLI 

detection and classification report is shown in the classification. 

 

Table 1 Evaluation Matrix 

 

5. RESULTS AND DISCUSSIONS 

 

From the experiment conducted, figure 2 shows the first fifteen 

rows of the structured query language (SQL) dataset. From figure 

2, the dataset is made up of four columns namely, Query, Length, 

Attack, Label. The Query column contains various queries written 

in structured query language (SQL) format; the total number of 

queries written is 30635. The length column contains the length of 

the SQL statements. By length, we mean how long or how many 

characters is contained in the query, including space. The Attack 

column signifies what type of attack is being carried out (being 

SQL injection attack or a normal query). The label column 

contains anomalous and normal. The anomalous signifies that it is 

destructive while the normal describes that it is normal SQL 

query. Figure 4 is a heat map function in python which is being 

used to check for missing values. The white lines in figure 4 shows 

that some rows in the label column are missing. In other to have a 

well trainable model, the data needs to be cleaned. That is to say 

that null or missing values, needs to be removed. Figure 5 shows 

that the missing values in the dataset has been removed 

completely. After this process, feature extraction was applied on 

the dataset to select the most important feature. Figure 4 shows 

that after feature extraction, the most notable features that are 

suitable for training the deep learning model are the query column 

and the label column. Before passing the data to the deep learning 

model, the query column needs to pass through tokenization 

process. This is to say that the query column needs to be tokenized 

and converted to arrays. Figure 7 shows the tokenized and 

converted data. Figure 9 shows the accuracy obtained for both 

training and validation test. The training and validation accuracy 

are used in testing the performance of the model during training 

and on a test dataset. The model achieved a training result of about 

98% and a test result of about 98%. Figure 10 shows the losses of 

the model for both training and testing data. The model had a loss 

value below o.1 for both training and testing. Figure 10 shows the 

classification report of the model. The classification report is a 

summation of accuracy, precision, recall and f- measure. 

Precision has to do with the correct classification of the model in 

terms of false positive, false negative, true positive and true 

negative. The precision score of the model is about 100% correct 

classification for queries that are normal and 94% correct 

classification for queries that are of SQL injection attack. The 

support shows the total number of classifications that was carried 

out by the model. Figure 11 shows the confusion matrix of the 

proposed system. Confusion matrix depicts the total number of 

correct prediction and the total number of false classifications. 

The confusion matrix shows that out of 590 classifications on 

attacks that are of normal, the model predicted correctly for 572 

and predicted falsely for 16 times. Then for attacks that are of 

SQL injection, the model correctly predicted 251 times and 

predicted falsely for just 1. This shows the performance of the 

model is in decent shape. 

 
Figure 4: Result of dataset Heat map 

 

Definition  Formula  

Accuracy 𝑇𝑃+𝑇𝑁 

  
𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃 

Error                   1-accuracy  

Recall                                              𝑇𝑃 

  

Precision   

F-measure   

  
             
             𝑃𝑟e𝑐𝑖𝑠𝑖𝑜𝑛+𝑅e𝑐𝑎𝑙𝑙 
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The thick white line shows that there are some missing values in 

row 19307 and 20307. 

 

 
Figure 5: Shows that the missing values has been removed from 

the dataset 

 

 
Figure 6: Training data 

 

 

 
Figure 7: Tokenized and converted data 

In other to have a well trainable data, the dataset in figure 4.5 need 

to be tokenized and converted to array. This was achieved using 

Count-Vectorizer (), stop-words and tokenizer () 

 

 
Figure 8: A graphical representation of Training Accuracy Vs 

Training Epochs. 

  

 
Figure 9: A graphical representation of Training Loss Values Vs 

Training Epochs. 

 

 
 

Figure 10: Classification report of Deep Learning 
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Figure 11: Confusion Matrix of the proposed Feed Forward 

Neural Network 

The confusion matrix shows the predicted result vs the actual 

prediction. 

 

Table 2: Proposed System versus Existing System 

 

System Model Trainin

g Data 

Accurac

y 

 

A Machine 

Learning based 

Approach to 

Identify SQL 

Injection 

Vulnerabilities 

 

 

Convolutional 

Neural 

Network 

 

9750 

 

95.3% 

A Model to 

detect SQL 

Injection 

attacks using 

Deep Forward 

Neural 

Network 

 

Feed Forward 

Neural 

Network 

30,635 97.65% 

 

Table 2 shows a comparative analysis between our system and the 

existing system proposed by Kevin [12]. The table shows that our 

system outperformed the existing system in terms of accuracy. 

The existing system had an accuracy result of about 95.3% while 

our system had an accuracy result of 97.65% 

 

6. CONCLUSION AND FUTURE WORK 

 

Due to the rapid growth of SQL injection attacks on web 

application, this research developed a deep learning model in 

detecting SQL injection attack. This paper presents a deep 

learning algorithm in detecting SQL Injection Attacks on web 

applications with high accuracy detection rate. The system detects 

advanced SQL injection (Second Order Attack, and Hybrid 

Attack). The implementation of this system was carried out 

beyond analysis and testing of model’s performance using test 

data, but a real time implementation of SQL injection attacks was 

carried out by creating a web application using Python flask. The 

system achieved an accuracy rate of 97.65%. To enhance the 

efficiency of the system, more SQL statements (both injected and 

non-injected statements) need to be considered for training and 

testing our model. This research can further be extended by using 

combinations of deep learning algorithms. It can further be 

extended by deploying the model to android applications. Our 

system is also scalable in the sense that any enhancement can be 

easily implemented with minor modification. 
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