
Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

211



ABSTRACT

With the rapid development of Web 2.0 technology, network

applications have gradually become an indispensable part of our

lives. At the same time, Web applications are confronted with

more challenges. As announced by the OWASP (open web

application security project) organization, injection attack has

been the first of the top 10 security vulnerabilities in 2013 and

2017, and SQL injection attack is one of the most important types

among the injection attacks. Due to the rapid growth of SQL

injection attacks on web application, this research developed a

deep learning model in detecting SQL injection attack. The model

was trained on a dataset that contains about 30,635 queries, which

includes both injected and non-injected queries. The dataset was

gotten from Kaggle database. The dataset was then processed by

removing null and duplicate values. Further pre-processing was

carried out in terms of tokenization and conversion of text to

arrays. CountVectorizer () function was used for data

normalization in converting the dataset to arrays in form of 0s and

1s. After the pre-processing stage, Feature selection was done on

the dataset using the tfidvectoriser. The selected features were

passed to the deep feed forward neural network for training. The

model was trained on a step of 20 epochs, the model achieved an

accuracy of 97.65%. Confusion matrix depicts the total number of

correct prediction and the total number of false classifications.

The confusion matrix shows that out of 590 classifications on

attacks that are of normal, the model predicted correctly for 572

and predicted falsely for 16 times. Then for attacks that are of

SQL injection, the model predicted correctly 251 times and

predicted falsely for just 1. This shows the performance of the

model is in good shape. The model was saved and deployed to

web using python flask for easy testing and usage. The model was

compared with other existing models and it outperformed the

existing model in terms of accuracy. This research can further be

extended by using combinations of deep learning algorithms. It

can further be extended by deploying the model to android

applications.

Key words: Deep Learning, Feed Forward Neural Network, SQL

Injection Attack, Web Applications.

1. INTRODUCTION

The fast development of Internet technology has resulted in an

explosion of network information. Web applications provide us

with convenience,” but they also pose a significant network

security risk. Qihoo 360 conducted security tests on 1.979 million

websites in China at the end of 2016 and found that 46.3 percent

of web applications had security vulnerabilities, with SQL

injection attack (SQLIA) and cross-site scripting attack (XSS)

vulnerabilities accounting for the most [1]. SQL injection attacks

are one of the most common network security flaws that must not

be overlooked. SQL injection was used to target Sony's Play

Station Network in April 2011. There were about 77 million

accounts impacted, with 12 million credit cards taken. User

accounts, passwords, addresses, and credit card spending details

were all hacked, causing Sony to lose up to $170 million (about

twice the cost of a high-end private jet) in the process. In February

2017, the Russian hacker "Rasputin successfully infiltrated a

database server by exploiting SQL injection vulnerabilities. More

than 20 colleges and government agencies in the United Kingdom

and the United States had a huge amount of sensitive material

stolen [2].

SQL injection attacks might theoretically affect any

database-driven Web application system. Because the SQL

injection attack is like a user's normal access to the system, it can

be carried out by submitting Web forms, query strings, or page

requests, and it is more covert, whereas the current Web

application firewall (WAF) based on feature matching algorithms

(rule base) struggles to cover all SQL injection attack variants [3].

Users' given data is frequently related with database application

security risks. The Structured Query Language (SQL) is a

querying, operating and administration language for database

applications.

A robust SQL injection detection architecture that can detect all

SQL injection attack types and is flexible enough to update when

a new type of attack arises is critical. All detection methods were

serialized, wasting a lot of time and computational resources. Due

to the complexity of attack representations, creating a broad

model to detect all attacks is similarly difficult. On the other hand,

A Deep Learning Approach for The Detection of Structured

Query Language Injection Vulnerability

Ogini, P.B1, Dr. E.O Taylor2, Dr. N.D Nwiabu3
1Rivers State University, Nigeria, Princewill.ogini1@ust.edu.ng

21Rivers State University, Nigeria, Taylor.onate@ust.edu.ng
31Rivers State University, Nigeria, Nwiabu.nuka@ust.edu.ng

Received Date: August 17, 2022 Accepted Date: September 23, 2022 Published Date: October 06, 2022

ISSN 2278-3091

Volume 11, No.5, September - October 2022

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse051152022.pdf

https://doi.org/10.30534/ijatcse/2022/051152022

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse051152022.pdf
https://doi.org/10.30534/ijatcse/2022/051152022

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

212

many characteristics have varying influence on determining the

types of attacks.

2. RELATED WORKS

Peng et al. [4] used the deep neural network Long Short Term

Memory (LSTM) and the Multilayer Perceptron (MLP) in

training data sets to extract the features of HTTP traffic in the

training sets, and the final predictive capacity of the testing sets

was over 99 percent. The deep neural network employs ReLU as

the hidden layer's activation function, updates the weight

parameters continuously using the gradient descent algorithm,

and completes the training in 50 epoch rounds. The proposed

strategy yielded a 95.5 percent accuracy result.

Zainab et al. [5] published a survey report on traditional and

current varieties of Structured Query Language Injection Attack

(SQLIA), their functioning mechanisms, and detection and

mitigation approaches for traditional and modern types of SQLIA.

They assess the detection and prevention strategies in terms of

their capacity to detect, prevent, or partially stop the attack for

evaluation. In terms of the findings, the efficacy of some of their

strategies has to be improved in order to defeat the SQLIA.

Deep learning is proposed by Huafeng et al. [6] to detect SQL

injection attacks in network traffic. They chose the target features

based on the SQL injection attack's characteristics and used

requests from urls or post packets as training data. They also used

a deep belief network (DBN) model to train the selected features

and sample data, resulting in a model that could be used to

identify an SQL Injection attack.

Kelvin [7] demonstrated the use of input validation and

sanitization features collected from source code files to train and

evaluate classifier models using classical and deep learning-based

machine learning methods. The algorithms they used are

Convolutional Neural Network, Multi-Layer Perception and

Random Forest Classifier. Their experimental result shows that

Convolutional Neural Network has the highest accuracy result of

about 95.3%, followed by Random Forest Classifier 93.3% and

Multi-Layer Perception of about 92.3%.

Musaab [8] offers a machine learning-based heuristic

approach. They trained and tested 23 different machine learning

classifiers using a dataset of 616 SQL statements. They chose the

best five classifiers based on detection accuracy and constructed a

Graphical User Interface (GUI) program around them. The

proposed algorithm (Ensemble Based Tree) was put to the test,

and the results revealed that it could detect SQL injection attacks

with a high degree of 93.8 percent accuracy.

To detect SQL injection attacks, Kranthikumar and Leela [9]

presented a pattern-based classification named REGEX. They

compared the pattern-based classifier's results to those of SVM

(Support Vector Machine), Gradient Boosting Algorithm, and

Naive Bayes classifiers, which are all machine learning

classifiers. The comparison was done on a synthesized dataset of

20474 SQL queries, and it indicated that the REGEX classifier

had 97 percent accuracy and took 3.98 seconds to compute, which

was faster than the other machine learning algorithms.

For identifying SQLi in online applications, Maruf et al. [10]

presents a deep learning-based approach. To rank the

characteristics from the dataset, the solution uses both correlation

and chi-squared approaches. Not only in feature selection, but

also in the detection process, they used a feed-forward network

strategy. Above 1850 recorded datasets, their proposed method

had an accuracy of 98.04 percent, demonstrating its higher

efficiency over other existing machine learning solutions.

Ding et al. [11] proposed employing a natural language

processing model and a deep learning framework to identify SQL

injection. The strategy can enhance accuracy and reduce false

alarms by allowing the machine to learn the language model

features of SQL injection attacks automatically, eliminating

human interaction and offering some protection against zero-day

attacks that never happen. Their proposed strategy yielded a

precision of around 98 percent.

Kevin [12] proposed a Deep Learning algorithm in detecting

SQL injection attack. The Deep learning algorithm he used here

was that of Convolutional Neural Network (CNN). They used a

training dataset that consists of vulnerable PHP files gathered

from two dissimilar sources. They selected files written in PHP,

one of the most popular language to develop web applications.

For feature extraction, they made use of word2vec in selecting

features. The word2vec was used in creating word embedding’s,

which finds the relationship between words. They made use of

word2vec based models because word2vec have shown much

success in text classification in previous works, and it may be

effective in analyzing which functions or commands in codes

most contributed to SQL injection vulnerabilities. Finally, the

extracted text was used in training the model using Convolutional

Neural Network (CNN) model. The CNN model was trained to

detect SQL injection attack. The CNN achieved a training

accuracy of about 95.5%.

3. DESIGN METHODOLOGY

SQL Statements
Feature Selection

(SQL)

Tokenization of

SQL Statements

Vectorization of

SQL Statements

Input LayerHidden LayerOutput Layer

Model training with Feed

Forward Neural Network

Data Pre-processing

Model Evaluation

and Deployment

 Figure 1: Architectural Design of the Proposed System

Dataset: The dataset comprises of about 30650 structured queries.

The queries comprise of both safe and unsafe (SQL injection

attack) queries. The dataset is made of four columns. These

columns comprise of the following

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

213

1. Query: The query comprises of various structured query

statements for both normal and anomalous statements.

2. Length: The length comprises of the total length of each

structured query statements.

3. Attack: The attack column comprises of the kind of attack

that is being carried out, if it is sqli or just a none sqli

4. Label: The label column describes the structured query

statement to be anomalous or normal statement.

Figure 2: Dataset sample

Pre-Processing: The data pre-processing has to do with

transforming the dataset into a well suitable standard that is

appropriate for training the Feed Forward Classifier model. The

processing consists of the cleaning of the data and tokenization.

The cleaning of the data has to do with the removal of noise. By

noise we mean removing parenthesis, capital letters, non-alpha

numeric characters. The data cleaning also comprises of the

removal or filling of Nan values. The pre-processing also has to

do with tokenization, breaking the words into tokens. The

processing also has to do with the conversion of the dataset to

arrays in form of zeros and ones (0s and 1s).

Feature Selection: Feature selection is an important process in

training a model. In other to get the best out of the model, certain

features need to be selected or extracted from the dataset.

Tfidvectorizer was used in selecting or extracting the most

notable features that was used in training the Feed Forward

Classifier model.

Model Training: “The model was trained using Feed Forward

Classifier in a robust model that was used in detecting SQL

Injection attacks on web applications. The Feed Forward

Classifier model was trained on the SQL injection dataset. The

Feed Forward Classifier is a Recurrent Neural Network

algorithm. The Feed Forward Classifier model was built using

Tensorflow Framework with Keras application. Keras Sequential

API which means we build the network up one layer at a time. The

layers are as follows:

1. An Embedding which maps each input word to a

100-dimensional vector. The embedding can use

pre-trained weights (more in a second) which we supply

in the weight’s parameter. Trainable can be set False if

we do not want to update the embeddings.

2. A Masking layer to mask any words that do not have a

pre-trained embedding which is represented as all zeros.

This layer should not be used when training the

embeddings.

3. The heart of the network: a layer of Feed Forward

Classifier cells with dropout to prevent overfitting. Since

we are only using one Feed Forward Classifier, it does

not return the sequences, for using two or more layers,

make sure to return sequences.

4. A fully-connected Dense layer with relu activation. This

adds additional representational capacity to the network.

5. A Dropout layer to prevent overfitting to the training data.

6. A Dense fully-connected output layer. This produces a

probability for every word in the vocab using softmax

activation.

The architecture of the Feed Forward algorithm can be seen in

figure 3.

Figure 3: Architecture of Feed Forward Neural Algorithm

(X1, X2 and X3, X4, X5) denotes the input features. The hidden

layer neurons transform their input from the first layer with a

linear function W1X1 + W2X2 + W3X3 + W4X4 + W5X5 to the next

layer.

Calculation of output for the first (hidden layer) layer consists

of multiplying the input vector by the first weight matrix,wij.

Output of hidden layer is given by:

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

214

The output of output layer is given by:

Where,

w and k are synaptic weight matrices of hidden layer and output

layer.

Activation function F is applied to it there by producing the

final output signal ‘OUT;’

Where,

F is sigmoid function”.

4. EVALUATION AND TESTING

Plotting a classification report on the trained Feed Forward

Classifier model was used to assess its performance. The

Classification report is used to assess the quality of Feed Forward

neural model predictions by determining how many are True and

how many are False. True Positives, False Positives, True

Negatives, and False Negatives are all terms used to describe the

results of a forecast. The Feed Forward neural model SQLI

detection and classification report is shown in the classification.

Table 1 Evaluation Matrix

5. RESULTS AND DISCUSSIONS

From the experiment conducted, figure 2 shows the first fifteen

rows of the structured query language (SQL) dataset. From figure

2, the dataset is made up of four columns namely, Query, Length,

Attack, Label. The Query column contains various queries written

in structured query language (SQL) format; the total number of

queries written is 30635. The length column contains the length of

the SQL statements. By length, we mean how long or how many

characters is contained in the query, including space. The Attack

column signifies what type of attack is being carried out (being

SQL injection attack or a normal query). The label column

contains anomalous and normal. The anomalous signifies that it is

destructive while the normal describes that it is normal SQL

query. Figure 4 is a heat map function in python which is being

used to check for missing values. The white lines in figure 4 shows

that some rows in the label column are missing. In other to have a

well trainable model, the data needs to be cleaned. That is to say

that null or missing values, needs to be removed. Figure 5 shows

that the missing values in the dataset has been removed

completely. After this process, feature extraction was applied on

the dataset to select the most important feature. Figure 4 shows

that after feature extraction, the most notable features that are

suitable for training the deep learning model are the query column

and the label column. Before passing the data to the deep learning

model, the query column needs to pass through tokenization

process. This is to say that the query column needs to be tokenized

and converted to arrays. Figure 7 shows the tokenized and

converted data. Figure 9 shows the accuracy obtained for both

training and validation test. The training and validation accuracy

are used in testing the performance of the model during training

and on a test dataset. The model achieved a training result of about

98% and a test result of about 98%. Figure 10 shows the losses of

the model for both training and testing data. The model had a loss

value below o.1 for both training and testing. Figure 10 shows the

classification report of the model. The classification report is a

summation of accuracy, precision, recall and f- measure.

Precision has to do with the correct classification of the model in

terms of false positive, false negative, true positive and true

negative. The precision score of the model is about 100% correct

classification for queries that are normal and 94% correct

classification for queries that are of SQL injection attack. The

support shows the total number of classifications that was carried

out by the model. Figure 11 shows the confusion matrix of the

proposed system. Confusion matrix depicts the total number of

correct prediction and the total number of false classifications.

The confusion matrix shows that out of 590 classifications on

attacks that are of normal, the model predicted correctly for 572

and predicted falsely for 16 times. Then for attacks that are of

SQL injection, the model correctly predicted 251 times and

predicted falsely for just 1. This shows the performance of the

model is in decent shape.

Figure 4: Result of dataset Heat map

Definition Formula

Accuracy 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃

Error 1-accuracy

Recall 𝑇𝑃

Precision

F-measure

 𝑃𝑟e𝑐𝑖𝑠𝑖𝑜𝑛+𝑅e𝑐𝑎𝑙𝑙

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

215

The thick white line shows that there are some missing values in

row 19307 and 20307.

Figure 5: Shows that the missing values has been removed from

the dataset

Figure 6: Training data

Figure 7: Tokenized and converted data

In other to have a well trainable data, the dataset in figure 4.5 need

to be tokenized and converted to array. This was achieved using

Count-Vectorizer (), stop-words and tokenizer ()

Figure 8: A graphical representation of Training Accuracy Vs

Training Epochs.

Figure 9: A graphical representation of Training Loss Values Vs

Training Epochs.

Figure 10: Classification report of Deep Learning

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

216

Figure 11: Confusion Matrix of the proposed Feed Forward

Neural Network

The confusion matrix shows the predicted result vs the actual

prediction.

Table 2: Proposed System versus Existing System

System Model Trainin

g Data

Accurac

y

A Machine

Learning based

Approach to

Identify SQL

Injection

Vulnerabilities

Convolutional

Neural

Network

9750

95.3%

A Model to

detect SQL

Injection

attacks using

Deep Forward

Neural

Network

Feed Forward

Neural

Network

30,635 97.65%

Table 2 shows a comparative analysis between our system and the

existing system proposed by Kevin [12]. The table shows that our

system outperformed the existing system in terms of accuracy.

The existing system had an accuracy result of about 95.3% while

our system had an accuracy result of 97.65%

6. CONCLUSION AND FUTURE WORK

Due to the rapid growth of SQL injection attacks on web

application, this research developed a deep learning model in

detecting SQL injection attack. This paper presents a deep

learning algorithm in detecting SQL Injection Attacks on web

applications with high accuracy detection rate. The system detects

advanced SQL injection (Second Order Attack, and Hybrid

Attack). The implementation of this system was carried out

beyond analysis and testing of model’s performance using test

data, but a real time implementation of SQL injection attacks was

carried out by creating a web application using Python flask. The

system achieved an accuracy rate of 97.65%. To enhance the

efficiency of the system, more SQL statements (both injected and

non-injected statements) need to be considered for training and

testing our model. This research can further be extended by using

combinations of deep learning algorithms. It can further be

extended by deploying the model to android applications. Our

system is also scalable in the sense that any enhancement can be

easily implemented with minor modification.

REFERENCES

[1] Uwagbole, S., Buchanan, J. and Lu, F. (2017). Applied

machine learning predictive analytics to SQL injection attack

detection and prevention. Proceeding of the IFIP/IEEE

Symposium on Integrated Network and Service Management

(IM), Lisbob, Portugal, 8-12, 1087-1090

[2] Ding, C., Qiseng, Y., Chunwang, W. and Jun, Z. (2021). SQL

Injection Attack Detection and Prevention Techniques Using

Deep Learning. Journal of Physics: Conference Series, 1757

[3] Subasi, A., Alzahrani, S., Aljuhani, A. and Aljedani, M.

(2018). Comparison of Decision Tree Algorithms for Spam

E-mail Filtering,” In Proceedings of the International Conference

on Computer Applications & Information Security (ICCAIS),

Riyadh, Saudi Arabia, 1-5.

[4] Peng, T., Weidong, Q., Zheng, H and Huijuan, L. (2018). SQL

Injection Behavior Mining Based Deep Learning. International

Conference on Advanced Data Mining and Application, 445 –

454.

[5] Zainab, S. A. and Manal, F. Y. (2017). Detection and

Prevention of SQL Injection Attack: A Survey. International

Journal of Computer Science and Mobile Computing, 6(8), 5-17.

[6] Huafeng, Z., Bo, Z. and Hui, Y. (2019). SQL Injection

Detection Based on Deep Belief Network. SQL Injection

Detection Based on Deep Belief Network. Issue, 20, 1-6.

[7] Kevin, Z. (2019). A Machine Learning based Approach to

Identify SQL Injection Vulnerabilities. 934th IEEE/ACM

International Conference on Automated Software Engineering

(ASE),

1286-1288.

[8] Musaab, F. (2020). Intrusion detection: Approaches, datasets,

and comparative study,” Journal of Information Secure

Application, (50), 102419,

[9] Kranthikumar, B. and Leela, V. (2020). SQL injection

detection using REGEX classifier. Journal of Xi'an University of

Architecture & Technology, 12(6), 800-809.

[10] Maruf, H., Badlishah, A. and Tonmoy, G. (2021). SQL

Injection Vulnerability Detection Using Deep Learning: A

Feature-based Approach. Indonesian Journal of Electrical

Engineering and Informatics (IJEEI) 9(3)702~718.

Ogini, P.B et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 211 - 217

217

[11] Ding, C., Qiseng, Y., Chunwang, W. and Jun, Z. (2021). SQL

Injection Attack Detection and Prevention Techniques Using

Deep Learning. Journal of Physics: Conference Series, 1757

[12] Kevin, Z. (2019). A Machine Learning based Approach to

Identify SQL Injection Vulnerabilities. 934th IEEE/ACM

International Conference on Automated Software Engineering

(ASE), 1286-1288.

