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ABSTRACT 
Deep neural networks have proven to perform optimal 

forecasts even with the presence of noisyand non-linear nature 
of time series data. In thispaper, a hybrid deep neural network 
consisting of Convolutional Neural Networks (CNN) and 
Long Short Term Memory (LSTM) architecture have been 
proposed. The model combines the convolutional layer’s 
capability of feature extraction along with the LSTM’s feature 
of learning long term sequential dependencies. The 
experiments were performed on two datasets and compared 
with four other approaches: Recurrent Neural Network 
(RNN), LSTM, Gated Recurrent Unit (GRU) and 
Bidirectional LSTM. All five models are evaluated and 
compared with one step ahead forecasting. The proposed 
hybrid CNN-LSTM outperformed other modelsfor both 
datasets showing robustness against error. 
 
Key words :Recurrent Neural Networks, Long Short Term 
Memory, Gated Recurrent Units, Bidirectional, Convolutional 
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1. INTRODUCTION 

Time series refers to sequential data in which order is 
required to be maintained. It is observations recorded in 
successive intervals of time. Time series data can be 
frequently observed in the domains of econometrics such as 
stock prices, currency exchange rates as well assignal 
processing and meteorology records of wind speeds, 
temperatures and rainfall. These data are prevalently used 
forecasting, which is predicting the future values by utilization 
of the past values.Now, forecasting can be performed using 
the traditional statistical methods or neural network models. 
Statistical models such as ARIMA, ARIMAX, GAS is the 
prevalently used time series forecasting techniques in majority 
of the domains [1]. Artificial neural networks have also been 
used along with these for achieving better forecast results. 
Recently, Recurrent Neural Networks are being used for 
sequential data problems [2]. These have been widely used for 
Natural Language Processing as well as time series 
forecasting. Along with the recurrent neural networks, hybrid 
models consisting of a convolutional component have also 
evolved recently. Here, we perform forecasting using four 

prevalent architectures of recurrent neural networks and 
analyze their performance. We also develop a hybrid CNN-
LSTM architecture and compare its efficiency with other 
networks. The main issue here is to perform analysis and 
forecasting of time series datasets and develop the qualitative 
forecasting models 

RNNs are a special class of neural networks characterized 
by internal self-connections in any nonlinear dynamical 
system. Prominent architectures of RNN include Deep RNNs 
with Multi-Layer Perceptron, Bidirectional RNN, Recurrent 
Convolutional Neural Networks, Multi-Dimensional 
Recurrent Neural Networks, Long-Short Term Memory, Gated 
Recurrent Unit, Memory Networks, Structurally Constrained 
Recurrent Neural Network, Unitary Recurrent Neural 
Networks, Gated Orthogonal Recurrent Unit and Hierarchical 
Subsampling Recurrent Neural Networks [3]. However, 
vanilla RNN is known to be having the underlying issue of 
vanishing as well as exploding gradients in order to tackle 
which various clipping strategies as well as other variants of 
RNN are proposed [4]. The LSTM variant of RNN have been 
analyzed for eight of its variants concluding that forget gate 
and the output activation function are the most critical 
component. Also, the learning rate is found to be the most 
crucial hyperparameter [5]. Now, RNN and its variants have 
been widely used for time series forecasting tasks in a wide 
range of domains. Long short term memory has been used as a 
novel forecasting technique for solar energy forecasting 
proving LSTM as being robust and performing better than 
GBR and FFNN [6]. Petroleum time series data which are 
characterized by high dimensionality, non-stationary being 
highly non-linear in nature have also been used to test the 
performance of LSTM [7]. Furthermore, a deep architecture of 
RNN has been used to extract deep invariant daily features of 
financial time series outperforming other models in predictive 
accuracy and profitability performance[8].A combination of 
the auto-encoder of convolutional neural network and the long 
short-term memory unit has also been proposed for the task of 
wind speed forecast[16].Recently, a black-box CNN-LSTM 
architecture was proposed forindoor temperature modeling 
[17]. 
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This paper aims to analyse the RNN, LSTM, GRU and 
Bidirectional architectures along with the proposal of a deep 
neural network architecture for the task of univariate time 
series forecasting. Datasets from the electricity and air quality 
domain are being used. The length of both the datasets vary, 
however the fluctuations can be found to be similar. As such 
the problems from different domains are chosen in order to 
analyze the influence on the results of the proposed 
architecture. The paper is organized as follows. Section II 
discusses the architecture and mathematical formulation of the 
RNN models analyzed and the proposed model. Section III 
states the experimental details of the methodology adopted 
and the results while Section IV concludes the paper with 
future directions. 

2.RECURRENT NEURAL NETWORK 
ARCHITECTURES 

This section summarizes the basics of the RNN 
architectures which are analyzed in this paper. RNN is the 
most basic of all the three and GRU and LSTM are the 
variants which were introduced at a later time. 
A. Recurrent Neural Networks 

Recurrent Neural Networks [9] are in the family of 
feedforward neural networks. They are different from other 
feedforward networks in their ability to send information over 
time-steps. Recurrent Neural Networks are considered Turing 
complete and can simulate arbitrary programs (with weights). 
If we view neural networks as optimization over functions, we 
can consider Recurrent Neural Networks as optimization over 
programs. Recurrent neural networks are well suited for 
modeling functions for which the input and/or output is 
composed of vectors that involve a time dependency between 
the values. Recurrent neural networks model the time aspect 
of data by creating cycles in the network (hence, the recurrent 
part of the name). RNN is a special type of Neural Network 
that accounts for the dependencies between data nodes. It 
preserves the sequential information in an inner state, allowing 
them to persist the knowledge accrued from subsequent time 
steps. 

푧 = 푊 푥 + 푊 ℎ  

ℎ = tanh	(푧 ) 
푦 = 푊 ℎ  

푝 = 푠표푓푡푚푎푥(푦 )                         (1)                                            
 
Figure 1 represents an RNN cell with xtas present input, ht−1 
the previous state, Wxhas weight between inputs to hidden unit, 
Whhbeing weight between hidden to hidden unit, i.e., the 
recurrent weight and bias b. ztis the output of the hidden unit 
before application of activation function φ. Then, htis the 
hidden unit output that is sent to the next recurrent units and 
also used in computation of final output of that RNN unit. The 
final output ytis computed by applying another activation 
function to the hidden unit output and Why weight between 
hidden to output unit. The selection and application of 
activation function depends on the task being performed 
[hands on]. 
 

B. Long Short Term Memory Networks 
LSTM [10], as in Figure 2, introduces additional 

computation components to the RNN, the input gate, the 
forget gate and the output gate. The recurrence equation for 
the hidden vector is changed for LSTM with the use of long-
term memory. The operations of the LSTM are designed to 
have fine-grained control over the data written into this long-
term memory. The equations for the forward pass are stated 
below: 

 
푎 = tanh	(푊푥 + 푅 ℎ ) 
푖 = σ	(푊푥 + 푅 ℎ ) 
푓 = σ	(푊 푥 + 푅 ℎ ) 
표 = σ	(푊 푥 + 푅 ℎ ) 
푐 = 푖  ⨀ 푎 + 푓  ⨀ 푐  

ℎ = 표  ⨀ tanh	(푐 )          (2) 
 
The current input and the previous state are worked upon by at 
after which the input gate it decides upon which parts of at are 
required to be added to the long term state ct. The forget gate 
ftmakes a decision as to which parts of ct−1 are to be erased and 
erases unnecessary parts, the output gate otdecides on the parts 
of ctto be read and shown as output. There exists a short term 
state htbetween the cells and a long term state ctin which the 
memories are dropped and added by the respective gates. 

 

Table 1: DATASET DESCRIPTION 

 

Dataset Source No. of 
Observations 

Description 

Dataset 
1 

[12] 2826 Half Hourly values of Electricity Demand ranging from 01-01-1991 
to 01-03-1999 

Dataset 
2 

UCI Repository 
[14] 

9352 Hourly Air Quality dataset ranging from 10-03-2004 to 04-04-2005 
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C. Gated Recurrent Units 
The Gated Recurrent Unit [11] can be viewed as a 

simplification of the LSTM, which does not use explicit cell 
states. The main simplifications are that both state vectors are 
merged into a single vector. Figure 3 represents a GRU cell 
and (3) the equations followed during forward pass. 

푧 = 휎(푊 .푥( ) +푊 . ℎ( )) 
푟 = 휎(푊 .푥( ) +푊 . ℎ( )) 

푔 = 푡푎푛ℎ(푊 .푥( ) + 푊 . (푟( ) ⊗ℎ( ))) 
ℎ = (1 − 푧 )⊗ 푡푎푛ℎ(푊 .ℎ( ) + 푧 ⊗ 푔 ) 

(3) 
 

A single gate controller controls both the forget gate and the 
input gate. If the gate controller outputs a 1, the input gate is 
open and the forget gate is closed. If it outputs a 0, the 
opposite happens. In other words, whenever a memory must 
be stored, the location where it will be stored is erased first. 
This is actually a frequent variant to the LSTM cell in and of 
itself. There is no output gate; the full state vector is output at 
every time step. However, there is a new gate controller that 
controls which part of the previous state will be shown to the 
main layer. 

D. Bidirectional LSTM 
Bidirectional long-short term memory allows the neural 
network to have sequential information in both directions 
backwards and forward, i.e., past to future as well as future to 
past.  
    Since the input flows in two directions, a bidirectional 
LSTMis different from the regular LSTM. With vanilla 
LSTM, the input flows either in forward direction or 
backwards. However, in bidirectional the input flows in both 
directions. This helps to preserve not only the past 
information but also the future data. 
 

3.EXPERIMENT AND RESULTS 
The methodology followed for the proposed work and the 

results obtained is being discussed in this section. Figure 4 
gives a more descriptive interpretation of the scheme 
followed. The time series datasets are first preprocessed for 
making it trainable using the neural network model. The 
models are further optimized, regularized and properly tuned 
for attaining generalized results avoiding underfitting as well 
as overfitting. The performance evaluation of the four variants 
of RNN and the proposed model is done using evaluation 
metrics which finally decides the best forecast model for the 
problem at hand. The experiments were carried out using the 
keras library with tensorflow backend and python 
programming language. 

 

 

Figure 1: Methodology 

A. Dataset Description 
The analysis is carried out on two real world datasets from 

varying domains and lengths. The description of the datasets is 
given in Table I. 

From the figures of the dataset, it can be observed that 
Dataset 1 follows a particular pattern repeating itself, however 
the number of observations is low. Dataset 2 is not as complex 
but it consists of the maximum number of observations. The 
aim is to analyze the performance of the models in differing 
set of scenarios of datasets and also prove the efficiency of the 
proposed model. 

 
Figure 2: Electricity Demand Data 
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Figure 3: Air Quality Data 

The datasets described are raw datasets, i.e., preprocessing 
is required for making them usable. Since, neural network 
architecture is being used, converting the series to a stationary 
set is not a mandatory step. The values range go high as well 
as low due to which data normalization is performedin order 
to standardize the inputs and approach faster towards the 
global minima. It also ensures that larger inputs do not 
overwhelm or become dominant. Min-max normalization, as 
described in (4), is performed in a range of 0 to 1. It does not 
change the data pattern or characteristics but only readjusts the 
scale of the data. 

푥 = (4) 

Data pre-processing step also includes the conversion to a 
supervised data format since time series datasets are being 
dealt with in here. One-step ahead forecast is to be done where 
the next time step (t+1) is predicted. Originally the univariate 
time series dataset consists of only one feature column. We 
divide this time series into input (x) and output (y) using lag 
time method. Lags differ in all three datasets. Dataset 1 
consists of lag size 6and Dataset 2 of size 4. 

B. Network Modelling 
Modeling the neural network architecture such that it 

performs optimally requires setting and tuning different 
configurations of the network. The supervised data is split into 
a train-validation-test split for proper estimation of error. 
Optimization is the minimization of loss function with respect 
to the parameters of our model. Here, ADAM optimizer is 
used as stated in [15]. ADAM optimizer is robust and is used 
frequently used for training RNN architectures. Now, 
optimizers mainly aim to decrease the training error. But, 
sometimes this results in overfitting, i.e., the model fits well 
on the training data but unable to fit on the test data. 
approximately high value for the parameters governing the 
capacity of the model and then controlling it by adding a 
regularization term to the error function. In our work, we have 
used Dropout regularization as and when required [2]. A 
dropout layer blocks a random set of cell units in one iteration. 

Blocked units do not receive and do not transmit information. 
Removing connections in the network reduces the number of 
free parameters to be estimated during training and the 
complexity of the network. Consequently, dropout helps to 
prevent over-fitting. Dropout ratio of 0.2 is used in our work 
in the hidden layer. Hyperparameters are the settings that are 
not adapted by the learning algorithm since that would result 
in model overfitting. Hidden layers of size 2 and 3 were 
experimented upon. The number of hidden nodes was set to 
form a narrow architecture. Number of epochs is tuned for the 
problem at hand.  

Figure 4 represents the proposed network model denoting 
the input, output and the hidden layers. The convolution 
operations are performed in the initial layers for automatic 
feature extraction rather than doing it manually.Pooling is a 
process of down-sampling, which can effectively reducethe 
dimension of the matrix window, while retaining the deep 
informationat the same time. In this work, the max pooling 
was used. Then, we have the LSTM layers to preserve the 
sequential information. Finally, we have the output layer 
which gives the one step ahead forecast results. 

Figure 4 : Network Model 

 

C. Performance Metrics 
Four performance evaluation metrics are used to assess 

forecast accuracy. These error metrics are frequently used for 
assessing model accuracy. After evaluating all the forecast 
models according to the above stated metrics, the best 
configured forecast model is decided upon.These are shown in 
Table II below: 

 
 
 
 
 
 



            Jyoti Verma  et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 11(1),  January - February 2022, 20 – 25 
 

24 
 

Table 2: PERFORMANCE EVALUATION METRICS 
Metric Description 

MAE Mean 
Absolute 

Error 

1
푁 (푦 − 푦 ) 

MSE Mean 
Squared Error 

1
푁 (푦 − 푦 )  

RMSE Root Mean 
Squared Error 1

푁 (푦 − 푦 )  

푹ퟐ 
score 

푅 score 1

−
∑ (푦 − 푦 )
∑ (푦 − 푦⃗ )

 

 
Here, N is the total number of observations for which the 

error is evaluated. yn
actualis the actual observation in nth 

position and yn
predictedthe predicted value. 

D. Results 
As stated earlier, the experiments are carried out on two 

datasets from different real-world domains. Four architectures 
of Recurrent Neural Networks, being RNN, LSTM, GRU, 
Bidirectional LSTM, and proposed hybrid deep neural 
network model areusedfor forecasting one step-ahead result. 
The results shown below in Table III and Table IV show the 
performance evaluation parameters for both the datasets with 
optimal parameters. 

 
Table 3:PERFORMANCE EVALUATION FOR DATASET 1 

Models MAE MSE RMSE 푹ퟐ score 
RNN 0.09277 0.01489 0.1221 54.33 

LSTM 0.09273 0.01462 0.1209 55.18 
GRU 0.09185 0.01461 0.1209 55.19 

Bidirectional 0.09182 0.01452 0.1205 55.48 
Proposed 0.09082 0.01436 0.1198 55.97 

 
 

Table 5: PERFORMANCE EVALUATION FOR DATASET 2 
Models MAE MSE RMSE 푹ퟐ 

score 
RNN 0.02097 0.0006274 0.02505 94.27 

LSTM 0.02003 0.0005952 0.02439 94.56 
GRU 0.01972 0.0005882 0.02425 94.63 

Bidirectional 0.01580 0.0005341 0.02311 95.13 
Proposed 0.01566 0.0004176 0.02044 96.19 

 

The results are stated for well-tuned models achieved after 
experiments for generalizing the model for a better test 
performance on unknown samples. From the table of results, 
many observations can be made about the performance of the 
forecast models. In the case of network performance, it can be 
seen that the proposed hybrid model performs the best out of 
all five models in both the scenarios. The convolutional layer 
does enhance the forecast performance when combined with 
recurrent layers of LSTM network. The bidirectional LSTM 
also indicates better performance than other variants due to its 
property of preserving both past and future information. 

Concerning the datasets, more amount of data leads to better 
performance. Dataset 1 has lesser amount of data samples than 
Dataset 2 which results in the models performing better in 
Dataset 2. The fluctuating data requires the complex structure 
of these RNN variants in order to learn the data patterns and 
dependencies required for forecasting. The proposed CNN-
LSTM architecture enjoys the advantage of efficiency.  

 
4.CONCLUSION 

In the paper, four variants of RNN, namely RNN, LSTM, 
GRU and Bidirectional LSTM has been analyzed on two 
different real-world datasets. It was observed that 
Bidirectional LSTM performed more efficiently amongst all. 
Further, a hybrid deep neural network mechanism comprising 
of convolutional layers along with recurrent layers and 
dropout regularization have been proposed. The proposed 
model is able provide optimal forecast results in both the 
datasets. Hence, the convolutional neural network’s properties 
can be utilized along with recurrent neural network 
architectures to develop efficient time series forecast 
mechanisms. 
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