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 
ABSTRACT 
 
Iris recognition has become a prominence feature in biometric 
system. The main advantages of iris recognition are high 
accuracy, high speed and easy to use. However, the non-ideal 
and noisy iris can contribute to a low recognition accuracy of 
iris recognition. Non-ideal iris is a condition where the shape 
of iris is not symmetrical. Meanwhile, noisy iris is a low 
quality iris image due to the interference of eyelashes, eyelids, 
specular reflections, corneal reflections and many more. 
Moreover, the current Chan-Vese active contour methods 
have shortcoming to determine the accurate initial contour. 
Hence, this paper presents a modified Chan-Vese active 
contour for iris segmentation on non-ideal and noisy iris. In 
this study, the Chan-Vese active contour is modified by 
introducing a new equation to segment both non-ideal and 
noisy iris simultaneously. The proposed method is also 
developed to improve the segmentation accuracy, recognition 
accuracy and image quality of iris segmentation. Next, the 
proposed method is compared with the other Chan-Vese 
active contour iris segmentation methods. According to the 
results, the proposed method can achieve the better 
performance than the other methods in terms of segmentation 
accuracy (97%), recognition accuracy (0.9729) and image 
quality (0.9915). The results show that the proposed method 
is efficient to segment both non-ideal and noisy iris. 
 
Key words : Iris recognition; non-ideal; noisy iris; modified 
Chan-Vese active contour; iris segmentation.  
 
1. INTRODUCTION 
 
Iris recognition is a biometric system focuses on the iris 
pattern of human iris. It uses rich features of iris pattern to 
identify and verify the identity of human. This biometric 
 

 

system has become a prominent feature in pattern recognition 
field due to its high accuracy [1], [2], high speed [3] and easy 
to use [4] characteristics. However, the performance of iris 
recognition can be affected because of the internal and 
external interferences. Two main shortcomings in iris 
recognition are the non-ideal and noisy iris. Non-ideal iris is a 
situation where the shape of iris is not symmetrical. Iris is not 
a circular object in human eyes due to the occlusion by eyelids 
and eyelashes [5]. Other than that, the angular during iris 
acquisition may also contribute to the non-ideal iris. 
Meanwhile, noisy iris is a low quality iris image due to the 
interference of specular reflections, corneal reflections, 
noises, eye rotation, motion blur, off-angle and many more. 
The movement of camera and subject during iris acquisition 
might also contribute to the noisy iris. Moreover, iris 
acquisition with near infra-red (NIR) and visible wavelength 
(VW) sources can contribute to different noises. Iris images 
acquired with NIR may produce specular reflections, corneal 
reflections, non-uniform intensity, and low illumination level 
from the lighting sources. Meanwhile, iris images acquired 
with VW can be interfered by speckle, Poisson, and Gaussian 
noises. 
 
Previously, the Chan-Vese active contour was used to 
overcome the shortcomings in non-ideal iris [6]. This method 
used pixel property method to localize pupillary boundary, 
while Chan-Vese active contour was used to localize limbic 
boundary as shown in Figure 1. The pixel property method 
detected the correct pupillary boundary based on the given 
threshold. In the other hand, the correct limbic boundary was 
detected because of the accurate position of initial contour. 
The advantage of this method is it managed to locate the 
accurate boundaries in the non-ideal iris. However, the given 
threshold might not accurate if implemented on a different 
iris database. Meanwhile, the geodesic active contour was 
used to segment iris region in non-ideal iris [7]. For 
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pre-processing, Otsu multilevel thresholding was used to 
delimit iris region. After that, geodesic active contour with 
novel stopping function was introduced to segment accurate 
iris region. The advantage of this method is it managed to stop 
evolution of active contour to segment the accurate iris 
region. Unfortunately, the geodesic active contour required 
more execution time than the Chan-Vese active contour. 
Moreover, the geodesic active contour depended on edges or 
gradient information which may cause problems if 
implemented on a weak iris boundary. 
 

 
Figure 1: Pupillary and Limbic Boundaries 

 
An improved Chan-Vese active contour was used to overcome 
noisy iris in [2]. The proposed method used an improved 
position of initial contour to localize the accurate iris 
boundary. This method managed to localize both pupillary 
and limbic boundaries, even with the presence of noises such 
as occlusion and specular reflection. However, the result 
might be different if implemented on a different database due 
to the assigned threshold value. Moreover, this method 
focused on the partial iris segmentation instead of the full iris 
segmentation. Meanwhile, the Histogram of Oriented 
Gradients (HOG) and Support Vector Machine (SVM) were 
used for automated iris segmentation in an unconstrained 
environment [8]. The HOG was used for iris structure 
description, while SVM was used for iris classification. This 
method was efficient due to its ability to segment iris region 
with noise, eye rotation, motion blur and off-angle, in a 
visible wavelength environment. Unfortunately, this method 
required pre-processing which can degrade the quality of iris 
features. 
 
Due to the shortcomings in previous methods, this paper 
presents a modified Chan-Vese active contour for iris 
segmentation on non-ideal and noisy iris. In this study, the 
Chan-Vese active contour is modified by introducing a new 
equation to segment both non-ideal and noisy iris 
simultaneously. The proposed method is also developed to 
improve the segmentation accuracy, recognition accuracy and 

image quality of iris segmentation. Two contributions are 
achieved in this study: (a) segmenting non-ideal shape of 
pupillary and limbic boundaries in non-ideal iris; (b) 
segmenting iris region with the presence of noise such as 
eyelids and eyelashes occlusions, and non-uniform intensity 
in noisy iris.  
 
2. MATERIALS AND METHODS 
 
The proposed method involves pupillary boundary 
segmentation, initial contour, limbic boundary segmentation, 
normalization, feature extraction and matching. Descriptions 
of the proposed method are given in the following 
subsections.  
 
2.1 Pupillary Boundary Segmentation 
 
Pupillary boundary segmentation is easier due to a high 
contrast between pupil and iris region. In [6], pupillary 
boundary was segmented with pixel property method. 
Specular reflections were eliminated before the detected pupil 
region was filled with morphological closing. After that, 
pupillary boundary was segmented from the area and pixel list 
of the detected pupil region. 
 
In this paper, the pixel property method is exploited because 
of its efficiency. Due to that, a modification of this method is 
proposed to improve pupillary boundary segmentation. 
Firstly, pixel property method is applied to calculate number 
of interconnecting regions in iris image. After that, all 
information regarding area and pixel list of the 
interconnecting regions is stored in a list. Then, the largest 
region from the list is chosen as a pupil region and the 
pupillary boundary can be segmented accordingly. The 
proposed method is different than [6] since specular 
reflections are not eliminated from the pupillary boundary. 
This is because the pupillary boundary segmentation is less 
dependent on the presence of specular reflections due to a 
huge contrast difference between them. Hence, the method to 
eliminate specular reflections is excluded from the proposed 
method. 
 
2.2 Initial Contour 
 
Initial contour is an important element in the Snake [9], 
Geodesic [10] and Chan-Vese [11] active contours. The 
purpose of initial contour is to determine the starting process 
of segmentation. Active contour will start converging inside 
or outside of the desired boundary from the initialization of 
initial contour. Initialization of initial contour is important to 
avoid segmenting a separate boundary [12]. 
 
However, initial contour is the main problem in active 
contour since the level set function must sign distance to 
initial contour. Moreover, initialization of initial contour may 
be fraught with the problems of how and where to assign the 
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initial contour [13]–[16]. Different size and position of initial 
contours on the same image can produce different results. 
Other than that, the iteration number is totally dependent on 
the initial contour size and position. A large iteration number 
is needed for the level set function to come to a steady state 
[13]. So far, this is a great challenge in active contour and no 
simple answer applies for initialization problem. 
 
Hence in this study, an efficient way to tackle initialization 
problem is proposed. A circle function as in (1) is used for 
initialization of initial contour as in [2] and [6], where r is the 
radius of circle and x, y is the center point coordinate of circle. 
 

   22 byaxrc            (1) 
 
The circle function is used because of the shape of iris is 
almost circular or oval. However, since the shape of iris is not 
symmetrical and varied upon off-angle and eye rotation, a 
new parameter 3.5rp is proposed into the existing circle 
function as in (2), where: 
 

   225.3 kyyxxrc ccp       (2) 

 
rp is the radius of pupil, xc, yc is the center point coordinate of 
pupil, and k is the shifted y-axis. The value of 3.5 is added to 
accommodate limbic boundary into the initial contour. This 
value is chosen since the average size of iris is within 3.5 
times of pupil region. In the other hand, the parameter of k 
obtained from [2] is also added into the circle function in 
order to avoid the rich texture of upper eyelid that might affect 
the segmentation accuracy. The upper eyelid has a lot of 
energy levels and rich edges which are difficult to segment by 
an ordinary segmentation method [2]. Finally, the proposed 
circle function is assigned as an initial contour of the 
Chan-Vese active contour which will be used in the next 
subsection to segment limbic boundary. The example of 
initial contour is shown in Figure 2.  
 

 
Figure 2: Initial Contour 

2.3 Limbic Boundary Segmentation 
 
Next, the proposed initial contour, c is applied to the 
Chan-Vese active contour, F as in (3): 
 

      CinsideAreavCLengthCccF  ,, 21  

              
 
 

Cinside

dxdycyx 2
101 ,  

                     
 
 

Cinside

dxdycyx 2
202 ,          (3) 

where Length is the length of curve C, Area is the area of 
curve C, µ = ʋ ≥ 0, fit weight λ1 is the force inside C, λ2 is the 
force outside C where λ1 = λ2 = 1, µ0 (x, y) is the input image 
[2], [11]. F is minimized by adding functions of C and area of 
C, inside and outside of iris image [5]. The regularity by 
penalizing the length of C is represented in the first term of 
the equation (smooth factor, µ), while the size of C is 
controlled in the second term (contraction bias, ʋ) [6]. For 
further explanation of the Chan-Vese active contour, we refer 
our readers to [11]. The values of smooth factor ≤ 1.5, 
contraction bias ≤ 0.7 and iteration number ≤ 35 are assigned 
to the Chan-Vese active contour which are obtained from [2]. 
 
Next, the Chan-Vese active contour with the proposed initial 
contour and parameters is implemented on the iris image. The 
respective active contour will start segmentation process from 
the initial contour, and then will converge inwards to 
determine the accurate limbic boundary. The Chan-Vese 
active contour will stop converging when it reaches a steady 
state in the iris image. 
 
2.4 Normalization, Feature Extraction and Matching 
 
After iris image is segmented with the modified Chan-Vese 
active contour, then normalization is applied to convert the 
segmented iris into a rectangular coordinate. The used 
normalization method is based on the Rubber sheet model as 
in [17], [18]. However, the algorithm is modified to improve 
its efficiency during the normalization process. The GPU 
arrays are used to store temporary data, hence can reduce 
execution time by two folds as in [2]. The example of 
normalization is shown in Figure 3. 
 

 
Figure 3: Normalization with the Rubber Sheet Model 

 
Then, the rich texture of iris pattern is extracted with 2D 
Gabor filter as shown in Figure 4. The data from iris are 
encoded into a binary data to create an iris template. The 
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created iris template will be matched with the database 
template to determine matching score. Matching method used 
here is similar with the Hamming distance as in [19]–[23]. 
However, this method is improved with GPU arrays as in 
normalization method [24], [25]. 
 

 
Figure 4: Feature Extraction with 2D Gabor Filter 

3.  RESULTS AND DISCUSSION 
 
This section is represented in two subsections: (a) 
Performance Evaluation will describe metrics used to 
measure performance of the proposed method; (b) 
Experimental Result will explain and discuss findings from 
the experiment. 
 
3.1 Performance Evaluation 
 
This subsection describes the evaluation metrics used to 
measure performance of the proposed method. The individual 
segmentation accuracy, SAK is calculated from (4) where: r x c 
is the resolution of iris image I and ground truth image G. 
Both images XORed together to determine number of pixels 
that hits each other, which produces similarity score. 
 

 
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After that, the average value of all individual iris images is 
calculated as in (5), to obtain the overall segmentation 
accuracy, SA where N is the total number of iris images. 
 





N
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N
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1

1
                (5) 

 
For recognition accuracy, the receiver operating 
characteristic (ROC) curve is obtained by plotting the false 
acceptance rate (FAR) against the genuine acceptance rate 
(GAR). The GAR is obtained from 1 – FRR, where FRR is the 
false acceptance rate. Both FAR and FRR are obtained from 
the matching scores as in subsection 2.4. After that, the area 
under curve (AUC) is calculated from the ROC curve which 
represents the recognition accuracy of the respective methods. 
 
For evaluation of image quality, the structural similarity 
index (SSIM) is used as shown in (6) where: x is the original 
image, y is the processed image, µx is the average x, µy is the 
average y, σxy is the covariance of x and y, σ2x is the variance of 
x and σ2y is the variance of y. 
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This method measures image degradation of two iris images 
caused by transmission lost, image compression and image 
restoration. The SSIM estimates image degradation of a 
processed image from a reference image by perceiving 
changes. In iris recognition, SSIM is used to calculate quality 
of iris images after the iris segmentation process. This is to 
determine if the rich texture of iris pattern is changed during 
iris segmentation. The less changed iris image will record a 
score of 1. However, this method only measures the 
perceptual difference between both iris images (before and 
after iris segmentation process). The SSIM cannot judge 
which of the two iris images is better, which can only be 
known from the original iris image. 
 
3.2 Experimental Result 
 
The experiments are conducted on a computer with Intel Core 
i5 2.3 GHz processor, 4 GB RAM memory and Matlab 
software. According to Figure 5, the proposed method 
managed to segment the accurate pupillary and limbic 
boundaries. This happened because of the non-ideal and noisy 
pupillary and limbic boundary were successfully segmented 
by the proposed method as stated in Section 2. The pixel 
property method was used to segment the non-ideal pupillary 
boundary. However, this method was modified from [6], 
where a method to eliminate specular reflections was 
excluded to reduce complexity during segmentation process.  
The proposed method not only can segment the non-ideal 
pupillary boundary, but also the noisy pupillary region even 
after the specular reflection method was excluded from the 
algorithm. This showed that the proposed method can 
simultaneously segment the non-ideal and noisy pupillary 
boundary. 
 
Besides that, the non-ideal and noisy limbic boundary was 
also successfully segmented by the modified Chan-Vese 
active contour. The initialization of initial contour was a 
success, thus the non-ideal and noisy limbic boundary 
managed to be segmented simultaneously. The problems of 
how and where to assign initial contour were solved by 
introducing the modified circle function as in subsection 2.2. 
Other than that, the iteration number needed for the level set 
function to come to a steady state was reduced to minimum by 
using the modified circle function. 
 
In terms of segmentation accuracy, the proposed method 
achieved the highest accuracy (97%) compared to [2] (45%) 
and [6] (95%). This happened because of the proposed 
method had the better initialization of initial contour than [2] 
and [6]. The proposed initial contour was based on the 
modified circle function, where the size and position were 
more accurate than the initial contours in [2] and [6]. 
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Moreover, the proposed method used minimum iteration 
number than the other methods. Method in [2] achieved the 
lowest segmentation accuracy because of it focused on the 
lower part of iris region only. This method called sub-iris 
technique where it segmented the rich texture of iris pattern 
near to the pupillary boundary. 
 
In terms of recognition accuracy, the proposed method 
achieved a high recognition accuracy (0.9729) than [6] 

(0.9701). This happened because of the proposed method 
recorded a bigger AUC than [6]. This showed that a high 
segmentation accuracy can produce a high recognition 
accuracy if implemented on the full iris region. However, the 
proposed method was less accurate than [2]. This happened 
since [2] focused on the rich texture of iris pattern near to the 
pupillary boundary only. Hence, this comparison was not 
adequate since the proposed method focused on the full iris 
region instead of on the selected part of iris region. 

 
(a) Non-Uniform Intensity         (b) Eyelash Occlusion 

 
(c) Low Illumination Level    (d) Eye Rotation 

Figure 5: Segmentation Result 
 

Table 1: Performance comparison 

Methods Segmentation Accuracy 
(%) Recognition Accuracy Image Quality 

[2] 45 0.9832 0.9901 

[6] 95 0.9701 0.9910 

Proposed method 97 0.9729 0.9915 

 
In terms of image quality, all methods achieved a high SSIM 
value. This showed that the Chan-Vese methods had less 

effect on image degradation compared to the other iris 
segmentation methods. The quality of iris pattern between the 
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original and processed iris images was not much different. 
Hence, the proposed method was efficient to be used in the 
real-time iris acquisition. The complete results are shown in 
Table 1. 
 
4. CONCLUSION 
 
This paper presents a modified Chan-Vese active contour for 
iris segmentation on non-ideal and noisy iris. In this study, 
the Chan-Vese active contour is modified by introducing a 
new equation to segment both non-ideal and noisy iris 
simultaneously. The proposed method is also developed to 
improve the segmentation accuracy, recognition accuracy and 
image quality of iris segmentation. Next, the proposed 
method is compared with the other Chan-Vese active contour 
iris segmentation methods. Two objectives are achieved: (a) 
segmenting non-ideal shape of pupillary and limbic 
boundaries in non-ideal iris; (b) segmenting iris region with 
the presence of noise in noisy iris. According to the results, 
the proposed method achieves the better performance than the 
other methods in terms of segmentation accuracy (97%), 
recognition accuracy (0.9729) and image quality (0.9915). 
These results show that the proposed method is efficient to 
overcome both non-ideal and noisy iris simultaneously. 
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