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 
ABSTRACT 
 
In this paper, a design of a synthesizable hardware model for 
a Convolutional Neural Network (CNN) is presented. The 
hardware model is capable of self-training i.e. without the use 
of any external processors. It is trained to recognize four 
numerical digit images.  Another hardware model is also 
designed for the K-means clustering algorithm.  This second 
hardware model is used to for compressing the weights of the 
CNN through quantization.  Weight compression is carried 
out through weight sharing.  With weight sharing, the system 
is able to save component usage.  The two hardware models 
designed are then subsequently integrated to automate the 
compression of the CNN weights after the CNN completes its 
training.  The entire design is based on fixed point arithmetic 
operation using VHDL as design entry tool and XILINX 
Virtex 5 FPGA as the target library for synthesis.  After 
completing the design, it is evaluated in terms of hardware 
consumption with respect to rate of compression. When 
evaluating the recognition performance ability of the 
hardware model, digit images experimentation results have 
shown that the weight compression can reach as high as 60% 
without any negative effect on the performance of the CNN.  
Based on data gathered, the compression with the least 
hardware consumption occurs at 80 %.  For the various digits 
trained, the CNN outputs after the training, range from 89% 
to 97%.  
 
Key words: Convolutional Neural Network; K-Means 
Clustering; Hardware Model; VHDL; Weight Compression; 
Field Programmable Gate Array 
 
1. INTRODUCTION 
 
CNN is a popular tool used for many image recognition 
applications. A lot has been done on its various forms of 
implementation and application.  In many cases, 
 

 

computer-based or processor-based CNN are used.  There is a 
CNN focused on recognizing places or locations visited before 
[1]. Another CNN application focused on different human 
pose with detection of arm, torso and limb [2]. Granite tiles 
classification was used in [3]. In [4], CNN was applied to 
learning of the human eye.  CNN was applied to recognize 
certain infrared images in [5].  In [6], CNN was used for 
detecting rice disease.  On the other hand, a lot of researches 
have also focused on implementing CNN on Field 
Programmable Gate Arrays (FPGAs).  FPGAs offer the 
promise of better portability due to its smaller size when 
compared to processors.  In addition, FPGAs provides better 
opportunity for parallelism for some of the CNN’s operations.   
This is in contrast with a normal processor where all tasks are 
executed sequentially.  An FPGA based accelerator for deep 
CNN is proposed in [7].  Another CNN accelerator was 
implemented on FPGA in [8] with highlight on the use of 
Open Computer Language.  In [9], FPGA was used for 
implementing CNN. A small size and a large size networks 
were presented. The paper also focused on memory based 
hyperbolic tangent implementation for faster computation. 
Design space exploration of FPGA Based accelerators was 
studied in [10]. Emphasis was given to design space and how 
to optimize the block resources in FPGA. Automatic Verilog 
Code generation for FPGA Based CNN was proposed in [11].  
Alexnet and Lenet were implemented on FPGA in the said 
research. Similarly, [12] proposed a caffe framework-based 
CNN on an FPGA platform. The design provided choices for 
preferred CNN model including features on pipelined 
structures.    

Aside from FPGAs, custom-made integrated circuits also 
known as Application Specific Integrated Circuits (ASICs) 
were used for CNN implementation.  In [13], deep learning 
was implemented using on-chip silicon to take advantage of 
parallelism. A CNN accelerator was implemented using 
65nm UMC library in [14].  A combinatorial optimization 
and deep learning hardware accelerator based on memristive 
Boltzmann machines is proposed in [15]. This 
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implementation highlighted better speed performance and 
lower energy consumption.  

Like the CNN, clustering has found many applications too as 
evidenced by various published researches.  Many of these 
researches were implemented using computers or processors. 
[16] focused on density-based clustering where normal 
distribution was used for analyzing data and for eventual 
determination of the cluster centers. Various types of 
clustering were analyzed and compared in [17].  Cluster 
evolution analysis was the subject in [18].  Clustering 
involving colors was done in [19].  Several clusters in parallel 
was highlighted in [20].  Fuzzy based clustering was the 
subject in [21].  

Though vastly different from each other in terms of operation 
and purpose, CNN and Clustering have found a common 
application in compression.  In [22], the concept of deep 
compression was introduced. The weights of a neural network 
can be quantized using K-means clustering.  The goal of this 
quantization was to impose weight sharing.  Through weight 
sharing, memory resources are saved.  

 

2. SIGNIFICANCE OF THE STUDY 
 
 The highlight of this research is the implementation of a 
CNN and K-Means clustering in an FPGA using hardware 
modeling approach. FPGA offers the advantage of small size, 
lower power consumption and better portability. With CNN 
and K-means clustering integrated, the CNN can commence 
with K-means clustering based weight compression routine 
automatically, as soon as the CNN’s training for image 
recognition is finished.  This system eliminates the use of a 
computer to do the CNN task and clustering task.  For 
applications like embedded systems, where image recognition 
is needed but the required prototype is small, this research 
will become beneficial because its size is much smaller than 
that of a computer. 
 
3. THEORETICAL CONSIDERATION 

3.1 Some Mathematical Operations in CNN 
 

 
Figure 1: Image Filter Convolution 

 
 

In CNN, the first calculation would usually be the 
convolution.  Shown in Figure 1 is a sample image named 
image A. The image is represented as 4x4 pixel. To its right is 
a 3x3 Filter initially set by the designer.  For both image and 
filter, every cell is identified by its row index, i and column 
index, j.  Let A represent the 4x4 image and B represent the 
3x3 filter. Every cell of A is denoted by A(i, j) and every cell in 
B is denoted by B(i, j). Convolution involves positioning the 
filter over the image and subsequently sliding the filter until 
the entire image is covered.  The first position is shown in 
Figure 1 as represented by the area shaded in green.  
Convolution involves getting the sum of the product of every 
pair of cells that coincide. Let this sum be represented by C1. 
C1 is mathematically represented by Equation 1.  Similar 
equations can be obtained as the filter slides through the 
image by a single stride.  
 

3 3
1 1 1
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Each result obtained from convolution are subsequently fed to 
an activation function to introduce non linearity. One popular 
activation function is the sigmoid function.   This is shown 
in Equation 2 [23].  In the equation, Ci represents a result 
coming from the convolution operation.  Aside from Sigmoid, 
other popular activation function include hyperbolic tangent 
[9] and the Rectified Linear Unit (ReLU).     
 

1
1 ii CI

e
                                                                              

 
In many applications, the results obtained from the activation 
function would serve as inputs to a fully connected layer. 
Figure 2 shows a sample representation for a two-layer Fully 
Connected Network.  The input nodes I1 to I4, represent the 
results coming from the previously mentioned activation 
function.  Output nodes O1 to O4 can be treated as Data 
Processors with corresponding outputs S1 to S4.  The 
connection from every input node to every output node carries 
a weight value. Seen in the figure are the four weights W1 to 
W4 linked to output node O1.  The output S1 is simply the sum 
of the products of the inputs and its corresponding weight 
values. This is shown in Equation 3.  In many applications, a 
fixed value known as bias, is added to the sum.  Similar to S1, 
S2 to S4 would also be a function of the product of its 
respective input weight values and the corresponding input 
associated with it.  
 

1 1 1 2 2 3 3 4 4S I W I W I W I W                                         
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Figure 2: Sample Fully Connected Layer with Activation Function 

 
The computed outputs, S1 to S4 would undergo another 
activation function.  Once again, previously mentioned 
functions such as Sigmoid and Hyperbolic Tangent are some 
of the available choices. For classification however, Softmax 
activation function [24] is a popular choice. Equation 4 shows 
the Softmax Activation Function. Si is representing each 
output S1 to S4 as seen in Figure 2.  Smax is the maximum value 
among S1 to S4. N represents the number of output nodes. For 
Figure 2,  N = 4.  
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The variables Y1 to Y4 seen in Figure 3.2 represent the official 
outputs of the CNN.  These computed outputs using Equation 
4, are compared against some target values set by the 
designer. The goal is to make the Y values reach the target 
value. If the target is not yet met, then the CNN must update 
its Fully Connected Layer Weights and also the Filter weights 
in preparation for the next round of iteration. Updating the 
Fully Connected Layer weights is done using Gradient 
Descent [23].  Equation 5 shows the formula for updating the 
first weight, W1. ε1 represents an error for output Y1 i.e. the 
difference between Y1 and its target value. This equation is 
inspired by [25]. 
 

1 1 1 1

1 1 1 1

Y S
W Y S W
    


                                                          

 
 If W1new is to represent the new or updated value for W1, then 
W1new is computed as shown in Equation 6 [23]. Symbol α is a 
learning rate whose value is set by the designer.  The updating 
of all the other Weight values would follow the format of 
Equations 5 and 6. 
 

1
1 1

1
newW W

W
 

 
  

 

3.2 Some Mathematical Operations in K-Means 
Clustering 

 

 
Figure 3 : K-Means Clustering Behavior 

 
Shown in Figure 3 is a flowchart description of how the 
K-means clustering algorithm works. The variable K 
represents the number of clusters set by the designer. The 
number of clusters would also determine the number of 
centroid values. Each input undergoes a Euclidean distance 
computation with every centroid value. Given two points 
A(q1,q2, …qN) and B(v1,v2, ...vN), the Euclidean distance, 
d(A,B) between points A and B is shown in Equation 7.  The 
distance values for every input are subsequently analyzed to 
search for the minimum  The minimum values determine to 
which cluster does an input belong to.   The next round of 
iteration is started by getting the average of every input 
belonging to a particular cluster.  All clusters will undergo 
average computation. This average values serve as the new 
centroid values for the next iteration. The iteration stops when 
the current set of centroid values is the same as the previous 
set of centroid values. 
 

2 2 2
1 1 2 2( , ) ( ) ( ) ... ( )N Nd A B q v q v q v      

 
 
4. METHODOLOGY 
 
In doing the hardware modeling for both the CNN and 
K-means clustering, the design entry tool used is VHSIC 
Hardware Description language or VHDL.  The VHDL code 
is then synthesized to a hardware equivalence using the 
Virtex 5 FPGA library.  XILINX ISE series is the tool used for 
VHDL coding, synthesis and FPGA implementation. 
Multipliers, multiplexers and other components mentioned 
are all coded in VHDL.   
 
 Figure 4 shows how the CNN is transformed to be able to 
acquire external data for its weights. The left side of the figure 
shows the CNN’s block behavior during its usual training 
routine. For every iteration during the training process, the 
CNN computes a new set of weights also known as updated 
weights. The updating of weights is intended to bring the 
output targets to the desired value.  The updated weights can 
be treated as output ports that are fed back to the module itself.  
A write signal within the module is asserted high to let the fed 
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back weights replace all the existing weights inside the CNN 
block. The right side of Figure 4 shows the insertion of a 2 x 1 
multiplexer. With the use of multiplexer, the fed back weights 
can come from an outside source. This outside source will 
eventually become the clustered weights. 
 

 
Figure 4: Transforming CNN  Block to Receive External Weights  

 
Figure 5: Interfacing the CNN to the K-Means Clustering Block  

Figure 5 shows how the CNN block can be interfaced to the 
K-Means Clustering block.  The other input of the 
multiplexer mentioned in the previous figure as outside 
source, can now be connected to the Clustering block.   The 
operation of the entire system would start with the CNN doing 
its training for recognizing the fed images. Once the training 
is over, it will send a signal to the Clustering block to start the 
clustering operation.  The output weights of the CNN are 
readily available as inputs to the Clustering block. When 
clustering operation starts, a series of iterations takes place 
until its outputs are no longer changing. When this happens, a 
“finish” signal from the Clustering module is asserted high. 
This high state signal is assigned to control the select line of 
the multiplexer.  The multiplexer is then set to select the 
clustered weights inputs as its output.  The clustered weights 
become the new set of weights of the CNN. 

 
Figure 6: CNN Control and Datapath  

 

Figure 6 shows the hardware model for the control and 
datapath of the CNN. The input image adopted in this 
research is a black and white 4 x 4 image. The digit images 
used for recognition are mapped into the 4x4 pixel image size.  
For all numerical operations, fixed point is used to save 
hardware requirement. The input image enters the 
Convolution block.  Three filters of size 3x3 each were used 
for the convolution process.  Inside this block are multipliers 
and adders that perform the operations represented by 
Equation 1.   The result of the convolution operation enters a 
ReLU activation function.  Inside the ReLU module, every 
input has a corresponding output.  The circuit inside  ReLU 
monitors the sign bit of every input. If the sign bit is a 1, then 
the input number is negative and the corresponding output is 
a 0 otherwise, the output equals the input. The output of the 
activation function then enters the Fully Connected Layer 
block. With 3 filters in convolution block, the fully connected 
layer block has 12 inputs and 4 outputs. Inside this block are 
weight values that undergo multiply and add operation with 
the inputs as represented by Equation 3. The output of the 
Fully Connected layer undergoes another activation function 
called Softmax.  Softmax requires the identity of the 
maximum value from among its inputs. To do this, a search 
for maximum module known as Sortmax module,  is inserted 
between the Fully Connected Layer and the Softmax module. 
The maximum value together with the complete set of Fully 
Connected Layer Output are mathematically processed using 
the Softmax activation function.  The circuit inside the 
Softmax module made use of lookup table to satisfy Equation 
4.   

The CNN results are compared with set target values to 
verify if the target has been achieved. An error is computed 
which represents the difference between the current result and 
the target.  If the targets are not yet achieved, a 
backpropagation routine is carried out.  The goal of the 
backpropagation routine is to update the weight values of the 
Fully Connected layer and the Convolutional layer.  With a 
new set of weights, the image undergoes a new round of 
iteration from convolution all the way to the Softmax 
activation function. The results are once again examined to 
see if the target has been met. If not, the weights are again 
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updated and the entire operation is repeated until the targets 
are met.  

Table 1:  Major Port Summary for CNN 
 Major I/O Ports No. of Bits 

Module Inputs Outputs 
Convolution 12 (Filter 

Weights) 
1 
2 

ReLU 12 12 

Fully Connected 
Layer 

12 24 

Softmax 24 20 

Error Calculator 21 (sign 
extended) 

21 

Backpropagation 1 21(Error) 

12 (Weights) 

20(Softmax) 

12 (Weights) 

Backpropagation 2 
Part1 

12 (Weights) 

20 (Softmax) 

32 

Backpropagation 2 
Part1 

32 (part 1) 

 

12 

 

As seen in figure 6, there are two backpropagation modules 1 
and 2. The first module is responsible for updating the 
weights of the Fully Connected Layer block. Inside this block 
is a circuit that performs Equations 5 and 6. The second 
module is responsible for updating the filter weights inside 
the Convolutional layer block. The second module is further 
subdivided into 2 submodules named Part1 and Part 2.  Part 1 
performs the backward pass routine while Part 2 performs 
convolution using the results from Part 1.  The result of the 
convolution process are used as new set of filter weights.  
Table 1 shows the port size summary adopted for each module 
in the design of the CNN. 

 

 

Figure 7: K-Means Clustering Hardware Model 
 

Table 2: Major Port Summary for K-Means Clustering 
 Major I/O Ports No. of Bits 

Module Inputs Outputs 
Euclidean Distance 
Calculator 

12 (Weights) 12 

Find Minimum 12 12(Weights) 

6 (Tag) 

Search and Add 12 (Weights) 

6 (Tag) 

20 

Reciprocal 
Generator/Multiplie
r 

20 32 

Output Encoder 12 

6 (Tag) 

12 

Shown in Figure 7 is the hardware model for the K-Means 
clustering operation. The initial centroid values can randomly 
assigned at the start of the operation. The number of centroid 
values is assigned by the user.  This number represents the 
variable K in the K-means clustering operation.   This value 
of K also represents the number of groups for this operation. 
For every iteration, every group can be treated as being 
headed by the centroid value.  For example, if the user assigns 
K as 5, this means there are 5 groups and 5 centroid values 
heading each group.   All input data undergo Euclidean 
Distance calculation with each centroid value.  The block 
labeled E in the figure computes the Euclidean distance.  The 
computed Euclidean distance values for every input undergo a 
search for the minimum.   This is done by the block labeled F. 
The minimum value dictates to which centroid value group 
does one particular input belong to.  Table 2 shows the port 
size summary adopted for each module in the design of the 
K-Means Clustering. 

After determining to which group does an input belong to, the 
system prepares for the next iteration.  This is done by getting 
the average of each group.  For every group, the inputs are 
added and divided by the number of inputs. The computed 
average serve as the new centroid value for the new round of 
iteration. The iteration only stops when the current set of 
centroid values is exactly the same as the previous set of 
centroid values. It should be noted that the output encoder 
takes in the significant 12 bits input from the 32 bits output of 
the Reciprocal Generator/Multiplier module. 

5. DATA AND RESULTS 
 

 
Figure 8: The Images for Training 

 
Table 3 : Sets of Digits Trained 
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Set Digits Trained 
A 0 1 4 7 
B 7 1 6 9 
C 3 5 4 1 

D 1 8 2 7 

 

 
Figure 9: Set A Simulation Screenshot 

 
Table 4: CNN Outputs Final Values After Training 

Set Output1 Output2 Output3 Output
4 

A 0.95 0.94 0.96 0.92 
B 0.89 0.89 0.90 0.91 
C 0.97 0.93 0.95 0.96 
D 0.95 0.94 0.94 0.91 

 
The design of the hardware model was carried out using fixed 
point arithmetic operation. Figure 8 shows the digit images 
used for training the hardware model.  Since the hardware 
model adopted in this research has four outputs only, the digit 
images are assembled into sets of four.  Table 3 shows the four 
sets of digits adopted for the training. Figure 9 shows a 
screenshot for Set A’s simulation at the end of the training.  It 
can be seen in this figure that the four outputs, targeted to 
reach 0.99 during the training process, reached at least 
76XXX in hexadecimal representation. Translating to binary, 
the left most bit is the only integer bit. 76XXX translates to at 
least 0.92 in decimal format as final value at the end of the 
training.  Just like Figure 9, the other sets were able to 
converge close to the target value.  Table 4 summarizes the 
final output values for each set.  Each set was able to 
recognize the four digits assigned to it after the training. 

 

 
Figure 10: Set A Accuracy vs % Compression Result 

 

 
Figure 11: Set B Accuracy vs % Compression Result 

 

 
Figure 12: Set C Accuracy vs % Compression Result 

 

 
Figure 13: Set D Accuracy vs % Compression Result 

Table 5: Effect of Compression on Component Used for module 
with Weights 

 Compression 
Componen

t 
0% 50% 60% 80% 90% 

Slice LUTs 298 266 273 251 258 
Fully Used 
LUT FF Pair 

144 133 126 115 116 

Number 
used as 

logic 

294 262 269 247 254 

After training the CNN, weight compression, using K-means 
clustering was applied and the CNN performance was once 
again tested. Various compression rates were applied to see 
up to how much compression ratio can the CNN withstand 
without any negative effects on the recognition performance.  
In doing the test, percentage accuracy is based on the CNN’s 
performance with compression and without compression. For 
example, a 100% accuracy means the performance of the 
compressed CNN and the uncompressed CNN are the same in 
terms of recognizing the set of digit images fed to it.  Figures 
10 to 13 show the result of compression vs accuracy for each 
set.  Of the four sets, Set C showed the best performance at it 
was able to reach as high as 60% compression while 
maintaining 100% accuracy as seen in Figure 12. Table 5 
shows the FPGA component logic used for various rates of 
compression. The table represents the specific module where 
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the weights reside. It can be seen in the table that the higher 
the rate of compression, the lesser is the component usage in 
comparison to “no compression applied”. No compression is 
the 0% compression column 

6. CONCLUSION 
In this research, a CNN architecture was designed using 
hardware modeling. CNN’s ability to train and recognize 
image using FPGA proved to be possible even without using 
any external processor.  The hardware model is 
implementable on Virtex 5 FPGA using fixed point 
arithmetic to save hardware components.  A K-means 
clustering algorithm was also designed using hardware 
modeling. Both made use of Virtex 5 FPGA library for 
synthesis. The two designs were connected together to form 
an automatic CNN weight compression routine right after the 
CNN’s training process. Data gathered shows that the 
compression does have effect on the component usage. The 
higher the rate of compression, the more significant is the 
component savings in comparison to component usage for no 
compression. The CNN however suffers from accuracy 
problem for high compression rate.  Of the four sets 
experimented in this research, one set i.e. set C was able to 
maintain a 100% accuracy for compression rate as high as 
60%.   

7. RECOMMENDATION 
It is recommended for future studies to explore a higher CNN 
size that can integrate all digits 0 to 9 in just 1 set. This 
however will require more filters for convolution, hence a 
higher equivalent circuit size and a higher density FPGA will 
be needed. The larger circuit size for CNN will also mean 
more weights in its fully connected layer. More weights will 
mean more inputs to the clustering module. Thus, the circuit 
size for the clustering algorithm will also increase.   Another 
area for future study can also focus on providing intelligence 
to the clustering algorithm when evaluating its effect on the 
CNN. The clustering will work by itself to search for the best 
compression rate without any intervention from external 
users.  
 
Other areas to explore for future studies can focus on big data 
challenge to the CNN. In this case, hardware modeling of the 
MapReduce [26] algorithm interfaced to the hardware model 
of the CNN, can be a good tool for efficient data processing. 
The hardware model to be designed for MapReduce algorithm 
can be integrated to the large-scale version of the design done 
in this paper for future studies. Still, another area to explore 
for future studies is the implementation of the entire design in 
Application Specific Integrated Circuit (ASIC) instead of 
FPGA. The advantage of going ASIC is the smaller circuit 
size because this implementation is custom-made based on 
the designer’s requirements. Hence, it can lead to lower cost 
for mass production.   CNN has a lot of addition operations 
happening in it. The K-means clustering algorithm, which 
has many subtraction operations happening in it, in principle 

can also be considered as having lots of addition operations 
happening in it. This is because in many digital applications, 
subtraction is carried out by adding the minuend to the two’s 
complement of the subtrahend.  If CNN with K-means 
clustering is to be implemented in ASIC, it would be 
interesting to explore a future study on the effects of using 
transmission gate logic based Full Adder FinFET [27], for all 
the adder circuits of the CNN and K-means clustering. 
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