
 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1004


ABSTRACT

In this paper, a design of a synthesizable hardware model for
a Convolutional Neural Network (CNN) is presented. The
hardware model is capable of self-training i.e. without the use
of any external processors. It is trained to recognize four
numerical digit images. Another hardware model is also
designed for the K-means clustering algorithm. This second
hardware model is used to for compressing the weights of the
CNN through quantization. Weight compression is carried
out through weight sharing. With weight sharing, the system
is able to save component usage. The two hardware models
designed are then subsequently integrated to automate the
compression of the CNN weights after the CNN completes its
training. The entire design is based on fixed point arithmetic
operation using VHDL as design entry tool and XILINX
Virtex 5 FPGA as the target library for synthesis. After
completing the design, it is evaluated in terms of hardware
consumption with respect to rate of compression. When
evaluating the recognition performance ability of the
hardware model, digit images experimentation results have
shown that the weight compression can reach as high as 60%
without any negative effect on the performance of the CNN.
Based on data gathered, the compression with the least
hardware consumption occurs at 80 %. For the various digits
trained, the CNN outputs after the training, range from 89%
to 97%.

Key words: Convolutional Neural Network; K-Means
Clustering; Hardware Model; VHDL; Weight Compression;
Field Programmable Gate Array

1. INTRODUCTION

CNN is a popular tool used for many image recognition
applications. A lot has been done on its various forms of
implementation and application. In many cases,

computer-based or processor-based CNN are used. There is a
CNN focused on recognizing places or locations visited before
[1]. Another CNN application focused on different human
pose with detection of arm, torso and limb [2]. Granite tiles
classification was used in [3]. In [4], CNN was applied to
learning of the human eye. CNN was applied to recognize
certain infrared images in [5]. In [6], CNN was used for
detecting rice disease. On the other hand, a lot of researches
have also focused on implementing CNN on Field
Programmable Gate Arrays (FPGAs). FPGAs offer the
promise of better portability due to its smaller size when
compared to processors. In addition, FPGAs provides better
opportunity for parallelism for some of the CNN’s operations.
This is in contrast with a normal processor where all tasks are
executed sequentially. An FPGA based accelerator for deep
CNN is proposed in [7]. Another CNN accelerator was
implemented on FPGA in [8] with highlight on the use of
Open Computer Language. In [9], FPGA was used for
implementing CNN. A small size and a large size networks
were presented. The paper also focused on memory based
hyperbolic tangent implementation for faster computation.
Design space exploration of FPGA Based accelerators was
studied in [10]. Emphasis was given to design space and how
to optimize the block resources in FPGA. Automatic Verilog
Code generation for FPGA Based CNN was proposed in [11].
Alexnet and Lenet were implemented on FPGA in the said
research. Similarly, [12] proposed a caffe framework-based
CNN on an FPGA platform. The design provided choices for
preferred CNN model including features on pipelined
structures.

Aside from FPGAs, custom-made integrated circuits also
known as Application Specific Integrated Circuits (ASICs)
were used for CNN implementation. In [13], deep learning
was implemented using on-chip silicon to take advantage of
parallelism. A CNN accelerator was implemented using
65nm UMC library in [14]. A combinatorial optimization
and deep learning hardware accelerator based on memristive
Boltzmann machines is proposed in [15]. This

FPGA Library Based Design of a Hardware Model for Convolutional Neural
Network with Automated Weight Compression using K-Means Clustering

Roderick Yap1, Goldwin Giron2, Leonard Miguel Lanto3, Lorenzo Garcia4, David Sta Maria5,
Lawrence Materum6

1De La Salle University, Manila, Philippines, roderick.yap@dlsu.edu.ph
2 De La Salle University, Manila, Philippines, goldwin_giron@dlsu.edu.ph
3 De La Salle University, Manila, Philippines, miguel_lanto@dlsu.edu.ph

4De La Salle University, Manila, Philippines, lorenzo_garcia@dlsu.edu.ph
5De La Salle University, Manila, Philippines, lorenzo_garcia@dlsu.edu.ph

6De La Salle University, Manila, Philippines, lawrence.materum@dlsu.edu.ph

 ISSN 2278-3091
Volume 8, No.4, July – August 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse04842019.pdf

https://doi.org/10.30534/ijatcse/2019/04842019

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1005

implementation highlighted better speed performance and
lower energy consumption.

Like the CNN, clustering has found many applications too as
evidenced by various published researches. Many of these
researches were implemented using computers or processors.
[16] focused on density-based clustering where normal
distribution was used for analyzing data and for eventual
determination of the cluster centers. Various types of
clustering were analyzed and compared in [17]. Cluster
evolution analysis was the subject in [18]. Clustering
involving colors was done in [19]. Several clusters in parallel
was highlighted in [20]. Fuzzy based clustering was the
subject in [21].

Though vastly different from each other in terms of operation
and purpose, CNN and Clustering have found a common
application in compression. In [22], the concept of deep
compression was introduced. The weights of a neural network
can be quantized using K-means clustering. The goal of this
quantization was to impose weight sharing. Through weight
sharing, memory resources are saved.

2. SIGNIFICANCE OF THE STUDY

 The highlight of this research is the implementation of a
CNN and K-Means clustering in an FPGA using hardware
modeling approach. FPGA offers the advantage of small size,
lower power consumption and better portability. With CNN
and K-means clustering integrated, the CNN can commence
with K-means clustering based weight compression routine
automatically, as soon as the CNN’s training for image
recognition is finished. This system eliminates the use of a
computer to do the CNN task and clustering task. For
applications like embedded systems, where image recognition
is needed but the required prototype is small, this research
will become beneficial because its size is much smaller than
that of a computer.

3. THEORETICAL CONSIDERATION

3.1 Some Mathematical Operations in CNN

Figure 1: Image Filter Convolution

In CNN, the first calculation would usually be the
convolution. Shown in Figure 1 is a sample image named
image A. The image is represented as 4x4 pixel. To its right is
a 3x3 Filter initially set by the designer. For both image and
filter, every cell is identified by its row index, i and column
index, j. Let A represent the 4x4 image and B represent the
3x3 filter. Every cell of A is denoted by A(i, j) and every cell in
B is denoted by B(i, j). Convolution involves positioning the
filter over the image and subsequently sliding the filter until
the entire image is covered. The first position is shown in
Figure 1 as represented by the area shaded in green.
Convolution involves getting the sum of the product of every
pair of cells that coincide. Let this sum be represented by C1.
C1 is mathematically represented by Equation 1. Similar
equations can be obtained as the filter slides through the
image by a single stride.

3 3
1 1 1

(,) (,)
i j

C A i j B i j
 

 

Each result obtained from convolution are subsequently fed to
an activation function to introduce non linearity. One popular
activation function is the sigmoid function. This is shown
in Equation 2 [23]. In the equation, Ci represents a result
coming from the convolution operation. Aside from Sigmoid,
other popular activation function include hyperbolic tangent
[9] and the Rectified Linear Unit (ReLU).

1
1 ii CI

e


In many applications, the results obtained from the activation
function would serve as inputs to a fully connected layer.
Figure 2 shows a sample representation for a two-layer Fully
Connected Network. The input nodes I1 to I4, represent the
results coming from the previously mentioned activation
function. Output nodes O1 to O4 can be treated as Data
Processors with corresponding outputs S1 to S4. The
connection from every input node to every output node carries
a weight value. Seen in the figure are the four weights W1 to
W4 linked to output node O1. The output S1 is simply the sum
of the products of the inputs and its corresponding weight
values. This is shown in Equation 3. In many applications, a
fixed value known as bias, is added to the sum. Similar to S1,
S2 to S4 would also be a function of the product of its
respective input weight values and the corresponding input
associated with it.

1 1 1 2 2 3 3 4 4S I W I W I W I W   

 (2)

 (1)

 (3)

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1006

Figure 2: Sample Fully Connected Layer with Activation Function

The computed outputs, S1 to S4 would undergo another
activation function. Once again, previously mentioned
functions such as Sigmoid and Hyperbolic Tangent are some
of the available choices. For classification however, Softmax
activation function [24] is a popular choice. Equation 4 shows
the Softmax Activation Function. Si is representing each
output S1 to S4 as seen in Figure 2. Smax is the maximum value
among S1 to S4. N represents the number of output nodes. For
Figure 2, N = 4.

max

max

()

()
1

i

i

S S

i N S S

eY
e







The variables Y1 to Y4 seen in Figure 3.2 represent the official
outputs of the CNN. These computed outputs using Equation
4, are compared against some target values set by the
designer. The goal is to make the Y values reach the target
value. If the target is not yet met, then the CNN must update
its Fully Connected Layer Weights and also the Filter weights
in preparation for the next round of iteration. Updating the
Fully Connected Layer weights is done using Gradient
Descent [23]. Equation 5 shows the formula for updating the
first weight, W1. ε1 represents an error for output Y1 i.e. the
difference between Y1 and its target value. This equation is
inspired by [25].

1 1 1 1

1 1 1 1

Y S
W Y S W
    


   

 If W1new is to represent the new or updated value for W1, then
W1new is computed as shown in Equation 6 [23]. Symbol α is a
learning rate whose value is set by the designer. The updating
of all the other Weight values would follow the format of
Equations 5 and 6.

1
1 1

1
newW W

W
 

 


3.2 Some Mathematical Operations in K-Means
Clustering

Figure 3 : K-Means Clustering Behavior

Shown in Figure 3 is a flowchart description of how the
K-means clustering algorithm works. The variable K
represents the number of clusters set by the designer. The
number of clusters would also determine the number of
centroid values. Each input undergoes a Euclidean distance
computation with every centroid value. Given two points
A(q1,q2, …qN) and B(v1,v2, ...vN), the Euclidean distance,
d(A,B) between points A and B is shown in Equation 7. The
distance values for every input are subsequently analyzed to
search for the minimum The minimum values determine to
which cluster does an input belong to. The next round of
iteration is started by getting the average of every input
belonging to a particular cluster. All clusters will undergo
average computation. This average values serve as the new
centroid values for the next iteration. The iteration stops when
the current set of centroid values is the same as the previous
set of centroid values.

2 2 2
1 1 2 2(,) () () ... ()N Nd A B q v q v q v      

4. METHODOLOGY

In doing the hardware modeling for both the CNN and
K-means clustering, the design entry tool used is VHSIC
Hardware Description language or VHDL. The VHDL code
is then synthesized to a hardware equivalence using the
Virtex 5 FPGA library. XILINX ISE series is the tool used for
VHDL coding, synthesis and FPGA implementation.
Multipliers, multiplexers and other components mentioned
are all coded in VHDL.

 Figure 4 shows how the CNN is transformed to be able to
acquire external data for its weights. The left side of the figure
shows the CNN’s block behavior during its usual training
routine. For every iteration during the training process, the
CNN computes a new set of weights also known as updated
weights. The updating of weights is intended to bring the
output targets to the desired value. The updated weights can
be treated as output ports that are fed back to the module itself.
A write signal within the module is asserted high to let the fed

 (4)

 (5)

 (6)

 (7)

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1007

back weights replace all the existing weights inside the CNN
block. The right side of Figure 4 shows the insertion of a 2 x 1
multiplexer. With the use of multiplexer, the fed back weights
can come from an outside source. This outside source will
eventually become the clustered weights.

Figure 4: Transforming CNN Block to Receive External Weights

Figure 5: Interfacing the CNN to the K-Means Clustering Block

Figure 5 shows how the CNN block can be interfaced to the
K-Means Clustering block. The other input of the
multiplexer mentioned in the previous figure as outside
source, can now be connected to the Clustering block. The
operation of the entire system would start with the CNN doing
its training for recognizing the fed images. Once the training
is over, it will send a signal to the Clustering block to start the
clustering operation. The output weights of the CNN are
readily available as inputs to the Clustering block. When
clustering operation starts, a series of iterations takes place
until its outputs are no longer changing. When this happens, a
“finish” signal from the Clustering module is asserted high.
This high state signal is assigned to control the select line of
the multiplexer. The multiplexer is then set to select the
clustered weights inputs as its output. The clustered weights
become the new set of weights of the CNN.

Figure 6: CNN Control and Datapath

Figure 6 shows the hardware model for the control and
datapath of the CNN. The input image adopted in this
research is a black and white 4 x 4 image. The digit images
used for recognition are mapped into the 4x4 pixel image size.
For all numerical operations, fixed point is used to save
hardware requirement. The input image enters the
Convolution block. Three filters of size 3x3 each were used
for the convolution process. Inside this block are multipliers
and adders that perform the operations represented by
Equation 1. The result of the convolution operation enters a
ReLU activation function. Inside the ReLU module, every
input has a corresponding output. The circuit inside ReLU
monitors the sign bit of every input. If the sign bit is a 1, then
the input number is negative and the corresponding output is
a 0 otherwise, the output equals the input. The output of the
activation function then enters the Fully Connected Layer
block. With 3 filters in convolution block, the fully connected
layer block has 12 inputs and 4 outputs. Inside this block are
weight values that undergo multiply and add operation with
the inputs as represented by Equation 3. The output of the
Fully Connected layer undergoes another activation function
called Softmax. Softmax requires the identity of the
maximum value from among its inputs. To do this, a search
for maximum module known as Sortmax module, is inserted
between the Fully Connected Layer and the Softmax module.
The maximum value together with the complete set of Fully
Connected Layer Output are mathematically processed using
the Softmax activation function. The circuit inside the
Softmax module made use of lookup table to satisfy Equation
4.

The CNN results are compared with set target values to
verify if the target has been achieved. An error is computed
which represents the difference between the current result and
the target. If the targets are not yet achieved, a
backpropagation routine is carried out. The goal of the
backpropagation routine is to update the weight values of the
Fully Connected layer and the Convolutional layer. With a
new set of weights, the image undergoes a new round of
iteration from convolution all the way to the Softmax
activation function. The results are once again examined to
see if the target has been met. If not, the weights are again

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1008

updated and the entire operation is repeated until the targets
are met.

Table 1: Major Port Summary for CNN
 Major I/O Ports No. of Bits

Module Inputs Outputs
Convolution 12 (Filter

Weights)
1
2

ReLU 12 12

Fully Connected
Layer

12 24

Softmax 24 20

Error Calculator 21 (sign
extended)

21

Backpropagation 1 21(Error)

12 (Weights)

20(Softmax)

12 (Weights)

Backpropagation 2
Part1

12 (Weights)

20 (Softmax)

32

Backpropagation 2
Part1

32 (part 1)

12

As seen in figure 6, there are two backpropagation modules 1
and 2. The first module is responsible for updating the
weights of the Fully Connected Layer block. Inside this block
is a circuit that performs Equations 5 and 6. The second
module is responsible for updating the filter weights inside
the Convolutional layer block. The second module is further
subdivided into 2 submodules named Part1 and Part 2. Part 1
performs the backward pass routine while Part 2 performs
convolution using the results from Part 1. The result of the
convolution process are used as new set of filter weights.
Table 1 shows the port size summary adopted for each module
in the design of the CNN.

Figure 7: K-Means Clustering Hardware Model

Table 2: Major Port Summary for K-Means Clustering
 Major I/O Ports No. of Bits

Module Inputs Outputs
Euclidean Distance
Calculator

12 (Weights) 12

Find Minimum 12 12(Weights)

6 (Tag)

Search and Add 12 (Weights)

6 (Tag)

20

Reciprocal
Generator/Multiplie
r

20 32

Output Encoder 12

6 (Tag)

12

Shown in Figure 7 is the hardware model for the K-Means
clustering operation. The initial centroid values can randomly
assigned at the start of the operation. The number of centroid
values is assigned by the user. This number represents the
variable K in the K-means clustering operation. This value
of K also represents the number of groups for this operation.
For every iteration, every group can be treated as being
headed by the centroid value. For example, if the user assigns
K as 5, this means there are 5 groups and 5 centroid values
heading each group. All input data undergo Euclidean
Distance calculation with each centroid value. The block
labeled E in the figure computes the Euclidean distance. The
computed Euclidean distance values for every input undergo a
search for the minimum. This is done by the block labeled F.
The minimum value dictates to which centroid value group
does one particular input belong to. Table 2 shows the port
size summary adopted for each module in the design of the
K-Means Clustering.

After determining to which group does an input belong to, the
system prepares for the next iteration. This is done by getting
the average of each group. For every group, the inputs are
added and divided by the number of inputs. The computed
average serve as the new centroid value for the new round of
iteration. The iteration only stops when the current set of
centroid values is exactly the same as the previous set of
centroid values. It should be noted that the output encoder
takes in the significant 12 bits input from the 32 bits output of
the Reciprocal Generator/Multiplier module.

5. DATA AND RESULTS

Figure 8: The Images for Training

Table 3 : Sets of Digits Trained

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1009

Set Digits Trained
A 0 1 4 7
B 7 1 6 9
C 3 5 4 1

D 1 8 2 7

Figure 9: Set A Simulation Screenshot

Table 4: CNN Outputs Final Values After Training

Set Output1 Output2 Output3 Output
4

A 0.95 0.94 0.96 0.92
B 0.89 0.89 0.90 0.91
C 0.97 0.93 0.95 0.96
D 0.95 0.94 0.94 0.91

The design of the hardware model was carried out using fixed
point arithmetic operation. Figure 8 shows the digit images
used for training the hardware model. Since the hardware
model adopted in this research has four outputs only, the digit
images are assembled into sets of four. Table 3 shows the four
sets of digits adopted for the training. Figure 9 shows a
screenshot for Set A’s simulation at the end of the training. It
can be seen in this figure that the four outputs, targeted to
reach 0.99 during the training process, reached at least
76XXX in hexadecimal representation. Translating to binary,
the left most bit is the only integer bit. 76XXX translates to at
least 0.92 in decimal format as final value at the end of the
training. Just like Figure 9, the other sets were able to
converge close to the target value. Table 4 summarizes the
final output values for each set. Each set was able to
recognize the four digits assigned to it after the training.

Figure 10: Set A Accuracy vs % Compression Result

Figure 11: Set B Accuracy vs % Compression Result

Figure 12: Set C Accuracy vs % Compression Result

Figure 13: Set D Accuracy vs % Compression Result

Table 5: Effect of Compression on Component Used for module
with Weights

 Compression
Componen

t
0% 50% 60% 80% 90%

Slice LUTs 298 266 273 251 258
Fully Used
LUT FF Pair

144 133 126 115 116

Number
used as

logic

294 262 269 247 254

After training the CNN, weight compression, using K-means
clustering was applied and the CNN performance was once
again tested. Various compression rates were applied to see
up to how much compression ratio can the CNN withstand
without any negative effects on the recognition performance.
In doing the test, percentage accuracy is based on the CNN’s
performance with compression and without compression. For
example, a 100% accuracy means the performance of the
compressed CNN and the uncompressed CNN are the same in
terms of recognizing the set of digit images fed to it. Figures
10 to 13 show the result of compression vs accuracy for each
set. Of the four sets, Set C showed the best performance at it
was able to reach as high as 60% compression while
maintaining 100% accuracy as seen in Figure 12. Table 5
shows the FPGA component logic used for various rates of
compression. The table represents the specific module where

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1010

the weights reside. It can be seen in the table that the higher
the rate of compression, the lesser is the component usage in
comparison to “no compression applied”. No compression is
the 0% compression column

6. CONCLUSION
In this research, a CNN architecture was designed using
hardware modeling. CNN’s ability to train and recognize
image using FPGA proved to be possible even without using
any external processor. The hardware model is
implementable on Virtex 5 FPGA using fixed point
arithmetic to save hardware components. A K-means
clustering algorithm was also designed using hardware
modeling. Both made use of Virtex 5 FPGA library for
synthesis. The two designs were connected together to form
an automatic CNN weight compression routine right after the
CNN’s training process. Data gathered shows that the
compression does have effect on the component usage. The
higher the rate of compression, the more significant is the
component savings in comparison to component usage for no
compression. The CNN however suffers from accuracy
problem for high compression rate. Of the four sets
experimented in this research, one set i.e. set C was able to
maintain a 100% accuracy for compression rate as high as
60%.

7. RECOMMENDATION
It is recommended for future studies to explore a higher CNN
size that can integrate all digits 0 to 9 in just 1 set. This
however will require more filters for convolution, hence a
higher equivalent circuit size and a higher density FPGA will
be needed. The larger circuit size for CNN will also mean
more weights in its fully connected layer. More weights will
mean more inputs to the clustering module. Thus, the circuit
size for the clustering algorithm will also increase. Another
area for future study can also focus on providing intelligence
to the clustering algorithm when evaluating its effect on the
CNN. The clustering will work by itself to search for the best
compression rate without any intervention from external
users.

Other areas to explore for future studies can focus on big data
challenge to the CNN. In this case, hardware modeling of the
MapReduce [26] algorithm interfaced to the hardware model
of the CNN, can be a good tool for efficient data processing.
The hardware model to be designed for MapReduce algorithm
can be integrated to the large-scale version of the design done
in this paper for future studies. Still, another area to explore
for future studies is the implementation of the entire design in
Application Specific Integrated Circuit (ASIC) instead of
FPGA. The advantage of going ASIC is the smaller circuit
size because this implementation is custom-made based on
the designer’s requirements. Hence, it can lead to lower cost
for mass production. CNN has a lot of addition operations
happening in it. The K-means clustering algorithm, which
has many subtraction operations happening in it, in principle

can also be considered as having lots of addition operations
happening in it. This is because in many digital applications,
subtraction is carried out by adding the minuend to the two’s
complement of the subtrahend. If CNN with K-means
clustering is to be implemented in ASIC, it would be
interesting to explore a future study on the effects of using
transmission gate logic based Full Adder FinFET [27], for all
the adder circuits of the CNN and K-means clustering.

ACKNOWLEDGEMENT
The authors would like to thank ERDT through DOST-SEI
for the funding provided in this research. The authors also
thank Dr. Melvin Cabatuan for his valuable insights on CNN
training.

REFERENCES

1. M. Lopez-Antequera, R. Gomez-Ojeda, N. Petkov, and J.

Gonzalez-Jimenez. Appearanceinvariant place
recognition by discriminatively training a
convolutional neural network, Pattern Recognition
Letters, vol. 92, pp. 89 – 95, 2017.
https://doi.org/10.1016/j.patrec.2017.04.017

2. P. Witoonchart and P. Chongstitvatana. Application of
structured support vector machine backpropagation
to a convolutional neural network for human pose
estimation, Neural Networks. vol. 92, pp. 39 – 46, 2017.
Advances in Cognitive Engineering Using Neural
Networks.
https://doi.org/10.1016/j.neunet.2017.02.005

3. A. Ferreira and G. Giraldi. Convolutional neural
network approaches to granite tiles classification,
Expert Systems with Applications, vol. 84, pp. 1 – 11,
2017.
https://doi.org/10.1016/j.eswa.2017.04.053

4. K. Ahuja, R. Islam, F. A. Barbhuiya, and K. Dey.
Convolutional neural networks for ocular
smartphone-based biometrics, Pattern Recognition
Letters, vol. 91, pp. 17 – 26, 2017. Mobile Iris Challenge
Evaluation (MICHE-II).
https://doi.org/10.1016/j.patrec.2017.04.002

5. Z. Fan, D. Bi, L. Xiong, S. Ma, L. He, and W. Ding. Dim
infrared image enhancement based on convolutional
neural network, Neurocomputing, 2017.
https://doi.org/10.1016/j.neucom.2017.07.017

6. Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang.
Identification of rice diseases using deep
convolutional neural networks, Neurocomputing,
2017.

7. R. Morcel, M. Ezzeddine, and H. Akkary. FPGA-based
accelerator for deep convolutional neural networks
for the spark environment, IEEE International
Conference on Smart Cloud, pp. 126–133, 2016.
https://doi.org/10.1109/SmartCloud.2016.31

8. Z. Wang, F. Qiao, Z. Liu, Y. Shan, X. Zhou, L. Luo, and
H. Yang. Optimizing convolutional neural network on

 Roderick Yap et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1004 - 1011

1011

FPGA under heterogeneous computing framework
with opencl, IEEE Region 10 Conference (TENCON),
pp. 3433–3438, 2016.
https://doi.org/10.1109/TENCON.2016.7848692

9. S. Ghaffari and S. Sharifian. FPGA-based
convolutional neural network accelerator design
using high level synthesize, 2nd International
Conference of Signal Processing and Intelligent Systems
(ICSPIS) , pp. 1–6, 2016.
https://doi.org/10.1109/ICSPIS.2016.7869873

10. A. Rahman, S. Oh, J. Lee, and K. Choi. Design space
exploration of FPGA accelerators for convolutional
neural networks, Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 147–1152, 2017.
https://doi.org/10.23919/DATE.2017.7927162

11. Z. Liu, Y. Dou, J. Jiang, and J. Xu. Automatic code
generation of convolutional neural networks in FPGA
implementation, International Conference on
Field-Programmable Technology (FPT), pp.61–68,
2016.

12. R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor,
and S. Areibi. Caffeinated FPGAs: FPGA framework
for convolutional neural networks, International
Conference on Field-Programmable Technology (FPT),
pp. 265–268, 2016.
https://doi.org/10.1109/FPT.2016.7929549

13. S.W. Park, J. Park, K. Bong, D. Shin, J. Lee, S. Choi, and
H. J. Yoo. An energy-efficient and scalable deep
learning/inference processor with tetra-parallel
mimd architecture for big data applications, IEEE
Transactions on Biomedical Circuits and Systems, vol. 9,
pp. 838–848, Dec 2015.

14. Origami: A convolutional network accelerator,
Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, 2015.

15. M. N. Bojnordi and E. Ipek. Memristive boltzmann
machine: A hardware accelerator for combinatorial
optimization and deep learning, IEEE International
Symposium on High Performance Computer
Architecture (HPCA), pp. 1–13, March 2016.
https://doi.org/10.1109/HPCA.2016.7446049

16. C. Jinyin, L. Xiang, Z. Haibing, and B. Xintong. A novel
cluster center fast determination clustering
algorithm, Applied Soft Computing, vol. 57, pp. 539 –
555, 2017
https://doi.org/10.1016/j.asoc.2017.04.031

17. A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel,
A. Tiwari, M. J. Er, W. Ding, and C.-T. Lin, A review of
clustering techniques and developments,
Neurocomputing, 2017.
https://doi.org/10.1016/j.neucom.2017.06.053

18. R. Ramon-Gonen and R. Gelbard. Cluster evolution
analysis: Identification and detection of similar
clusters and migration patterns, Expert Systems with
Applications, vol. 83, pp. 363 – 378, 2017.
https://doi.org/10.1016/j.eswa.2017.04.007

19. I. Douven. Clustering colors, Cognitive Systems
Research, vol. 45, pp. 70 – 81, 2017.
https://doi.org/10.1016/j.cogsys.2017.05.004

20. A. Cornujols, C. Wemmert, P. Ganarski, and Y.
Bennani. Collaborative clustering: Why, when, what
and how, Information Fusion, vol. 39, pp. 81 – 95, 2018.
https://doi.org/10.1016/j.inffus.2017.04.008

21. K. S. Arikumar and V. Natarajan. Fuzzy based dynamic
clustering in wireless sensor networks, Eighth
International Conference on Advanced Computing
(ICoAC), pp. 77–82, 2016.

22. H. M. .W. D. Song Han. Deep compression:
Compressing deep neural networks with pruning,
trained quantization and huffman coding,
https://arxiv.org/pdf/1510.00149.pdf, 2016.

23. Tariq Rashid. Make Your Own Neural Network.
24. How to implement the Softmax function in Python,

[Available Online:]
https://stackoverflow.com/questions/34968722/how-to-i
mplement-the-softmax-function-in-python

25. M. Mazur. A step by step backpropagation example,
[Available Online:]
https://mattmazur.com/2015/03/17/a-step-by-step-backp
ropagation-example/ .

26. D. Ahamad, MD M. Akhtar, S. A. Hameed. A Review
and Analysis of Big Data and MapReduce,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 8, No. 1, Jan-Feb, 2019.
https://doi.org/10.30534/ijatcse/2019/01812019

27. Ch.Rajesh Babu, T. Venkatesh, E. J. Rao, U. V. Raju.
Conventional Full Adder FinFET Implementation
using Transmission Gate logic, International Journal
of Advanced Trends in Computer Science and
Engineering, Vol. 7, No. 6, Nov-Dec, 2018.
https://doi.org/10.30534/ijatcse/2018/11762018

