
Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

119

ABSTRACT

With the increase in number of pages being published every
day, there is a need to design an efficient crawler mechanism
which can result in appropriate and efficient search results for
every query. Everyday people face the problem of
inappropriate or incorrect answer among search results. So,
there is strong need of enhance methods to provide precise
search results for the user in acceptable time frame. So this
paper proposes an effective approach of building a crawler
considering factors of URL ranking, load on the network and
number of pages retrieved. The main focus of the paper is on
designing of a crawler to improve the effective ranking of
URLs using a focused crawler.

Key words: Page Rank, WWW, Web Crawler, Indexer,
Scheduler, URL Extractor.

1. INTRODUCTION

The WWW contains enormous amount of information in
terms of web pages (WP) and this information is growing
exponentially day by day. These WP are searched with the
help of Search Engine (SE). SE have automated programs
called crawlers (Web spider or Web Robot), that downloads
the pages automatically from WWW. Due to the growing size,
crawlers are also downloading irrelevant data in large amount
making them inefficient. In Figure 1 the crawler downloads
the URLs from WWW, store it in URL Queue. After
elimination of duplicate URL it stores the filtered URL into
new URL Queue. The filtered queue is indexed by Indexer and
forwarded to the repository for future use. Then ordering of
URLs has been done and forwarded to the crawler to crawl.
Types of Crawlers: - Different types of crawlers are as
follows-
• Incremental Web Crawler [1]- This type of crawler updates
only those downloaded pages that are modified instead of
crawling the entire web again from the scratch. This improves
efficiency of the crawler in terms of storage.

• Parallel Crawler [1]-This type of crawler consists of
number of crawlers working parallelly but on same network.
This improves efficiency of the crawler in terms of speed.
• Distributed Crawler [1] - This type of crawler also consists
of a number of crawlers working parallelly and on network of
workstations independently. This improves efficiency of the
crawler in terms of processing speed and if one of the crawlers
is failed then it didn’t impact other crawlers.

 Figure 1: Architecture of the crawler.
• Focused Crawler [1]- This type of crawler retrieves,
download, indexes and manages WP for a particular set of
topics which define a limited section of web.
• Breadth First Crawler- This type of crawler initiates the
crawling from a set of URLs then it uses breadth first
technique [2] to further crawl the rest of the URLs.
• Mobile Crawler [3]- This type of crawler is sent to remote
sites to filter out the unwanted data locally and sending only
relevant data to the SE end. This reduces load on network.
• Ontology based Crawler [3]- This type of crawler work as
per the ontology i.e. crawling of pages related to the topic.

2. RELATED WORK
Ordering of URLs only on the basis of keyword doesn’t fetch

An Improved Crawler Based on Efficient Ranking Algorithm

Jyoti Mor1, Naresh Kumar2, Dinesh Rai3
1Ph.D. Research Scholar, School of Engineering & Technology, Ansal University, Gurugram, India

2Associate Professor, Department of Computer Science & Engineering, MSIT, Janakpuri, New Delhi, India
3Associate Professor, School of Engineering & Technology, Ansal University, Gurugram, India

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse04822019.pdf

https://doi.org/10.30534/ijatcse/2019/04822019

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

120

good results, so authors of [4] proposed the method to
improve crawling by using content and structure similarity
score. They developed the algorithm for the site ordering
module and used SimRank [5] algorithm for calculating the
structural and content similarity for the keyword. The
proposed work has been tested by using the keyword “student”
for similar URLs of Educational Websites and set the crawl
limit from 5 to 10. The results were compared on the basis of
crawling time, ordering time, precision and similarity score
which helped in to increase the number of relevant pages. The
main problem faced by authors was effective identification of
topic relevant pages and priority of downloading. To
overcome these issues authors of [6] implement a Focused
Crawler that identified the topical content of WPs before
processing and decided the order of priority. The Passage
extraction algorithm along with lexical chaining approach
had been used by the authors which improved crawler
effectiveness in performing topical crawls. It also tested
accuracy in building priority cues that are topic specific and
resources affordable.

The calculated importance of each page is temporary and
detecting the authoritative recently uploaded web pages was
an issue with link-based metrics. So, to resolve this, authors of
[7] proposed an architecture for a focused-based parallel Web
crawler in which combination of click-stream analysis and
text analysis were used to prioritize the crawling frontier.
They used click-stream based prioritizing algorithm with
which importance of a web page was checked by calculating
the no of clicks and amount of time spent by the user on a WP.
So, the proposed architecture of crawler helped authors to
calculate the relevancy of a WP besides it also resulted in
minimizing the overhead communication between parallel
agents.

It was observed that Web searchers are unable to find useful
results in the top listed URLs. So, the author of [8] developed
a method to Identify WP for particular domain and discard
pages that are not related to the domain of interest. Authors
used relevance calculation algorithm to calculate the
relevance score of a WP. For the testing of proposed work
authors used educational URLs as input, assigned weights to
ontological terms related to college and calculate the
relevancy. The result shows web pages having relevance limit
greater than four are downloaded as domain specific pages.
Model supports multiple domains by using multiple
ontologies hence resulting in faster search.

Authors of [9] faces the problem of how to update the pages of

websites which undergo changes on regular basis, so authors
proposed the freshness checker mechanism method to tackle
with this. Authors takes set of URLs as input and process it
through various metrics (like structure checker, image
checker and content checker) and check whether the page is
updated or not. Results proved that out of one hundred
samples only twelve samples had been found changed and
need updation.
As the web is growing, problem of web or network traffic also
come in existence so, the authors of [10] proposed Last_visit
and HTTP Get request header method to reduce web traffic.
They give various pages of a general Website as input and
downloaded relevant pages which needs to be updated as
output and hence reduces the network traffic. Results show
that this algorithm is 2.6% better than normal web crawling.

Authors of [11] explain various design issues of WC like
“how to get relevant pages of a search query”, “how to refresh
pages” and “how should Crawler get time sensitive
information. The highlights of the paper were the
Last-modified header to check the freshness and Chronica’s
General Search interface to get time sensitive information.
Results showed the URL with number of hits counts and past
result of the search query efficiently.

Due to regular growth of WWW ordering of URLs becomes a
problem. For this, authors of [12] proposed learning and
non-learning methods to solve this issue. They take two
datasets DS1 and DS2 (Web logs of Information and
Telecommunication Technology Centre website) and
DS2(Web logs of CiteSeer website) and then calculated an
accuracy of 64.3% and 44.2% with dataset DS1 and dataset
DS2 respectively. Results proved that learning method is
better than non-learning method as accuracy of non-learning
methods is less as compared to learning method.

Determining the content relevancy of WP, page popularity
among the servers and time frequency of updation of pages
caused the authors of [13] to propose a method for it. So, they
used URL Ordering mechanism considering the mining of
web contents, usage of pages and structure of the WP. The
proposed method was tested on a data set of top 100 URLs
returned from the web site (www.amu.ac.in) and counted the
uniqueness of URLs. It resulted in reducing the number of
duplicate URLs visits.

Maximizing the number of relevant pages and minimize the
irrelevant ones from loading on query led the author of [14] to
propose a method to prioritize the URLs in URL Queue. The

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

121

Author used the domain dependent Ontology with 2 cycles:
Ontological Cycle and Internet Cycle. The results of the two
cycles are mixed to determine the relevancy of pages. The
proposed mechanism was tested on a group of five URLs of
educational web sites. The results showed that implemented
ontological - based focused crawler has the maximum harvest
rate of 48% as compared to standard crawler.

Qualitative information Retrieval from the large amount of
data is difficult for the crawlers. So, the authors of [15]
proposed Query Based Crawler where set of keywords to shoot
search interface (like radio button, check boxes, etc.) were
used to generate URL. If the search interface not found then
they used Google Search API to generate results. The
proposed crawler was implemented in python programming
language. They also utilized libraries like Beautiful Soup,
Selenium Client API and Web Driver, Google Search API for
implementation. The proposed work was tested to find the
Indian origin academicians which are working outside India.
They took Indian names as keywords and run on twenty-five
foreign universities websites to find the Indian academicians.
The results obtained showed that URL with highest fitness
value had been preferred first over others.

Different types of crawler aren’t able to filter out the
irrelevant URLs, so authors of [16] proposed the analysis of
different crawling technologies according to the specific need
of user to tackle the enormous growth of web. The authors
described CATCH crawler, Internet Forum Crawler, Wrapper
Model of crawler according to the different need of users.
They also stated the challenges that are encountered in
crawling using the crawling techniques such as Page Update
Policy, Obsolete Algorithms, Loss of Data during
compression or some crawlers that are limited to specific
domain. Authors also specified some feasible solutions that if
included in the existing crawlers will improve the specific
domain crawlers.

The Authors of [17] concluded that comparing the text /
keyword for a direct match of a query in the webpage does not
provide best results in terms of relevancy. They proposed a
method to categorize the WPs based on HTML tags, images,
hyperlinks, anchor text and the result is sent to classifiers.
The classifiers classify the WP by selecting the conceptual
knowledge of the keywords and classifying them into
different categories. The experiment was carried out on four
different categories: Cricket, Hockey, Football and
Basketball. The complete data was divided into 70c/o training
set and 30c/o testing set. The 90c/o of the WPs were classified
accurately with respect to TF-IDF approach.

3. CHALLENGES
Some of the challenges available with existing Focused
Crawler are explained below:

• The authors of [4] didn’t propose any methodology to
tackle the problem of frequently modified web pages.

• The authors of [6] only considered 10% of WP and did
not considered the rest 90% of WP for matching the
pattern of a WP. Moreover they also considered small
amount of training set for matching of pattern of a WP
to be downloaded.

• Authors of [7] did not covered the content of authorized
pages i.e. the pages from semantic web only were
covered by the crawler and crawler was not able to cover
the authorized pages present on dark net or dark web.

• No method was proposed by author of [8] to calculate
the value relevance limit and tolerance limit which were
considered in the data set in comparison with the
calculated value.

• The threshold value between an updated WP from a
non-updated WP was not elaborated in [9].

• Forcefully updated the Last_modification date of the
WP while loading the results of query and also did not
define any threshold after which crawled pages needs to
be refreshed [10].

• Authors of [12] did not suggest any method to order the
URLs shared through RSS feeds, text messages or
shortened URLs.

• The authors of [13] did not work on improving the
ordering of newly updated pages in URL queue.

• While maximizing the relevant pages in search results,
author of [14] didn’t consider the speed of crawling.

• The Authors of [17] does not test their proposed method
on multi-leveled WP. HTML pages can be in
unstructured format [18]. HTML page structure may
fails to detect changes in CSS documents [19].

4. PROPOSED ARCHITECTURE
Figure 2 shows the proposed architecture of Parallel Focused
Crawler. It’s major components are - Controller, URL
Extractor, Page Score Calculator, Page Score Comparator and
Scheduler. The detail working of the proposed crawler is as
explained below:-

1. User enters the keyword into search keyword column.
2. The correspondingly successive hyperlinks have been
fetched.
3. All the URLs fetched are categorized with the help of URL
extractor in three domains that are .com, .in and .org domain.

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

122

4. Content Fetcher module (Available in Figure 3) helps in
fetching the content of every URL obtained in the list.
5. Determining the occurrence of the input keyword in every
URL of the list is done by Occurrence count module and then
page score is calculated for a particular URL.
6. Controller manages all the calling and handling of
functions.
7. Page score of every URL is compared with each other with
the help of Page Score Comparator which describe that which
URL should be given the most importance.
8. All the crawled data is collected in database for faster
retrieval in future.
9. Scheduler keeps the track of updation of URLs and divide
the URLs in three categories of frequently (updated every
hour), frequent (updated in 24 hours), static (updated in 15-30
days).
10. Pages are now sorted according to page score in terms of
relevancy.

Figure 2: Architecture of Focused Web Crawler

Figure 3: Internal Structural of Page Score Calculator

The step by step working is also described with the help of an
algorithm as explained below:
Algorithm: - Page ranking through page score
Input:-Query
Output: - Creation of the Database
Step 1: - Start
Step 2: -Query fired by the User to the interface
Step 3: - Now the crawler crawl for the URLs from the WWW.
Step 4: - After finding the URLs, Crawler read the URLs from
the crawl set.
Step 5: - Distribute the URLs according to its domain and
saves its time and date of Visiting.
Step 6: - Now, compare the page score of URLs from previous
page score
Page Score = d*Kc+ K*tl +m*(ac/wc)
 If change in page score is greater than 10%, then
update the page score and save it.
If change in page score is less than 10%, then do not crawl
and do not save it.
Step 7: - Rank or order the URLs according to the Page Score
in Ascending or Descending.
Step 8: - Save the updated page score for the respective URLs
in Database.
Step 9: - End.

5. EXPERIMENTAL SETUP AND RESULT
DISCUSSION
The proposed architecture has been implemented in Java
Language Microsoft SQL Server 2017 was used for Database
with IDE eclipse. The experimental setup with the changes in
existing system can be described as follows:

(i) In existing crawler some overhead modules were required
for extraction of WPs which are not available here. Here we
removed the extra module for extraction of WP into database
by retrieving only the required parameters for page score
calculation. This reduced the overhead of extra module,
thereby improving the process speed.

(ii) The WPs have been divided into three categories i.e.
Frequent, Static and frequently updated WPs. A Frequent WP
is a WP which gets updated within a week. It is not updated
daily. Static WPs are those which is hardly updated.
Frequently updated WPs are those which is updated every
now and then. The size of Frequently WP taken into
experiment is 147kb and 54kb. The size of Frequent and
Static WPs are 82kb links and 95kb links respectively.

(iii) Number of days of observation
The experiment was carried out for 15 days in order to observe
the changes into a WP. For a Frequent website, noticeable

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

123

changes were visible. In Frequently updated WP, major
changes were noticed whereas in static WPs, no changes were
seen.

(iv) Average Number of pages retrieved by taking two seed
URLs for Frequently updated WP, one seed URL for Frequent
WP and 1 for Static WPs. In frequently updated WP, 147 and
54 WP were retrieved. In Frequent webpage, 82 WP were
retrieved and in static WP category, 95 WP were retrieved. On
an average, 95 URLs were retrieved for every seed URL. The
same is shown in Figure 4 and Figure 5 respectively.

FREQUENTLY Updated URLs

Size of Dataset: 147 links
Query keyword: Cricket
FREQUENTLY Updated URLs
Parent URL:http://www.espncricinfo.com/scores

Figure 4: Graph for Frequently Updated URLs

FREQUENT Updated URLs

Size of Dataset: 82 links
Query keyword: Brexit
Parent URL:https://www.bbc.com/news

Figure 5: Graph for Frequent updated URLs

(v) Webpage change behavior:- The ASCII count, keyword
occurrence and other factors effecting the page score were
observed to be changing majorly in Frequently updated WP,
followed by Frequent WP and minimum changes in Static
URL. This is graphically shown in Figure 6.

(vi) Load on network:- In order to reduce the load on
network, the work was divided into manageable and
synchronous steps one after the other to reduce the load on
network. Instead of retrieving the complete WP from the
server, we retrieved only the count of parameters essential for
the calculation of page score. This in turn reduced the load on
network significantly.

STATIC URLs

Size of Dataset: 258 links
Query keyword: android
Parent URL: https://www.android.com/

Figure 6: Graph for Static URLs

6. COMPARISON WITH EXISTING SYSTEMS
The Table 1 compares and contrast different crawlers where
authors have shown that proposed and implemented crawler
is superior than the existing crawlers. The parameters for
comparison are Frequency of Revisit (Freshness), Speed of
Crawling Categorization of updated and non-updated pages,
Ranking through page score, Efficiency, Multi-threaded and
Optimized Bandwidth Utilization.

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

124

7. CONCLUSION
The proposed & implemented crawler separates the URLs
based on their frequency of page updation. Authors
categorized URLs as: Static, Frequent and frequently updated
URLs. A Frequently Updated URL is a URL which is updated
every now and then. It most consists of sites like sports news
in which score is updated every time and demonstrate how the
implemented crawler responds to such URLs. The datasets
are New Cricket dataset and World News dataset. Some cases
were observed with no change in its page score on the revisit
of crawler. For the Static URL, the dataset named android
dataset with the parent URL as https://www.android.com/ had
been chosen. The page score is calculated for every child URL
and their respective ranking is obtained.

A Frequent Updated URL is a URL which is updated at
regular interval ranging from a day to a week. It was tested on
query BBC News with its parent URL as
https://www.bbc.com/news. The Queried Keyword for its
child URLs is Brexit. At the end the results were compared
with some existing crawler which proves that proposed
crawler have reduce the load on the network and rank the
pages efficiently.

REFERENCES

[1] M. S. Ahuja, J. S. Bal and Varnica, “Web Crawler:
Extracting the Web Data”, International Journal of Computer
Trends and Technology (IJCTT), ISSN: 2231-2803, Volume
13, number 3, pp 132-136, 2014.
https://doi.org/10.14445/22312803/IJCTT-V13P128
[2] V. Shkapenyuk and T. Suel, “Design and
Implementation of a high performance distributed web
crawler”, In Proc. 18th International Conference on Data

Engineering, doi: 10.1109/ICDE.2002.994750, pp. 357–368,
2002.
 [3] R. Nath and K. Chopra, "Web Crawlers: Taxonomy,
Issues & Challenges", International Journal of Advanced
Research in Computer Science and Software Engineering,
ISSN: 2277 128X, Volume 3, Issue 4, pp 944-948, April 2013
[4] M. Shoaib and A. K. Maurya, “URL Ordering based
Performance Evaluation of Web Crawler”, IEEE
International Conference on Advances in Engineering &

Table 1: Comparison between different crawlers

Name Freshness Speed of
Crawling

Categorization of updated
and non-updated pages

Ranking through
Page score

Efficiency Multithreading Optimum Bandwidth

Incremental
Web Crawler

Yes

Yes, since
crawls only
modified pages

Yes

No Yes, in terms of
storage

No

Yes, but it is missing the
crawling of unmodified
pages

Parallel Web
Crawler

No Yes No No Yes, in terms of
speed

Yes No, due to redundant
crawling

Distributed
Crawler

No Yes No No Yes, in terms of
processing speed

Yes No, due to redundant
crawling

Breadth First
Crawler

No Yes No No Yes No Yes, never crawls unwanted
URLs

Mobile Crawler No Yes Yes No Yes No Yes, never crawls unwanted
URLs

Ontology based
Crawler

No No, since it
matches every
word in WP
with the
ontological
word of
keyword

No No Yes No Yes, never crawls unwanted
URLs

Proposed
Focused Web
Crawler

Yes

Yes Yes

Yes

Yes

Yes Yes

Jyoti Mor et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 119 - 125

125

Technology Research (ICAETR – 2014), ISSN: 2347-9337,
2014.
https://doi.org/10.1109/ICAETR.2014.7012962
[5] G. Jeh, and J. Widom, “SimRank: a measure of
structural-context similarity”, Proceedings of the eighth
ACM SIGKDD International Conference on Knowledge
Discovery and Data mining, doi:10.1145/775047.775126,
pp. 538-543, 2002.
 [6] E. K. L. Kapetanios, V. Sugumaran and M.
Spiliopoulou, “An Ontology-Based Focused Crawler.” In
Natural Language and Information Systems,
ISBN:978-3-540-69857-9, Volume 5039, 2008.
[7] F. Ahmadi, Abkenariandand A. Selamat, “Parallel Web
Crawler Architecture for Clickstream Analysis”,
Communications in Computer and Information Science,
Springer, Berlin, Heidelberg, ISBN:978-3-642-32825-1,
Volume 295, 2011
[8] S. Sinha, R. Dattagupta and D. Mukhopadhyay, “A
New Approach to Design a Domain Specific Web Search
Crawler Using Multilevel Domain Classifier”, In:
Distributed Computing and Internet Technology. ICDCIT
2013, ISBN:978-3-642-36070-1, Volume 7753, 2013
[9] N. Kumar, D. Tyagi, S. Awasthi and J. Mor, “Change
Detection Of Webpage In Focused Crawling System”,
International Journal of Computer Technology and
Applications (IJCTT), ISSN: 0974-5572, pp 969-976,2016
[10] S. S. Vishwakarma, A. Jain and A. K. Sachan, “A
Novel Web Crawler Algorithm on Query based Approach
with Increases Efficiency”, International Journal of computer
Applications, ISSN:0975-8887, Volume 46, number 1, pp
34-37,2012
[11] Deepika and A. Dixit, “Web Crawler Design Issues”,
International Journal of Management, IT and Engineering
(IJMEI), ISSN: 2249-0558, volume 2, Issue 8, pp 394-404,
2012
[12] A. Changramouli, S. Gauchand and J. Eno, “A
Popularity-based URL Ordering Algorithm for crawlers”, 3rd
International Conference on Human System Interaction,
ISSN: 2158-2246, pp 556-562, 2010
https://doi.org/10.1109/HSI.2010.5514512
[13] Sandhya, M. Q. Rafiq and O. Farooq, “Efficient Web
Crawling With Proposed URL Ordering”, 2011 International
Conference on Multimedia, Signal Processing and
Communication Technologies, ISBN: 978-1-4577-1107-7,
pp 44-47, 2011.
https://doi.org/10.1109/MSPCT.2011.6150516
[14] D. Koundal, “Prioritizing the ordering of URL queue in
focused crawler”, Journal of AI and Data Mining (JAIDM),
URL: http://jad.shahroodut.ac.ir/article_146_0.html,
Volume 2, Number 1, pp 25-31, 2014.
[15] M. Kumar, A. Bindal, R. Gautam and R. Bhatia,
“Keyword Query Based Focused Web Crawler”, 6th
International Conference on Smart Computing and
Communications (ICSCC), DOI -
https://doi.org/10.1016/j.procs.2017.12.075, Volume 125, pp
584-590, December-2017.

[16] N. Kumar, S. Awasthi and D. Tyagi, “Web Crawler
Challenges and Their Solutions”, International Journal of
Scientific & Engineering Research, ISSN 2229-5518,
Volume 7, Issue 12, pp 95-99, December-2016
[17] A. Qazia and R. H. Goudarb, “An Ontology-based
Term Weighting Technique for Web Document
Categorization”, International Conference on Robotics and
Smart Manufacturing (RoSMa2018), DOI-
https://doi.org/10.1016/j.procs.2018.07.010, pp 75-81, 2018.
[18] I.S. Makki and F. Alqurashi, “An Adaptive Model for
Knowledge Mining in Databases “EMO_MINE” for Tweets
Emotions Classification”, ISSN 2271-3091, Volume 7, No.3,
May- June 2018.
https://doi.org/10.30534/ijatcse/2018/04732018
[19] N. Kumar, D. Tyagi, S. Awasthi and J. Mor, “ Change
Detection of Web Page in Focused Crawling System”,
International Journal of Control Theory and Applications,
ISSN: 0974-5572, 9(41) pp. 969-976, 2016.

