
Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

23

ABSTRACT

The software development phase would frequently go through
several changes and modifications. These are challenges that
the tester of a system needs to face to ensure that the quality of
the system aligns with the budget, resources, and time to
deliver. Numerous techniques have been proposed to solve
these problems and one of them is the test case prioritization
(TCP) technique. The TCP technique is widely used for single
event test cases. Thus, this paper would like to propose the
Multifactor Weightage Approach (MFWA) using
combinations of six factors to prioritize event sequence test
cases. The percentage of test effort efficiency was used to
measure the efficiency of the comparison technique. The
results showed that the MFWA was more efficient compared
to the random technique in terms of detecting faults earlier.

Key words: Software testing, test case prioritization, event
sequences, multifactor, efficiency.

1. INTRODUCTION

A software testing process may consist of several steps, such
as planning, designing, specifying, executing, and quantifying
either in regression or non-regression testing [1]. These are
important steps and sometimes, this process may stay in the
maintenance phase, especially when there are frequent
changes during the developmental phase. Any changes must
be tested, which could lead to an exhaustive testing. A product
that consists of 33,000 test cases might require 1,100 machine
hours to make sure all test cases are executed. This step might
become more complicated for event sequence test cases,
which can be up to an infinite number and can cause a
considerable degree of redundancies. Whenever changes are
made, the number of test cases will increase, in addition to the
existing number of test cases, to test the new functionalities.
Therefore, several techniques were proposed to solve this
problem, such as test minimization, test case prioritization,
and test selection. The test case prioritization (TCP) technique
has been used since 1997 to provide new test case ordering.

Over the past few years, the TCP technique has been
developed using more than one factor. Some researchers
believe that adopting multiple criteria can improve the
performance in detecting faults earlier and reduce time during

testing phase [2]. The weightage approach was adopted in the
TCP technique to provide ordering for test cases, whereby
lead by test cases with the highest priority value. However,
how to cater issue of similar priority value become one of the
most significance issues [3].

Thus, this study is proposing the Multifactor Weightage
Approach (MFWA), with combinations of six factors
specifically for event sequence test cases. The aim is to
produce a unique weight for each test case and avoid using the
random technique. An event is known as an external
observable phenomenon, such as a system response, an
environmental or a user stimulus [4]. One of the challenges in
performing event-driven testing is the large number of
possible events that need to be tested. The organization of this
paper is as follows: Section 2 will present a review of previous
works on the TCP technique. The proposed MFWA that uses
six factors will be described in Section 3. The experiments
and results of the comparison technique will be explained in
Section 4. While the conclusions of this study will be
presented in Section 5.

2. RELATED WORK

There are two types of TCP, as defined by [5], namely, the
general TCP and the version-specific TCP. In general, the
TCP technique and the testing execution of test suite T are
applied to the base version of a program P, with the objective
that the prioritized test suite T will be more successful than the
original test suite. Meanwhile, the version-specific TCP
technique refers to a case where the test suite T is prioritized,
with the objective of finding the new ordering of test suite T
execution for a specific version of P’ and P. Test cases that
have higher values will be prioritized during the execution
process [6].

In [7] applied fault coverage to measure the capability of test
cases to detect faults earlier. Meanwhile, the execution time
measurement was used to achieve the objective of this study,
which was to select test cases that manage to cover every fault
in minimum execution time. Test cases with higher ratio of
fault coverage will be executed earlier than others. The
prioritization algorithm proposed by [8] consists of three
approaches, namely, random weight, equal weight, and
fault-prone weight. The importance of each event is used to
classified the event type before the process of assigning

Measuring the Efficiency of MFWA Technique for Prioritizing Event
Sequences Test Cases

Johanna Ahmad1, Salmi Baharom2, Abdul Azim Abd Ghani3, Hazura Zulzalil4, Jamilah Din5
1Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Malaysia,

johanna@ump.edu.my
2,3,4,5Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia,

{salmi,azim,hazura,jamilahd}@upm.edu.my

 ISSN 2278-3091
Volume 8, No.1.4, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0481.42019.pdf

https://doi.org/10.30534/ijatcse/2019/0481.42019

Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

24

weight. Three experiment results showed that the
prioritization algorithm based on the weighted concept was
capable of improving the rate of fault detection [8]. [9]
applied Harrold-Gupta-Soffa, traditional greedy, and
2-optimal greedy algorithms, as well as the algorithm for the
TCP and test suite reduction. The application of greedy for the
prioritization algorithm showed that a large test suite with a
short execution time is better than a small test suite with a
longer run-time. The coverage effectiveness metric, which is
based on the cumulative coverage of the tests over time, also
showed that the prioritization algorithm had reached its
maximum improvement.

In [10] enhanced the tie-breaking technique by applying a
traditional greedy algorithm. The proposed technique adopted
the random technique only whenever two or more test case
has equal priority value, with respect to the coverage criteria.
In this study, the random technique was applied during the
elimination process to exclude test cases that would likely
detect faults than the preserved ones. In 2016, [11] proposed
an algorithm for an enterprise cloud application using the
use-case weight approach. The proposed approach was
developed to avoid simultaneous execution of test cases
across different servers. Every use-case point would have its
own weight, which would be assigned based on its criticality.
However, if the use-case weight remains not unique, then, the
arity of the test case would be used. The arity is determined by
how frequent the test cases access the services. If the arity
approach is unable to solve the issue, the ties would be
randomly broken.

3. PROPOSED APPROACH

This study assigned weight based on the cumulative weight
gained from all potential factors, which were combined based
on the 2017 SLR analysis [9]. The potential factors were
complexity, redundancy, permutation, frequency, fault matrix,
and distance. Distance was only applicable in cases two or
more test case shared the same priority value, after going
through all five factors. It can be concluded that distance was
used in solving the same priority value issue. Each potential
factor contributed to the production of the final test case
weight, which was measured on a 10-point scale. This
distance may break the ties and thus, avoid the random
technique. The process of implementing the MFWA is
depicted in Figure 1. The process of assigning weight is from
one factor to another, until the final weight for the test case is
produced.

The step-by-step process to produce the test case weight is
explained as follows. Two considerations have been defined
in selecting the subject programs for the experiment. The first
consideration was of utmost importance since the concept of
hold data state memory was one of the properties used to
calculate the redundancy weight. Furthermore, the properties
of an event sequence test case would consist of data state
memory. Redundancy was the second factor for the MFWA.
All selected benchmark programs have memories (i.e., holds
data state value during the test case execution). The second
consideration was the need to avoid biasness. Therefore, all

five programs in the benchmark repository were developed
using independent sources. These independent sources are
available to the public. The selected subject programs were
the Gomoku, Sodoku, HashTable, Circular Queue, and Bank.
The size of the subject program is not important for this
research due to the difficulties in obtaining subject program
that have memories. However, this limitation is under
consideration in future work. The description of each subject
program is listed and summarized in Table 1. The step-by-step
process to produce the test case weight is explained in the
following section.

Figure 1: Steps in the MFWA Technique

Table 1: A Summary of the five subject programs

3.1 Complexity

Complexity is defined as the degree of difficulty in verifying
and understanding the design or implementation of a system
[10]. With respect to complexity, the measurement included
the aspects of the structural design of the program, the way the
computational program is being handled, the algorithms in the
program, as well as the logical and functional aspects of the
program. Many researchers believe that the complexity of a
system or a program needs to be calculated when predicting
the reliability and maintainability of the system [11]. Thus,
numerous complexity metrics have been proposed over the
years. Based on the literature review, five of the most popular
complexity metrics are the Lines of Codes (LOC), the
Information Flow Complexity (IFC), the Unique Complexity
Metric (UCM), the McCabe’s Cyclomatic Complexity
(McCabe), and the Function Point (FP). These complexity
metrics were selected as the comparison software metrics for
this study. Based on the analysis on the strengths and
weaknesses of each software metric, the UCM was found to
be the most suitable metric in measuring the event
complexity. Furthermore, the event sequence test cases

Subject
Program

Lines of
Codes

Total No. of
Method

Gomoku 389 3
Sodoku 196 3

Hash Table 216 3
Circular Queue 69 3

Bank 280 4

Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

25

consisted of a combination of events, whereby each event has
its own complexity.

The complexity value obtained from this factor was used to
calculate the frequency of the weight later. Each test case may
have different combinations of events, while each event may
have its own behaviour. Thus, the capability of each test case
in detecting faults may differ from one test case to another.
During the UCM calculation, the weight was given based on
the classification defined by the concept of Basic Control
Structures (BCSs) [10], as shown by Equation (1). The
complexity was actually directly dependent on the cognitive
weight of the BCS.

ܿ݅ݎݐ݁ܯ	ݕݐ݅ݔ݈݁݌݉݋ܥ	݁ݑݍܷ݅݊ = 	෍(ܱܵ ௜ܱ

௡

௜ୀଵ

+ ܥ	 ௜ܹ)																						(1)

3.2 Redundancy

[12] stated that a large number of test cases may caused
redundancy. The sequence of an event test case can produce a
large test size since it is the behaviour of the event sequence
test case to have large input of sequences, which can
sometimes be infinite. In some cases, the combination of
events may be the same, but the value of the internal data state
might be different [13]. In this study, the concept of the data
state referred to the concept of two dimensional arrays, [i][j],
whereby i represents the event sequence number, while j
denotes the content of the respective event.

As the first hierarchy for the redundancy factor, the
redundancy that occurred in the test case itself was defined
first, which was categorized as Redundancy Type 1.
Meanwhile, Redundancy Type 2 belonged to the case where
the value of the data state in the test case is a subset of another
test case within the test suite. It would wasting time, cost and
resources to execute the same test case. Previous researches
have focused on test suite reduction once the redundant test
case exists. However, in this study, all test cases were
executed and no test reduction process was involved. Two
steps of calculations were required before the weight for
Redundancy Type 1 could be produced. The dissimilarity of
weight in the test case () was calculated once the value
for the number of data state and the number of
the redundant data state for the
test cases were calculated. The values ranged between 1 and
10. was calculated using the following Equation (2):
ݐܹܦ ௝ܿ = 	 ((No	of	ds୲ୡ୨) 	−	(No	of	redundant	ds୲ୡ୨))	/	10 (2)
Equations (3) and (4) were used to produce the weight for
Redundancy Type 2. These values were used to calculate the

 which can be calculated using the following
Equations (3) and (4):

No	of	non− redundant	ds୲ୱ୨=
(No	of	ds୲ୱ୨)/(No	of	redundant	ds୲ୱ୨) (3)

DWts୨ = ((No	of	non− redundant	ds୲ୱ୨)/	(No	of	ds୲ୱ୨))/10 (4)

3.3 Permutation

With the realization of the guarantee that the combination of
events would be sufficient for a high coverage of fault
detection, permutation was identified as another factor that
must be considered. The t-way test was applied in this study to
generate optimum test cases with enough coverage to detect
faults during the test. The t-way concept was able to reduce
the number of tests to be conducted during the testing phase.
For example, for a system that consists of 4 events and 10
components, the test configuration would
be needed to ensure that the coverage is fulfilled [14]. The
sequence covering array (SCA) algorithm was used to ensure
that all t-way sequences have been tested during the testing
phase. [15] have also applied the SCA in improving the
efficiency of GUI testing, with the objective that each node in
the sequence test case would contain a set of events that has
been defined. The SCA has been defined as follows:

Definition A sequence covering array or SCA (N,S,t) means
that the N x S matrix entries are from a finite set S of s
symbols, while every t-way combinations would occur at least
one row and each row would consist of permutations of the s
symbol.

This concept was applied based on the original covering array
proposed by [16]. A covering array is defined as
(N;t,k,v), whereby N x k is the array. Normally, in software
testing, A sequence covering array is generated based
on the concept of covering the array algorithm [16]. Table 2
shows HashTable program pairwise interactions. The
Gomoku, Sodoku, Circular Queue, and Bank programs went
through the same processes. The listed pairwise events were
considered as a minimum coverage of interactions to cover
the whole system during testing.

Table 2: Pairwise Interactions for HashTable Program

No Pairwise Event
1 (hashFunction, findKey)
2 (hashFunction, display)
3 (hashFunction,hashFunction)
4 (findKey, hashFunction)
5 (findKey, display)
6 (findKey, findKey)
7 (display, hashFunction)
8 (display, findKey)
9 (display, display)

3.4 Frequency

Frequency was chosen as one of the potential factors due to
the behaviour of the event sequence test case that has a
repetition of events. In this study, frequency was calculated
based on the number of times that the pairwise event
interactions occurred in a test case. Frequency has been
widely used in the TCP technique and has been applied in
various research areas. The complexity values obtained from
the first factor were used to calculate the frequency weight in

Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

26

this phase. The complexity factor and the permutation factor
were combined with the frequency factor to produce the
frequency weight. The frequency weight was calculated for
each pairwise event using the following Equation (5):

Frequency weight = (no of pairwise events that exist in a test
case x event complexity value) (5)

3.5 Fault Matrix

The fault matrix is responsible for validating the capability of
the test case in detecting seeded mutants. The SLR analysis
that was conducted during the early stage of this study showed
that the fault matrix has become the most popular factor used
by numerous researchers [9]. They believe that mutation
could help improve the effectiveness of the testing phase.
Meanwhile, other researchers have combined other factors
with the fault matrix. They believe that combinations of more
than one factor can increase the performance of the TCP
technique. Furthermore, it can break the ties when more than
one test case is sharing the same priority value. In this study,
the Jester Mutation was selected as the mutation tool [17].
Jester will automatically create mutants for the program based
on the list of mutation operators. Nevertheless, the number of
mutants was varied when injected in each of the Java
programs.

In this study, two steps were needed for the fault matrix
algorithm before the fault matrix weight could be produced.
The first step was to calculate the number of killed mutants
(nkm) by each test case and the number of live mutants (nlm).
In the first step, the ordering was based on the highest number
of test cases with the highest number of detected mutants.
This was followed by other test cases that have fewer number
of mutants detected [18]. However, for the second ordering,
the selection process differed from the method proposed by
[18]. To avoid selecting test cases that killed the same
mutants, the next process in this study was to find the test case
that managed to kill live mutants that have been left out by the
ordered test case. In this study, the weight of the fault matrix
was given based on the weightage concept. After the fault
matrix’s weight was produced, the test case went through the
final sorting for the fault matrix, whereby the ordering of the
test cases was based on their weight.

3.6 Distance

The idea of using distance was initiated with the aim of
producing a unique weight. This unique weight was proposed
to solve the limitations faced by the current TCP technique for
solving the same priority value issue. In this study, the Jaccard
Distance, also known as the Jaccard Similarity Coefficient,
was applied in its place. [19] applied the Jaccard Distance to
compare the similarities and diversities between sample sets.
Meanwhile, this study used the Jaccard Distance to solve the
same priority value issue by measuring the similarities of the
data state values among the test cases. The Jaccard Distance
was calculated using the following Equation (6) [20]:

Jaccard Distance (݌௔	,݌௕) = 1−	│௣ೌ			∩		௣್│
│௣ೌ			∪		௣್│

 (6)

where represent the test case numbers and they
consist of different sets of event sequences. According to [19],
the value of the Jaccard Distance may vary between 0 and 1. If
the distance value is zero, it means that are the
same. However, if the distance value is 1, this would indicate
that there is no similarity between In this study,
the distance value was calculated based on the similarity of
data state.

4. EXPERIMENT AND ANALYSIS

This study has compared the time efficiency between the
MFWA and the random technique. Random technique has
been chosen since this study want to focus on how to define an
indicator to prove that test cases with the same priority value
have different fault coverage. The intention of this research is
to avoid the random technique used to solve the issue of the
same priority value, since it has been proven to be ineffective
[21], [22]. The ordering of test suites for the Gomoku
program, the Circular the Queue program, and the HashTable
program uses the pure random technique. Meanwhile, test
suites for the Sodoku program and the Bank program are
taken directly from the benchmark repository without any
changes. In this case, it is not certain whether the ordering of
test cases in both test suites are pure random technique,
random technique, or based on a guideline.

The experiment was conducted on five Java programs as
subject programs. All five subject programs were taken from
the benchmark repository. Two considerations to select the
subject program; the program must have a variable that holds
data state value during the test case execution, and all
programs must be developed by independent sources to avoid
biasness. In line with the consideration and intention of
measuring the efficiency of the proposed technique during the
prioritization process, the MFWA was compared with the
random technique. The random technique is known as the
fundamental testing method, whereby it simply selects test
cases in a random order. Meanwhile, the MFWA combines
six factors to produce the unique priority value. The efficiency
of both techniques was measured using the following
Equation (7):

The percentage time effort efficiency (TEE)=

 	│்௜௠௘│ି│்௜௠௘│௧௘௖௛௡௜௤௨௘	
│்௜௠௘│

 x 100 (7)

where |Time| is the time taken to apply all test cases, while

 refers to the time taken by the random
technique and the MFWA to detect faults.

Equation (7) is widely used in current reduction techniques
[19], [23], [24]. However, this study had only applied this
equation to measure the efficiency of each technique in
detecting faults. Efficiency was measured in terms of rank
prioritization. Any ordering test cases that can detect all faults
earlier would be considered as the most efficient. Table 3 lists

Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

27

the analysed time efficiency for both techniques. It shows that
the percentage of time effort efficiency for MFWA was higher
than the percentage of time effort efficiency for the random
technique.

Table 3: Time effort efficiency (TEE) percentages and differences

for MFWA and random technique

5. CONCLUSION
This study has proposed an approach, namely, the MFWA,
which was applied using the weighted priority concept to sort
test case ordering. The new test case ordering was to avoid
using the random technique, once more than one test case
share the same weightage during the prioritization process. As
depicted in Figure 1, all test cases went through five
processes. Upon detecting that more than one test case share
the same final weight, the respective test cases were grouped
together and went through the distance factor process. The
MFWA was compared to the random technique since this
technique will simply fetch any test case that has the same
weightage. The MFWA was considered as more efficient than
the random technique since it was able to detect faults earlier.

ACKNOWLEDGEMENT

The authors would like to acknowledge Universiti Putra
Malaysia for the financial support under the Putra Grant –
Putra Graduate Initiative (IPS); Project
code-GP-IPS/2018/9621100.

REFERENCES
[1] S. Nayak, C. Kumar, and S. Tripathi, “Effectiveness

of prioritization of test cases based on Faults,”
2016 3rd Int. Conf. Recent Adv. Inf. Technol. RAIT
2016, pp. 657–662, 2016.
https://doi.org/10.1109/RAIT.2016.7507977

[2] H. Srikanth and M. B. Cohen, “Regression testing in
Software as a Service: An industrial case study,”
2011 27th IEEE Int. Conf. Softw. Maint., pp.
372–381, 2011.
https://doi.org/10.1109/ICSM.2011.6080804

[3] J. Ahmad and S. Baharom, “A Systematic Literature
Review of the Test Case Prioritization Technique
for Sequence of Events,” Int. J. Appl. Eng. Res., vol.
12, no. 7, pp. 1389–1395, 2017.

[4] F. Belli, M. Eminov, and N. Gokce, “Prioritizing
Coverage-Oriented Testing Process - An

Adaptive-Learning-Based Approach and Case
Study,” 31st Annu. Int. Comput. Softw. Appl. Conf. -
Vol. 2 - (COMPSAC 2007), no. Compsac, pp.
197–203, 2007.
https://doi.org/10.1109/COMPSAC.2007.169

[5] A. G. Malishevsky, G. Rothermel, and S. Elbaum,
“Modeling the cost-benefits tradeoffs for
regression testing techniques,” Softw. Maintenance,
2002. Proceedings. Int. Conf., pp. 204–213, 2002.

[6] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold,
and I. C. Society, “Prioritizing Test Cases For
Regression Testing Prioritizing Test Cases For
Regression Testing,” IEEE Trans. Softw. Eng., vol.
27, no. 10, pp. 929–948, 2001.
https://doi.org/10.1109/32.962562

[7] M. Tyagi and S. Malhotra, “Test case prioritization
using multi objective particle swarm optimizer,”
2014 Int. Conf. Signal Propag. Comput. Technol.
(ICSPCT 2014), pp. 390–395, 2014.
https://doi.org/10.1109/ICSPCT.2014.6884931

[8] C. Y. Huang, J. R. Chang, and Y. H. Chang, “Design
and analysis of GUI test-case prioritization using
weight-based methods,” J. Syst. Softw., vol. 83, no.
4, pp. 646–659, 2010.
https://doi.org/10.1016/j.jss.2009.11.703

[9] J. Ahmad and S. Baharom, “Factor Determination
in Prioritizing Test Cases for Event Sequences : A
Systematic Literature Review,” J. Telecommun.
Electron. Comput. Eng., vol. 10, no. Xe-ISSN:
2289-8131, pp. 1–6, 2018.

[10] S. Misra and I. Akman, “A unique complexity
metric,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 5073 LNCS, no. PART 2, pp. 641–651, 2008.
https://doi.org/10.1007/978-3-540-69848-7_52

[11] B. Ceylan and M. M. Inceoǧlu, “A Unique
Complexity Metric,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 5072, no. PART II, pp.
641–651, 2008.

[12] J. F. Silva Ouriques, E. G. Cartaxo, and P. D. Lima
Machado, “Revealing influence of model structure
and test case profile on the prioritization of test
cases in the context of model-based testing,” J.
Softw. Eng. Res. Dev., vol. 3, no. 1, p. 1, 2015.
https://doi.org/10.1186/s40411-014-0015-5

[13] S. Baharom and Z. Shukur, “State-Sensitivity
Partitioning Technique for Module
Documentation-based Testing,” Bus. Transform.
through Innov. Knowl. Manag. An Acad. Perspect.,
vol. 1, no. Midd, pp. 472–483, 2009.

[14] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C.
J. Colbourn, “Constructing Test Suites for
Interaction Testing,” Softw. Eng. 2003.
Proceedings. 25th Int. Conf., 2003.
https://doi.org/10.1109/ICSE.2003.1201186

[15] X. Yuan, M. Cohen, and A. M. Memon, “Covering
Array Sampling of Input Event Sequences for
Automated Gui Testing,” Proc. Twenty-second
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp.

Subject
Program

TEE for
MFWA

TEE for
random

technique

Differences

Circular
Queue

89.52 32.07 57.45

Bank 68.93 62.71 6.22
Sodoku 96.63 88.07 8.56
Gomoku 2.54 1.94 0.6

HashTable 95.07 45.6 49.47

Johanna Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 23 - 28

28

405–408, 2007.
https://doi.org/10.1145/1321631.1321695

[16] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N.
Kacker, and Y. Lei, “Combinatorial methods for
event sequence testing,” Proc. - IEEE 5th Int. Conf.
Softw. Testing, Verif. Validation, ICST 2012, pp.
601–609, 2012.

[17] I. Moore, “Jester-a JUnit test tester,” Proc. 2nd XP,
pp. 84–87, 2001.

[18] A. M. Sultan, “An Optimized Test Case Generation
Technique For Enhancing State-Sensitivity
Partitioning,” Universiti Putra Malaysia, 2017.

[19] A. B. Sanchez, S. Segura, and A. Ruiz-Cortes, “A
Comparison of Test Case Prioritization Criteria
for Software Product Lines,” Softw. Testing, Verif.
Valid. (ICST), 2014 IEEE Seventh Int. Conf., pp.
41–50, 2014.
https://doi.org/10.1109/ICST.2014.15

[20] B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y.
Chen, “How well does test case prioritization
integrate with statistical fault localization?,” Inf.
Softw. Technol., vol. 54, no. 7, pp. 739–758, 2012.
https://doi.org/10.1016/j.infsof.2012.01.006

[21] P. Tonella, P. Avesani, and A. Susi, “Using the
Case-Based Ranking Methodology for Test Case
Prioritization,” 22nd IEEE Int. Conf. Softw. Maint.,
pp. 123–132, 2006.
https://doi.org/10.1109/ICSM.2006.74

[22] A. Ammar, S. Baharom, A. A. A. Ghani, and J. Din,
“Enhanced Weighted Method for Test Case
Prioritization in Regression Testing Using Unique
Priority Value,” in Information Science and Security
(ICISS), 2016 International Conference, 2016.
https://doi.org/10.1109/ICISSEC.2016.7885851

[23] S. Parsa and A. Khalilian, “On the Optimization
Approach towards Test Suite Minimization,” Int.
J. Softw. Eng. Its Appl., vol. 4, no. 1, pp. 15–28, 2010.

[24] P. Udupa and S. Nithyanandam, “An Efficient
software testing by test case reduction,
prioritization and prioritized parallelization,” Int.
J. Pure Appl. Math., vol. 118, no. 22, pp. 1879–1885,
2018.

