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ABSTRACT 

Every industry relies heavily on electrical machines. When 

these machines fail without giving a signal or warning, there is 

unplanned downtime and unanticipated deployment of 

maintenance staff which may affect or lower production if 

machines are serving as important assets. Some failures can 

lead to greater damage, instead of one machine or item being 

replaced a lot of resources will be needed to repair once a 

machine fails and assets will have a shorter life expectancy.  

There are also safety issues associated with running a machine 

to failure. Running a machine to failure also increases labour 

costs and safety costs. Therefore, this paper proposes a 

Cloud-Enabled   Fault Prediction and Reporting System with 

Machine scheme for Healthy-State and Time-To-Failure 

Assessment of Induction Motors and Pumps for Maintenance 

Scheduling. This system uses sensors to extract data (current, 

speed, temperature, vibrations). The extracted data is then 

conditioned and compared to the values related to the healthy 

state of the equipment using machine learning algorithms, 

manufacturer specifications, and historical readings to identify 

performance non-conformities or items that require action and 

display the asset health report which will help schedule a 

proper maintenance procedure based on analysis.  

 

Keywords: Fault Prediction, Induction Motors, Maintenance 

Scheduling, Sensors , Machine Learning, Pumps. 

 

1. INTRODUCTION 

Condition-based maintenance strategy is one solution to 

run-to-fail consequences. It may lead to significant 

 
 

improvements in the availability, quality, and productivity of 

production lines [1]. Identifying or detecting faults at an early 

stage is very important since functional failures may quickly 

and easily occur after the initial development of one fault [2]. 

Trend monitoring is a type of condition-based maintenance 

strategy which uses historical data and manufacturer 

specifications. Trend monitoring is usually used to frequently 

check airplane engine data, to monitor and diagnose 

abnormalities in engine performance, hopefully preventing 

secondary and even more costly damage. The system will 

extend its trend-monitoring capabilities to plant machines or 

equipment [3].  

 

Mainly, 95 % of all electric motors are induction motors, 

which also account for 40 to 50 % of all produced electricity 

[4]. Induction motors have been employed in several 

applications, including petroleum, nuclear power, chemical 

processing, paper industries, mills, and the mining sector 

[5-11]. Induction motors likewise have been utilized in more 

widespread contexts, such examples include compressors, 

robotics, fans, lifts, air conditioners, pumps, crushers, fans, 

tractions, etc. [12-13] Induction motors, like other types of 

motors, may malfunction despite having low failure rates and 

only needing the most minimal maintenance.  

 

Characteristically, when pumps and motors malfunction 

suddenly, there is unanticipated downtime and unanticipated 

personnel deployment, which may impact reduction if the 

motors are acting as critical assets [14]. By performing routine 

inspections on equipment—a process known as preventative 

maintenance many organizations aim to stop failure before it 

starts. The biggest challenge in preventative maintenance is 

knowing when to perform maintenance because it is 

 

 

Healthy-State and Time-To-Failure Assessment of  

Induction Motors and Pumps for Maintenance  

Scheduling Using Cloud-Enabled Fault Prediction and 

Reporting System with Machine Learning Scheme 

G. Pius Agbulu1, Takudzwa Ngwerume2, E. Kapuya3, S. Gunasekar4 
1 Department of Electronics and Instrumentation Engineering, SRM Institute of Science and Technology, SRM 

Nagar, Kattankulatur, Kancheepuram, Chennai, TN, India.gpagbulu@gmail.com 
2Department of Mechatronic Engineering, School of Engineering Sciences & Technology, Private Bag 7724, 

Chinhoyi University of Technology, Chinhoyi, Zimbabwe. Takudzwangwerume98@gmail.com 
3Department of Mechatronic Engineering, School of Engineering Sciences & Technology, Private Bag 7724, 

Chinhoyi University of Technology, Chinhoyi, Zimbabwe. Egelbert.kapuya@gmail.com 
4 Department of Artificial Intelligence and Machine Learning,  

New Horizon College of Engineering, Bangalore, India.gunasekars.nhce@newhorizonindia.edu  

 

Received Date December 21, 2022        Accepted Date: January 23, 2023        Published Date: February 06, 2023 

 

ISSN 2278-3091 

Volume 12, No.1, January - February 2023 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse041212023.pdf 

https://doi.org/10.30534/ijatcse/2023/041212023 

 

mailto:Takudzwangwerume98@gmail.com
http://www.warse.org/IJATCSE/static/pdf/file/ijatcse041212023.pdf
https://doi.org/10.30534/ijatcse/2023/041212023


G. Pius Agbulu et al., International Journal of Advanced Trends in Computer Science and Engineering, 12(1), January – February 2023, 16 - 23 

17 

 

 

impossible to predict when a machine will fail. Scheduling 

maintenance too early will reduce the life of the machine and 

increase costs. It is also important to be conservative and 

schedule maintenance early for equipment that is essential for 

safety. 

 

Since motors are the primary movers of many industries, this 

will help the industries to increase productivity and cut cost. 

By cutting the number of preventative maintenance exercises 

which sometimes are unnecessary and cause unnecessary 

downtime and loss of production and also by avoiding 

unanticipated failure. The power generation utilities in 

Zimbabwe, which rely on motors and pumps for their 

operations, cannot afford to lose hours of production owing to 

downtime that can be avoided [15]. They can arrange 

downtime for maintenance with the aid of the system. The 

system will also aid in avoiding accidents that might occur if 

motors falter while in use, endangering both people and other 

equipment. 

 

Hence, this paper proposes a Cloud-Enabled   Fault Prediction 

and Reporting System with Machine scheme for Healthy-State 

and Time-To-Failure assessments of Induction Motors and 

Pumps for Maintenance Scheduling. This system uses sensors 

to extract data (current, speed, temperature, vibrations). The 

extracted data is then conditioned and compared to the values 

related to the healthy state of the equipment using machine 

learning algorithms, manufacturer specifications, and 

historical readings to identify performance non-conformities 

or items that require action and display the asset health report 

which will help schedule a proper maintenance procedure 

based on analysis. the system's reports will be easy to read and 

do not require technical analysis because they indicate the best 

times to plan maintenance. As the plant operates, the system 

will assist in visualizing field parameters, which will be 

available in real time due to its online nature. 

 

2.PROPOSED CLOUD-ENABLED   FAULT PREDICTION AND 

REPORTING SYSTEM WITH MACHINE LEARNING SCHEME 

 

The system is broken down into 4 major parts to be designed 

separately and integrated later as shown in Fig.1, the Data 

Acquisition domain (for acquiring raw sensor data from 

machines), Storage domain (for storage of raw sensor data in a 

database) and the Processing and Analysis domain (Machine 

learning Model) and the Display (Web Dashboard). Each 

domain executes a particular objective. 

  

 
Figure 1: System design 

Vibration, current and temperature are the parameters to be 

measured.  This is because it is easy to analyze their patterns or 

signatures as a machine begins to fail. Vibration sensors, 

current sensors, temperature sensors and the control system 

make up the data acquisition of the system to be designed. 

Below is a list of sensors and a controller that were selected in 

order to come up with the data acquisition domain of the 

system. The system's hardware consists of the ACS 712 

sensor, MPU 9250, and Arduino. Only one of the ACS712's 

outputs is connected to the Arduino's analog inputs. The 

associated power connections were connected to ground and 5 

volts. To establish an I2C connection, the MPU 9250 is linked 

to the SDA and SDLC pins. A piezoelectric vibration 

harvester is used to power the microcontroller and the sensors. 

Piezoelectric vibration harvesters derive energy from rotating 

equipment and convert it to electrical energy which is stored in 

a supercapacitor and the sensors only draw energy from them 

when sufficient energy has been stored. Micro-batteries like 

lithium and zinc could have been used in place of the stated 

energy harvester but batteries have a finite life and are not 

ideal for continuous equipment monitoring. Figure 2 shows the 

system block diagram. 

 
Figure 2: System block diagram 

3. CONCLUSION CLOUD-DATABASE AND DATA 

ANALYSIS SCHEME 

 

3.1. Node-Red 

 

Figure 3 shows the Nodes Red. Precisely, Node-RED is an 

open-source flow-based programming tool for wiring together 

IoT devices. To carry out the activities and connect the nodes, 

JavaScript code is written in the nodes. For the purpose of 
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storing the unprocessed sensor data, we employed SQLite. 

Node-SQLite Red's C library offers a disk-based database that 

can be queried using a non-standard SQL query language and 

does not need a separate server process. In comparison to the 

other databases, it is a quick, easy, and scalable database 

management solution. After the system's various parts are 

constructed, they are combined, with node-red serving as the 

hub. A serial COM port connects the data acquisition or 

sensing component to the node red server. After training, the 

machine learning model is saved as a pickle object, deployed 

using a flask API, and coupled to node-red via an http request 

node, which provides data to the server from the database and 

the model evaluates the data and returns predictions. The 

node-red server is also linked to an SQLite database. Node 

Red has nodes for displaying to a dashboard, and the display is 

developed from there. 

 

 

 
 

Figure 3: Nodes red nodes 

 

3.2 Machine Learning Model 

 

In this case, the motor's current health will be predicted using 

the Hidden Markov method. Figure 4 shows the Steps in 

building the model. For classification, other models like 

LSTMs with memory and recurrent neural networks may be 

utilized[16]. The Markov model just requires the present state 

and prior state to infer the next state, hence a memory-less 

Markov model is utilized since there is not enough training 

data. The programming language that was chosen is python, 

this is because it has all the necessary libraries required to 

build and train the model. One of the objectives was to build a 

machine-learning model that analyzes sensor data and reports 

motor healthy when failure is likely to occur. A left-to-right 

hidden Markov Model was selected. The following steps were 

used in the development of the model. 

 

 

 
 

Figure 4: Steps in building a model 

 

3.3. Dataset and Data Exploration 

 

The next step will be to gather and comprehend data. Labeled 

run-to-fail data is needed to create and train the model because 

the use case is to predict the machine's health condition. The 

three datasets that were used in the project were obtained from 

a website called Kaggle and the description of the datasets is 

given below. This case best suits the objective which requires 

the researcher to acquire and process vibration and current 

datasets indicating healthy and faulty motors for building and 

training the model. Kaggle was used to acquire the dataset 

below, which contains run-to-fail testing of motor bearings. 

This dataset only contains vibrational data. The shaft had four 

bearings attached to it. A steady 2000 RPM rotation was 
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maintained by an AC motor that was attached to the shaft with 

rubber belts. A spring mechanism placed a 6000 lb rial strain 

on the shaft and bearing. Every bearing received forced 

lubrication. All failures happened after the Rexnord ZA-2115 

double bearing had reached the end of its specified life, which 

is greater than 100 million revolutions. After deciding on an 

algorithm and having a dataset at hand, the next step in 

building a model is data exploration.  EDA makes it simpler to 

analyze data and generate descriptive and graphical 

summaries of it. The open-source, BSD-licensed Pandas 

library is accessible in Pycham. The fundamental unit of 

pandas is the data frame. It represents data with rows and 

columns (tabular or excel spreadsheet-like data). 

 

3.4 Dataset structure 

 

There are three datasets in the data packet. Each dataset has a 

test-to-failure experiment description. Each dataset is made up 

of unique files that contain snapshots of 1-second vibration 

signals taken at predetermined intervals. Each file contains 

20,480 points with sampling rates set to 20 kHz. The date the 

data was collected is included in the file name. Each of the 

entries (rows) in the data file are individual data points. Longer 

time stamp intervals in the subsequent experiment indicate that 

the experiment was continued the following working day (seen 

in file names). Below are brief summaries of each dataset: 

Set 1:  Is made up of 2156 files from channels recorded from 4 

bearings with 2 channels for each for the vibration in the 

x-axis. 

Description: At the end of the test-to-failure experiment, an 

inner race defect occurred in bearing 3 and a roller element 

defect in bearing 4. 

Set 2: Is made up of 984 files from channels recorded from 4 

bearings with 1 channel for each vibration in the x-axis. 

Description: At the end of the test-to-failure experiment, 

outer race failure occurred in bearing1. 

Set 3: Is made up of 4448 from 4 channels recorded from 4 

bearings with 1 channel for each for vibration in the x-axis. 

Description: At the end of the test-to-failure experiment, 

outer race failure occurred in bearing 3. 

 

3.5. Feature Extraction 

 

Figure 5 shows the raw signal plot. Feature Engineering and 

EDA work hand in hand. A thorough understanding of the 

dataset is essential for effective feature engineering. Feature 

extraction identifies the most discriminating characteristics in 

signals, which a machine learning algorithm can more easily 

consume. Due to information redundancy and the high data 

rate, training machine learning on raw signals frequently 

produces poor results as there is no clear pattern on the bearing 

degradation as they fail from the raw signals and they cannot 

be used as they are. Features were already available on the 

extracted dataset. 

 

 
 

Figure 5: Raw signal plot 

 

Definition and formula of the time features: 

 Absolute mean, 

 
(1) 

 standard deviation  

 
(2) 

 kurtosis:  the length of a signal distribution's tails, or 

alternatively, how prone an outlier-prone the signal is. 

The number of outliers might rise as a result of developing 

flaws, raising the kurtosis metric's value. 

 

 

                                                              

 
(3) 

 

 Skewness: Dispersion of signals with asymmetries. Faults 

can affect the symmetry of the distribution, which raises 

the skewness. 

 

4 RESULTS AND DISCUSSION 

 

This section presents results from the integrated tests of the 

entire system. For the developed subsystems most tests were 

carried out through simulation and modelling. Figure 6 shows 

the RUL Plot. Figure 7 (a) shows the prototype view 1, while 

Figure 7 (b)shows the prototype view 2. The states decoded 

are sent to the dashboard from the API and converted to their 

respective health labels with:0: for healthy state; 1-for faulty 

state; 2- failure imminent.; Additionally, the remaining useful 

life is revealed, and to ensure accuracy, it is calculated and 

updated every 30 minutes. 
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Figure 6:  Reports and display 
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(b) 

 

 

Figure 7: (a) Prototype view 1; (b) Prototype view 2 

4.1 Decoded States from Training the Model 

Figure 8 (a) shows the decoded state sequence of bearing 1, 

while Figure 8 (b) decoded state sequence of bearing 1The 

decoded stated sequences are shown on an RMS plot. The 

obtained data features were consumed by the model for 

training.  Parameters such as the sequence data for each 

bearing, log probabilities, start probability and the transition 

matrix are also highlighted for each bearing to clearly show 

how the states are being decoded. The start or initial 

probabilities obtained from training were showing that the 

bearing can start in any state since a used motor will be used 

for testing. The start of the initial probability could have been 

forced to start in the(health) state1 for a motor. 

 

4.2. Testing and Model Selection 

 

Figure 9 shows the output for model from S1_B1. Model from 

S1_B1 decodes the system states in the given order: State 

0(Healthy); State2(Failure imminent); State 1 (Degrading). 

The trained models are tested to decode sequences which was 

reserved for testing out the model. The decoded states are 

illustrated as follows. The blue line in the graphs given below 

denotes the degradation pattern of bearing 2 from set 3 and the 

red line denotes the decoded states from bearing 3 from set 3. 

The Y-axis from the graph denotes the RMS for bearings as 

they degrade, and the X-axis highlights the time it takes for 

each bearing to degrade. 

 

 
 

                                               (a) 

 
 

                                           (b) 

 Figure 8: (a) Decoded state sequence of bearing 1: (b) 

Decoded state sequence of bearing 1. 
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The log probabilities for all the models are displayed in the 

table in Table 1. The log probability is a number that is used to 

evaluate the performance of a model, that is the more negative 

the value of the probability, the better the performance of that 

model. The model from S1_B1 with log probability 

-21625910.260216523 is the best among the others, according 

to theory. Despite having lower log probabilities than the 

others, S1_B4, S2_ B1, and S3_B1 produce the best results 

due to a better state decoding (for the system being 

monitored). The S2_B1 model is chosen as the best model 

because it can decode the states in the desired order. It has a 

-124385.7422104653-log probability.  The model is saved as 

a pickle object and put in production. 

 

 

 

 
Figure 9:  Output for model from S1_B1 

 

 

                                 Table 1: Log Probability 

 

Model Log Probability 

S1_B1 -21625910.260216523 

S1_B2 -15741931.288018757 

S1_B3 -243170.91978825524 

S1_B4 -428826.7856630708 

S2_B1 -44063.25022806876 

S2_B2 -124385.7422104653 

S2_B3 -469507.64837242395 

S2_B4 -28031.281687931256 

S3_B1 -106197.65557323382 

S3_B2 -61992.239269823 

S3_B3 -6930.4202 

S3_B4 -61992.23 

 

 

 

4.3. Remaining Useful Life Prediction 

 

Figure 10 show the RUL plot from the model. The best model 

is used to estimate RUL on the bearing. It should be observed 

that as the predicted failure time approaches, the estimated 

RUL's accuracy rises. A 95% confidence interval is used to 

calculate the upper, lower, and mean RUL values.  

 

  

Figure 10: RUL plot from the model 

 

4.4. Accuracy 

 

Figure 11 shows the Error in RUL. The RUL improves in 

accuracy as the bearing nears failure, which is acceptable 

because it can be used to plan maintenance before the 

equipment breaks down. As the real failure time draws near, 

the mean percentage error decreases from roughly 60% to 

about 3% before stabilizing.  

 

 
Figure 11: Error in RUL 

 

4.5. Visualization of Features 

 

The results are as shown in Figure 12,13,14 and 15, the Mean, 

RMS, Skewness, and Kurtosis features were extracted from 

the raw sensor data. The displayed features are shown below. 

The red line highlights the decoded state sequence and the 
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blue-line highlights the RMS values from, healthy to faulty to 

degrading. Decoded state sequence: Healthy, degrading and 

Failure. 

 

 

 
Figure 12: Mean features 

 
Figure 13: RMS features 

 
Figure 14: Skewness features 

 
Figure 15: Kurtosis Features. 

 

 

5 CONCLUSION 

 

Most industry depend on heavily on electrical machines. Once 

these machines fail without giving a signal or warning, there is 

unplanned downtime and unanticipated deployment of 

maintenance staff which may affect or lower production if 

machines are serving as important assets. Some failures can 

lead to greater damage, instead of one machine or item being 

replaced a lot of resources will be needed to repair once a 

machine fails and assets will have a shorter life expectancy.  

There are also safety issues associated with running a machine 

to failure. Running a machine to failure also increases labour 

costs and safety costs. This paper proposes a Cloud-Enabled   

Fault Prediction and Reporting System with Machine scheme 

for Healthy-State and Time-To-Failure Analysis of Induction 

Motors and Pumps for Maintenance Scheduling. This system 

uses sensors to extract data (current, speed, temperature, 

vibrations). The extracted data is then conditioned and 

compared to the values related to the healthy state of the 

equipment using machine learning algorithms, manufacturer 

specifications, and historical readings to identify performance 

non-conformities or items that require action and display the 

asset health report which will help schedule a proper 

maintenance procedure based on analysis.  
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